MSRI-MPI LEIPZIG SUMMER GRADUATE SCHOOL 2023 MESSI SYSTEMS

Alicia Dickenstein

Departamento de Matemática, FCEN, Universidad de Buenos Aires, and Instituto de Matemática Luis A. Santaló, UBA-CONICET

Leipzig, June 19, 2023

PHOSHO-DEPHOSPHORYLATION: "FUTILE" CYCLE

$$S_0 + E \stackrel{k_{\text{on}}}{\leftarrow} ES_0 \stackrel{k_{\text{cat}}}{\rightarrow} S_1 + E$$

$$S_1 + F \stackrel{\ell_{\text{on}}}{\leftarrow} FS_1 \stackrel{\ell_{\text{cat}}}{\rightarrow} S_0 + F$$

E and F enzymes, S_0 and S_1 substrates, S_0E and S_1F intermediates and we represent it with: $S_0 \underbrace{\overset{E}{\underset{F}{\bigcirc}}}_{F} S_1$.

There are 6 species, 6 complexes (nodes) and 6 reactions (edges)

PHOSHO-DEPHOSPHORYLATION: "FUTILE" CYCLE

$$S_{0} + E \stackrel{k_{\text{on}}}{\longleftrightarrow} ES_{0} \stackrel{k_{\text{cat}}}{\to} S_{1} + E$$

$$S_{1} + F \stackrel{\ell_{\text{on}}}{\longleftrightarrow} FS_{1} \stackrel{\ell_{\text{cat}}}{\to} S_{0} + F$$

E and F enzymes, S_0 and S_1 substrates, S_0E and S_1F intermediates and we represent it with: $S_0 \underbrace{\overset{E}{\sum}}_{F} S_1$.

There are 6 species, 6 complexes (nodes) and 6 reactions (edges)

TWO SEQUENTIAL PHOSPHORYLATIONS

$$S_{0} + E \xrightarrow[k_{\text{off}_{0}}]{k_{\text{off}_{0}}} ES_{0} \xrightarrow[k_{\text{cat}_{0}}]{k_{\text{cat}_{0}}} S_{1} + E \xrightarrow[k_{\text{off}_{1}}]{k_{\text{off}_{1}}} ES_{1} \xrightarrow[k_{\text{cat}_{1}}]{k_{\text{cat}_{1}}} S_{2} + E$$

$$S_{2} + F \xrightarrow[l_{\text{off}_{0}}]{k_{\text{off}_{0}}} FS_{2} \xrightarrow[l_{\text{cat}_{0}}]{k_{\text{cat}_{1}}} S_{1} + F \xrightarrow[l_{\text{off}_{0}}]{k_{\text{off}_{0}}} FS_{1} \xrightarrow[l_{\text{cat}_{0}}]{k_{\text{cat}_{1}}} S_{0} + F$$

WE NUMBER THE SPECIES AND THEIR CONCENTRATIONS

 $x_1, x_2, x_3 = \text{concentrations of } S_0, S_1, S_2$

 $y_1, y_2, y_3, y_4 =$ concentrations of the intermediate species

 $x_4 = \text{concentration of the kinase } E$

 $x_5 = \text{concentration of the phosphatase } F.$

THE DIFFERENTIAL EQUATIONS AND THE

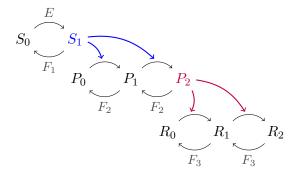
CONSERVATION LAWS

$$\frac{dx_1}{dt} = -k_{\text{on}_0} x_1 x_4 + k_{\text{off}_0} y_1 + l_{\text{cat}_0} y_4 \qquad \frac{dx_4}{dt} = -k_{\text{on}_0} x_1 x_4 - k_{\text{on}_1} x_2 x_4 + (k_{\text{off}_0} + k_{\text{cat}_0}) \\
\frac{dx_2}{dt} = -k_{\text{on}_1} x_2 x_4 + k_{\text{cat}_0} y_1 + k_{\text{off}_1} y_2 \qquad + (k_{\text{off}_1} + k_{\text{cat}_1}) y_2 \\
-l_{\text{on}_0} x_2 x_5 + l_{\text{cat}_1} y_3 + l_{\text{off}_0} y_4 \qquad \frac{dx_5}{dt} = -l_{\text{on}_0} x_2 x_5 - l_{\text{on}_1} x_3 x_5 + (l_{\text{off}_1} + l_{\text{cat}_1}) y_3 \\
\frac{dx_3}{dt} = k_{\text{cat}_1} y_2 - l_{\text{on}_1} x_3 x_5 + l_{\text{off}_1} y_3 \qquad + (l_{\text{off}_0} + l_{\text{cat}_0}) y_4 \\
\frac{dy_1}{dt} = k_{\text{on}_0} x_1 x_4 - (k_{\text{off}_0} + k_{\text{cat}_0}) y_1 \qquad \frac{dy_3}{dt} = l_{\text{on}_1} x_3 x_5 - (l_{\text{off}_1} + l_{\text{cat}_1}) y_3 \\
\frac{dy_2}{dt} = k_{\text{on}_1} x_2 x_4 - (k_{\text{off}_1} + k_{\text{cat}_1}) y_2 \qquad \frac{dy_4}{dt} = l_{\text{on}_0} x_2 x_5 - (l_{\text{off}_0} + l_{\text{cat}_0}) y_4$$

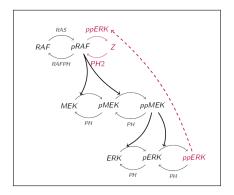
$$x_1 + x_2 + x_3 + y_1 + y_2 + y_3 + y_4 = S_{tot}$$

 $x_4 + y_1 + y_2 = E_{tot}$
 $x_5 + y_3 + y_4 = F_{tot}.$

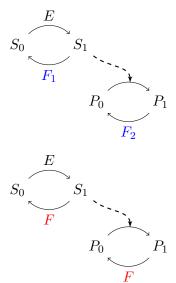
Phosphorylation cascades



Phosphorylation cascades with retroactivity



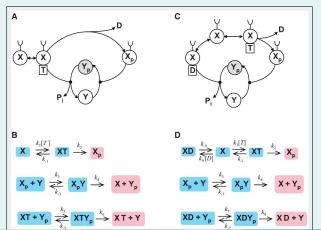
Different phosphatases vs same phosphatase in a cascade



Bifunctional enzyme in E. coli, Shinar-Feinberg, Science '10

SHINAR-FEINBERG, SCIENCE '10

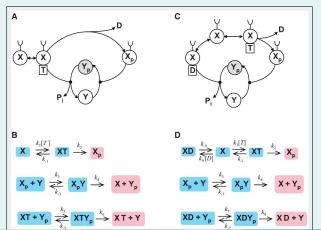
$$X = \text{EnvZ}, \quad Y = \text{OmpR}$$



Bifunctional enzyme in E. coli, Shinar-Feinberg, Science '10

SHINAR-FEINBERG, SCIENCE '10

$$X = \text{EnvZ}, \quad Y = \text{OmpR}$$



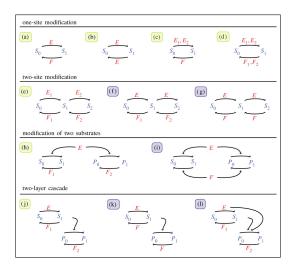
Example: Processive Phosphorilations

$$S_0 + K \xrightarrow{k_1} S_0 K \xrightarrow{k_3} S_1 K \xrightarrow{k_5} \dots \xrightarrow{k_{2n-1}} S_{n-1} K \xrightarrow{k_{2n+1}} S_n + K$$

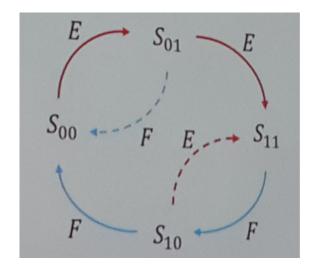
$$S_n + F \xrightarrow{\ell_{2n+1}} S_n F \xrightarrow{\ell_{2n-2}} \dots \xrightarrow{\ell_{2n-2}} \dots \xrightarrow{\ell_5} S_2 F \xrightarrow{\ell_3} S_1 F \xrightarrow{\ell_1} S_0 + F$$

C. Conradi and A. Shiu. A global convergence result for processive multisite phosphorylation systems, 2015.

SMALL MOTIFS ([ALON'07, FELIU-WIUF'12])



SHVARTSMAN'S ENZYMATIC NETWORK



A COMMON STRUCTURE [P.MILLÁN-D.'18: THE STRUCTURE OF MESSI BIOLOGICAL SYSTEMS]

MESSI SYSTEMS

We identified with Mercedes Pérez Millán a common structure in many popular biological networks that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, which allows us to prove general results valid in all these networks. MESSI systems include all the previous ones.

A COMMON STRUCTURE [P.MILLÁN-D.'18: THE STRUCTURE OF MESSI BIOLOGICAL SYSTEMS]

MESSI SYSTEMS

We identified with Mercedes Pérez Millán a common structure in many popular biological networks that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, which allows us to prove general results valid in all these networks. MESSI systems include all the previous ones.

A MESSI network is a chemical reaction network satisfying the following properties. When endowed with mass-action kinetics, we have a MESSI system.

$$\mathcal{S} = \underbrace{\mathcal{S}^{(0)}}_{\text{intermediates}} \underbrace{ \left[\begin{array}{c} \mathcal{S}^{(1)} \\ \end{array} \right] \mathcal{S}^{(2)} \left[\begin{array}{c} \dots \\ \end{array} \right] \mathcal{S}^{(M)}}_{\text{non-intermediates}}$$

- There are two types of complexes: intermediates (consisting of a single intermediate species) and non-intermediates or core (consisting of one or two core species, but if there are two, they belong to distinct $S^{(\alpha)}$).
- Notation: \rightarrow_{\circ} = reacts via a path of intermediates

A MESSI network is a chemical reaction network satisfying the following properties. When endowed with mass-action kinetics, we have a MESSI system.

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}$$

- There are two types of complexes: intermediates (consisting of a single intermediate species) and non-intermediates or core (consisting of one or two core species, but if there are two, they belong to $distinct S^{(\alpha)}$).
- Notation: \rightarrow = reacts via a path of intermediates

A MESSI network is a chemical reaction network satisfying the following properties. When endowed with mass-action kinetics, we have a MESSI system.

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}$$

- There are two types of complexes: intermediates (consisting of a single intermediate species) and non-intermediates or core (consisting of one or two core species, but if there are two, they belong to $distinct S^{(\alpha)}$).
- Notation: $\rightarrow =$ reacts via a path of intermediatess

A MESSI network is a chemical reaction network satisfying the following properties. When endowed with mass-action kinetics, we have a MESSI system.

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}$$

- There are two types of complexes: **intermediates** (consisting of a single intermediate species) and **non-intermediates or core** (consisting of one or two core species, but if there are two, they belong to $distinct \mathcal{S}^{(\alpha)}$).
- Notation: \rightarrow_{\circ} = reacts via a path of intermediates.

A MESSI network is a chemical reaction network satisfying the following properties. When endowed with mass-action kinetics, we have a MESSI system.

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}$$

- There are two types of complexes: **intermediates** (consisting of a single intermediate species) and **non-intermediates or core** (consisting of one or two core species, but if there are two, they belong to $distinct \mathcal{S}^{(\alpha)}$).
- Notation: \rightarrow_{\circ} = reacts via a path of intermediates.

A MESSI network is a chemical reaction network satisfying the following properties. When endowed with mass-action kinetics, we have a MESSI system.

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}$$

- There are two types of complexes: **intermediates** (consisting of a single intermediate species) and **non-intermediates or core** (consisting of one or two core species, but if there are two, they belong to $distinct \mathcal{S}^{(\alpha)}$).
- Notation: \rightarrow_{\circ} = reacts via a path of intermediates.

• Reactions satisfy:

- For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
- If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
- $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
- If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about)

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}.$$

- Reactions satisfy:
 - For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
 - If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
 - $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
 - If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about)

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}.$$

- Reactions satisfy:
 - For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
 - If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
 - $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
 - If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about).

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}.$$

- Reactions satisfy:
 - For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
 - If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
 - $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
 - If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about).

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}.$$

- Reactions satisfy:
 - For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
 - If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
 - $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
 - If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about).

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}.$$

- Reactions satisfy:
 - For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
 - If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
 - $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
 - If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about).

$$S = \underbrace{S^{(0)}}_{\text{intermediates}} \bigsqcup \underbrace{S^{(1)} \bigsqcup S^{(2)} \bigsqcup \cdots \bigsqcup S^{(M)}}_{\text{non-intermediates or core}}.$$

- Reactions satisfy:
 - For any intermediate X_k , there exist core complexes $X_i + X_j$ and $X_\ell + X_m$ such that $X_i + X_j \rightarrow_{\circ} X_k$ and $X_k \rightarrow_{\circ} X_\ell + X_m$.
 - If $X_i \to_{\circ} X_j$ then X_i, X_j belong to the same $\mathcal{S}^{(\alpha)}$.
 - $X_i + X_j \to X_k$ or $X_k \to X_i + X_j$, then $X_k \in \mathcal{S}^{(0)}$.
 - If $X_i + X_j \to_{\circ} X_k + X_\ell$ there exist $\alpha \neq \beta$ such that $X_i, X_k \in \mathcal{S}^{(\alpha)}, X_j, X_\ell \in \mathcal{S}^{(\beta)}$ (or the other way about).

Inspired by and generalizing

Feliu and Wiuf 2013, Thomson and Gunawardena 2009, Gnacadja 2011.

Enzymes and swaps

- In a reaction $X_i + X_\ell \to X_j + X_\ell$, we say that X_ℓ acts as an enzyme.
- A reaction $X_i + X_\ell \to X_j + X_m$, with i, ℓ, j, m distinct, is called a swap.
- We do not restrict: substrates can also be enzymes.

Inspired by and generalizing

Feliu and Wiuf 2013, Thomson and Gunawardena 2009, Gnacadja 2011.

Enzymes and swaps

- In a reaction $X_i + X_\ell \to X_j + X_\ell$, we say that X_ℓ acts as an enzyme.
- A reaction $X_i + X_\ell \to X_j + X_m$, with i, ℓ, j, m distinct, is called a swap.
- We do not restrict: substrates can also be enzymes.

Conserved quantities: Theorem 1

A MESSI system has one (independent) linear conservation relation associated to each of the subsets $S^{(\alpha)}$, $1 \le \alpha \le M$, in the partition of the species set corresponding to non-intermediate species:

$$\sum_{\mathbf{X}_{i} \in \mathcal{S}^{(\alpha)}} x_{i} + \sum_{\mathbf{X}_{k} \in \operatorname{Int}_{\alpha}} x_{k} = \text{constant},$$

where $\operatorname{Int}_{\alpha} = \{ \mathbf{x_k} : X_i \to_{\circ} \mathbf{x_k} \text{ or } X_{i+} X_j \to_{\circ} \mathbf{x_k} \text{ for some } X_i \in \mathcal{S}^{(\alpha)} \}.$

OBSERVATION

- Theorem 1 implies that all MESSI systems are conservative (and thus the solutions are defined for any positive time).
- Question: when these span all the linear conservation laws?
- We give different sufficient conditions, satisfied by most common biochemical enzymatic models. We show counterexamples if any of these conditions is released.

Conserved quantities: Theorem 1

A MESSI system has one (independent) linear conservation relation associated to each of the subsets $S^{(\alpha)}, 1 \leq \alpha \leq M$, in the partition of the species set corresponding to non-intermediate species:

$$\sum_{\mathbf{X}_{i} \in \mathcal{S}^{(\alpha)}} x_{i} + \sum_{\mathbf{X}_{k} \in \operatorname{Int}_{\alpha}} x_{k} = \text{constant},$$

where $\operatorname{Int}_{\alpha} = \{ \mathbf{X}_{\mathbf{k}} : X_i \to_{\circ} \mathbf{X}_{\mathbf{k}} \text{ or } X_i + X_j \to_{\circ} \mathbf{X}_{\mathbf{k}} \text{ for some } X_i \in \mathcal{S}^{(\alpha)} \}.$

Observation:

- Theorem 1 implies that all MESSI systems are conservative (and thus the solutions are defined for any positive time).
- Question: when these span all the linear conservation laws?
- We give different sufficient conditions, satisfied by most common biochemical enzymatic models. We show counterexamples if any of these conditions is released.

Conserved quantities: Theorem 1

A MESSI system has one (independent) linear conservation relation associated to each of the subsets $S^{(\alpha)}, 1 \leq \alpha \leq M$, in the partition of the species set corresponding to non-intermediate species:

$$\sum_{\mathbf{X}_{i} \in \mathcal{S}^{(\alpha)}} x_{i} + \sum_{\mathbf{X}_{k} \in \operatorname{Int}_{\alpha}} x_{k} = \text{constant},$$

where $\operatorname{Int}_{\alpha} = \{ \mathbf{x}_{\mathbf{k}} : X_i \to_{\circ} \mathbf{x}_{\mathbf{k}} \text{ or } X_i + X_j \to_{\circ} \mathbf{x}_{\mathbf{k}} \text{ for some } X_i \in \mathcal{S}^{(\alpha)} \}.$

Observation:

- Theorem 1 implies that all MESSI systems are conservative (and thus the solutions are defined for any positive time).
- Question: when these span all the linear conservation laws?
- We give different sufficient conditions, satisfied by most common biochemical enzymatic models. We show counterexamples if any of these conditions is released.

From G to G_1 (WITHOUT INTERMEDIATES)

Going from G to G_1 we delete intermediates and we put an edge between two core complexes $y_i \to y_j$ if $y_1 \to_{\circ} y_j$ in G:

FIGURE:
$$S^{(0)} \subseteq \{Z_1, Z_2, Z_3\}, S^{(1)} = \{y_1, y_2, y_3\}$$

In all cases G = A, B, C, D (with rate constants κ), the associated digraph G_1 is A.

Wiuf and Feliu proved that with rate constants $\tau(\kappa)$ and QSSA style substitutions, G_1 has mass-action kinetics form.

From G to G_1 (Without intermediates)

Going from G to G_1 we delete intermediates and we put an edge between two core complexes $y_i \to y_j$ if $y_1 \to_{\circ} y_j$ in G:

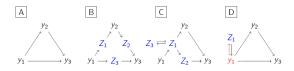


FIGURE:
$$S^{(0)} \subseteq \{Z_1, Z_2, Z_3\}, S^{(1)} = \{y_1, y_2, y_3\}$$

In all cases G = A, B, C, D (with rate constants κ), the associated digraph G_1 is A.

Wiuf and Feliu proved that with rate constants $\tau(\kappa)$ and QSSA style substitutions, G_1 has mass-action kinetics form.

RELATION BETWEEN THE STEADY STATES OF (G, κ) AND $G_1(\tau, \kappa)$

Projecting the steady states

The rational map sending the rate constants κ in G to the rate constants $\tau(\kappa)$ in G_1 verifies that the steady states of the mass-action chemical reaction systems defined by G with rate constants κ and G_1 with rate constants $\tau(\kappa)$, are in one-to-one correspondence via the projection $\pi(u,x)=x$, where u is the vector of concentrations of the intermediate species and x is the vector of concentrations of the core species.

WARNING

This does not directly allow to compare the dynamics of both networks. Further conditions are required!

RELATION BETWEEN THE STEADY STATES OF (G, κ) AND $G_1(\tau, \kappa)$

Projecting the steady states

The rational map sending the rate constants κ in G to the rate constants $\tau(\kappa)$ in G_1 verifies that the steady states of the mass-action chemical reaction systems defined by G with rate constants κ and G_1 with rate constants $\tau(\kappa)$, are in one-to-one correspondence via the projection $\pi(u, x) = x$, where u is the vector of concentrations of the intermediate species and x is the vector of concentrations of the core species.

WARNING

This does not directly allow to compare the dynamics of both networks. Further conditions are required!

$G_1 \rightarrow G_2$ (HIDE ENZYMES AND SWAPS IN LABELS)

G: Double seq. phospho.

$$\Rightarrow \begin{array}{c} G_2: \\ X_1 \stackrel{\tau_1}{\rightleftharpoons} X_2 \stackrel{\tau_3}{\Rightarrow} X_3 \\ \hline \\ \tau_4 y_1 \end{array}$$

 $Y_1 \underset{\tau_5 x_2}{\overset{\tau_4 x_3}{\rightleftarrows}} Y_2$

 G_2 formally defines the same steady state equations

$G_1 \rightarrow G_2$ (HIDE ENZYMES AND SWAPS IN LABELS)

G: Double seq. phospho.

G: EnvZ - OmpR

$$\begin{split} X_1 &\overset{\kappa_1}{\underset{\kappa_2}{\leftarrow}} X_2 \overset{\kappa_3}{\rightarrow} X_3 \\ X_3 + Y_1 &\overset{\kappa_4}{\rightleftharpoons} U_1 \overset{\kappa_6}{\rightarrow} X_1 + Y_2 \\ X_2 + Y_2 &\overset{\kappa_7}{\rightleftharpoons} U_2 \overset{\kappa_9}{\rightarrow} X_2 + Y_1 \\ & \qquad \qquad \qquad \qquad \\ & \qquad \qquad \\ G_1 : \\ X_1 &\overset{\tau_1}{\rightleftharpoons} X_2 \overset{\tau_3}{\rightarrow} X_3 \end{split}$$

$$\begin{array}{c} \tau_2 \\ X_3 + Y_1 \stackrel{\tau_4}{\rightarrow} X_1 + Y_2 \\ X_2 + Y_2 \stackrel{\tau_5}{\rightarrow} X_2 + Y_1 \end{array}$$



MG_2, G_2 and G_2°

- $G_1 \to MG_2$ produces in general a multigraph with loops.
- $MG_2 \rightarrow G_2$ replaces multiple arrows between the same two nodes with a single edge, and the new label is the sum of the labels in all the edges in MG_2 between these two nodes.
- $G_2 \to G_2^{\circ}$ deletes the loops.

MG_2, G_2 and G_2°

- $G_1 \to MG_2$ produces in general a multigraph with loops.
- $MG_2 \to G_2$ replaces multiple arrows between the same two nodes with a single edge, and the new label is the sum of the labels in all the edges in MG_2 between these two nodes.
- $G_2 \to G_2^{\circ}$ deletes the loops.

MG_2, G_2 and G_2°

- $G_1 \to MG_2$ produces in general a multigraph with loops.
- $MG_2 \to G_2$ replaces multiple arrows between the same two nodes with a single edge, and the new label is the sum of the labels in all the edges in MG_2 between these two nodes.
- $G_2 \to G_2^{\circ}$ deletes the loops.

An important property

Persistence

Persistence means that any trajectory starting from a point with positive coordinates stays at a positive distance from any point in the boundary.

So, persistence means that no species which is present can tend to be eliminated in the course of the reaction.

An important property

Persistence

Persistence means that any trajectory starting from a point with positive coordinates stays at a positive distance from any point in the boundary.

So, persistence means that no species which is present can tend to be eliminated in the course of the reaction.

Precluding relevant boundary steady states

If we have a *minimal* partition, we define a new graph G_E , whose vertices are the sets $S^{(\alpha)}$ for $\alpha \geq 1$, and there is an edge from $S^{(\alpha)}$ to $S^{(\beta)}$ if there is a species in $S^{(\alpha)}$ on a label of an edge in G_2 between species of $S^{(\beta)}$.

Persistence: Theorem 2

If there is no directed cycle in G_E , then G has no boundary steady states in any positive stoichiometric compatibility class. So, the system is conservative and there are no relevant boundary steady states. Thus, the network is persistent.

Precluding relevant boundary steady states

If we have a *minimal* partition, we define a new graph G_E , whose vertices are the sets $S^{(\alpha)}$ for $\alpha \geq 1$, and there is an edge from $S^{(\alpha)}$ to $S^{(\beta)}$ if there is a species in $S^{(\alpha)}$ on a label of an edge in G_2 between species of $S^{(\beta)}$.

Persistence: Theorem 2

If there is no directed cycle in G_E , then G has no boundary steady states in any positive stoichiometric compatibility class. So, the system is conservative and there are no relevant boundary steady states. Thus, the network is persistent.

EXAMPLES

$$S_0 \underbrace{S_1}_F P_0 \underbrace{P_1}_F$$

$$S^{(1)} = \{S_0, S_1\},$$

$$S^{(2)} = \{S_0, S_1\},\$$

$$S^{(2)} = \{P_0, P_1\},\$$

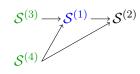
$$S^{(3)} = \{E\}, S^{(4)} = \{F\}.$$

 G_2 :

$$S_0 \overset{\tau_1 e}{\underset{\tau_2 f}{\rightleftarrows}} S_1$$

$$P_0 \stackrel{ au_3 s_1}{\underset{ au_4 f}{\rightleftarrows}} P_1$$

 G_E :



Persistent

G: EnvZ-OmpR
$$S^{(0)}$$
, $S^{(1)} = \{X, XT, X_p\}, S^{(2)} = \{Y, Y_p\}.$

 G_E :

$$\mathcal{S}^{(1)}
ightleftharpoons \mathcal{S}^{(2)}$$

 $x_p = X_{tot}, y_p = Y_{tot}, x = x_t = x_p y = x_T y_p = y = 0$ is a boundary steady state in the class with totals X_{tot}, Y_{tot}

EXAMPLES

- There is at most a single positive solution in $V \cap x(0) + S$ for any x(0) in the positive orthant (monostationarity), for any choice of rate constants κ .
- 2 For all subsets $J \subseteq [s]$ of cardinality d, the product $\det(W) \det(A_J)$ either is zero or has the same sign as all other nonzero products, and at least one such product is nonzero.

- There is at most a single positive solution in $V \cap x(0) + S$ for any x(0) in the positive orthant (monostationarity), for any choice of rate constants κ .
- 2 For all subsets $J \subseteq [s]$ of cardinality d, the product $\det(W)\det(A_J)$ either is zero or has the same sign as all other nonzero products, and at least one such product is nonzero.

- There is at most a single positive solution in $V \cap x(0) + S$ for any x(0) in the positive orthant (monostationarity), for any choice of rate constants κ .
- 2 For all subsets $J \subseteq [s]$ of cardinality d, the product $\det(W) \det(A_J)$ either is zero or has the same sign as all other nonzero products, and at least one such product is nonzero.

- There is at most a single positive solution in $V \cap x(0) + S$ for any x(0) in the positive orthant (monostationarity), for any choice of rate constants κ .
- **2** For all subsets $J \subseteq [s]$ of cardinality d, the product $\det(W) \det(A_J)$ either is zero or has the same sign as all other nonzero products, and at least one such product is nonzero.

S-TORIC MESSI SYSTEMS

DEFINITION

A $structurally\ toric$, or s-toric $MESSI\ system$, is a MESSI system whose digraph G satisfies the following conditions:

- (\mathcal{C}'): For every intermediate complex U_k there exist a unique core complex $y_{(k)}$ such that $y_{(k)} \to_{\circ} U_k$ in G.
- (\mathcal{C}''): The associated multidigraph MG_2 does not have parallel edges and the digraph G_2 is weakly reversible.
- (*C'''*): ...

Intermediates satisfy binomial equations at s.s.

Given a MESSI network G that satisfies condition (\mathcal{C}'), there are (explicit) rational functions $\mu_k \in \mathbb{Q}(\kappa)$, $1 \le k \le p$, such that for any steady state $x \in \mathbb{R}^n_{>0}$ of the associated MESSI network G_1 , the steady state $\pi^{-1}(x) = (u(x), x)$ of G is given by a monomial map:

$$u_k(\mathbf{x}) = \mu_k \, \mathbf{x}^{y_{(k)}}, \quad k = 1, \dots, p. \tag{2}$$

S-TORIC MESSI SYSTEMS

DEFINITION

A structurally toric, or s-toric MESSI system, is a MESSI system whose digraph G satisfies the following conditions:

- (\mathcal{C}'): For every intermediate complex U_k there exist a unique core complex $y_{(k)}$ such that $y_{(k)} \to_{\circ} U_k$ in G.
- (\mathcal{C}''): The associated multidigraph MG_2 does not have parallel edges and the digraph G_2 is weakly reversible.
- (*C'''*): ...

Intermediates satisfy binomial equations at s.s.

Given a MESSI network G that satisfies condition (\mathcal{C}'), there are (explicit) rational functions $\mu_k \in \mathbb{Q}(\kappa)$, $1 \le k \le p$, such that for any steady state $x \in \mathbb{R}^n_{>0}$ of the associated MESSI network G_1 , the steady state $\pi^{-1}(x) = (u(x), x)$ of G is given by a monomial map:

$$u_k(\mathbf{x}) = \mu_k \, \mathbf{x}^{y_{(k)}}, \quad k = 1, \dots, p. \tag{2}$$

EXPLICIT BINOMIALS

COMBINATORIALLY CONSTRUCTED

Any s-toric MESSI system is toric. Moreover, we can choose explicit binomials with coefficients in $\mathbb{Q}(\kappa)$ which describe the positive steady states.

Hypotheses for the quoted multitationarity result are satisfied

Let G be an s-toric MESSI network. Assume that the partition is minimal with m subsets of core species and the associated digraph G_E has no directed cycles. Then,

$$rank(W) = rank(rowspan(A)) = m$$

EXPLICIT BINOMIALS

COMBINATORIALLY CONSTRUCTED

Any s-toric MESSI system is toric. Moreover, we can choose explicit binomials with coefficients in $\mathbb{Q}(\kappa)$ which describe the positive steady states.

Hypotheses for the quoted multitationarity result are satisfied

Let G be an s-toric MESSI network. Assume that the partition is minimal with m subsets of core species and the associated digraph G_E has no directed cycles. Then,

$$rank(W) = rank(rowspan(A)) = m.$$

LINEARLY BINOMIAL

[D., P. MILLÁN, SHIU, TANG'19]

Let G be the underlying digraph of a MESSI system satisfying condition C'.

Assume that the associated digraph G_E has no directed cycles, the underlying undirected graph of the associated graph G_2° is a forest (an acyclic graph), and MG_2 has no parallel edges.

Then, the steady state ideal is binomial and the binomials can be easily found via \mathbb{R} -linear operations.

LINEARLY BINOMIAL

[D., P. MILLÁN, SHIU, TANG'19]

Let G be the underlying digraph of a MESSI system satisfying condition C'.

Assume that the associated digraph G_E has no directed cycles, the underlying undirected graph of the associated graph G_2° is a forest (an acyclic graph), and MG_2 has no parallel edges.

Then, the steady state ideal is binomial and the binomials can be easily found via \mathbb{R} -linear operations.

LINEARLY BINOMIAL

[D., P. MILLÁN, SHIU, TANG'19]

Let G be the underlying digraph of a MESSI system satisfying condition C'.

Assume that the associated digraph G_E has no directed cycles, the underlying undirected graph of the associated graph G_2° is a forest (an acyclic graph), and MG_2 has no parallel edges.

Then, the steady state ideal is binomial and the binomials can be easily found via \mathbb{R} -linear operations.

- A wide class of MESSI systems admit a rational parametrization.
- It is shown by [Feliu-Wiuf'13] that the values of the intermediate species at steady state can be rationally written in terms of the core species, in an algorithmic way.
- The following result extends Theorem 4 in [Thomson-Gunawardena'09].

THEOREM

Let G be the underlying digraph of a MESSI system. Assume that the associated digraph G_2 is weakly reversible and the associated digraph G_E has no directed cycles. Then, $V_{>0}(I_f)$ admits a rational parametrization, which can be algorithmically computed.

More explicitly, it is possible to define levels for the subsets $S^{(\alpha)}, \alpha \geq 1$, according to indegree. Then, given any choice of one index i_{α} in each $S^{(\alpha)}$, the concentration of any core species x_i in $S^{(\alpha)}$ can be rationally expressed in an effective way in terms of $x_{i_{\alpha}}$ and the variables $x_{i_{\beta}}$ for which the indegree of $S^{(\beta)}$ is strictly smaller than the indegree of $S^{(\alpha)}$.

Moreover, if the partition is minimal with M subsets of core species, then $\dim(V_{>0}(I_f)) = M$ and $M = \operatorname{rank}(W)$.

THEOREM

Let G be the underlying digraph of a MESSI system. Assume that the associated digraph G_2 is weakly reversible and the associated digraph G_E has no directed cycles. Then, $V_{>0}(I_f)$ admits a rational parametrization, which can be algorithmically computed.

More explicitly, it is possible to define levels for the subsets $S^{(\alpha)}$, $\alpha \geq 1$, according to indegree. Then, given any choice of one index i_{α} in each $S^{(\alpha)}$, the concentration of any core species x_i in $S^{(\alpha)}$ can be rationally expressed in an effective way in terms of $x_{i_{\alpha}}$ and the variables $x_{i_{\beta}}$ for which the indegree of $S^{(\beta)}$ is strictly smaller than the indegree of $S^{(\alpha)}$.

Moreover, if the partition is minimal with M subsets of core species, then $\dim(V_{>0}(I_f)) = M$ and $M = \operatorname{rank}(W)$.

THEOREM

Let G be the underlying digraph of a MESSI system. Assume that the associated digraph G_2 is weakly reversible and the associated digraph G_E has no directed cycles. Then, $V_{>0}(I_f)$ admits a rational parametrization, which can be algorithmically computed.

More explicitly, it is possible to define levels for the subsets $S^{(\alpha)}$, $\alpha \geq 1$, according to indegree. Then, given any choice of one index i_{α} in each $S^{(\alpha)}$, the concentration of any core species x_i in $S^{(\alpha)}$ can be rationally expressed in an effective way in terms of $x_{i_{\alpha}}$ and the variables $x_{i_{\beta}}$ for which the indegree of $S^{(\beta)}$ is strictly smaller than the indegree of $S^{(\alpha)}$.

Moreover, if the partition is minimal with M subsets of core species, then $\dim(V_{>0}(I_f)) = M$ and $M = \operatorname{rank}(W)$.