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Recall some notation

1 r .
® Mass-action system for kK € R

x = fi(x), fio(x) = N diag(x)x5,

with N € R"*" the stoichiometric matrix.
® s=rk(N),d=n-—s.
® Matrix of conservation laws W € R¥*" (W N = 0 and W has full rank d.)

® Equations for the stoichiometric compatibility class given a total amount T € RY:

Wx—T=0, x€eRY,
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Recall some notation

1 r .
® Mass-action system for kK € R

x = fio(x), fio(x) = N diag(x)x5,

with N € R"*" the stoichiometric matrix.
® s=rk(N), d=n—s.
® Matrix of conservation laws W € R¥*" (W N = 0 and W has full rank d.)
® Equations for the stoichiometric compatibility class given a total amount T € RY:

Wx—T=0, x€eRY,

® Positive steady states in a stoichiometric compatibility class are solutions to
F. 1(x) =0, x € RY,.

The function F, 1 has d rows equal to Wx — T, and s linearly independent polynomials
among f,(x).

® C., 7 ={x eRL,| F; 1(x) = 0}.
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?

We have seen some approaches to answer the question:

® |njectivity of f(x) with respect to S implies no multistationarity.
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?

We have seen some approaches to answer the question:

® |njectivity of f(x) with respect to S implies no multistationarity.

® Complex balanced steady states (no multistationarity when the deficiency 9§ is zero).
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?

We have seen some approaches to answer the question:

® |njectivity of f(x) with respect to S implies no multistationarity.
® Complex balanced steady states (no multistationarity when the deficiency 9§ is zero).

® (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is
binomial for all s is equivalent to lack of multistationarity.
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?

We have seen some approaches to answer the question:

® |njectivity of f(x) with respect to S implies no multistationarity.
® Complex balanced steady states (no multistationarity when the deficiency 9§ is zero).

® (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is
binomial for all k is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

® Deficiency one theorem precludes multistationarity (conditions for which there is a
monomial parametrization of the steady states, with exponent matrix W, as in complex
balancing) (Feinberg).
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?

We have seen some approaches to answer the question:

® |njectivity of f(x) with respect to S implies no multistationarity.
® Complex balanced steady states (no multistationarity when the deficiency 9§ is zero).

® (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is
binomial for all k is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

® Deficiency one theorem precludes multistationarity (conditions for which there is a
monomial parametrization of the steady states, with exponent matrix W, as in complex
balancing) (Feinberg).

® The deficiency one algorithm to assert/preclude multistationarity (Feinberg).
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Multistationarity

Is there a choice of parameters Kk € Ry j and T € RY such that
the set C,; 7 contains at least two positive points?

We have seen some approaches to answer the question:

® |njectivity of f(x) with respect to S implies no multistationarity.
® Complex balanced steady states (no multistationarity when the deficiency 9§ is zero).

® (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is
binomial for all k is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

® Deficiency one theorem precludes multistationarity (conditions for which there is a
monomial parametrization of the steady states, with exponent matrix W, as in complex

balancing) (Feinberg).
® The deficiency one algorithm to assert/preclude multistationarity (Feinberg).

® The higher deficiency algorithm decides upon multistationarity “for almost” all networks
(Ellison, Feinberg, Ji, Knight). Implemented in the CRNT toolbox of Feinberg for Windows

(https ://cbe.osu.edu/chemical-reaction-network-theory).
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Today (and next Tuesday)

Explorations of these two questions:

(1) Is there a choice of parameters k € R%y and T € RY such that
the set C. 7 contains at least two positive points?

(2) If the network admits multistationarity, for which values of x, T does this occur?
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Today (and next Tuesday)

Explorations of these two questions:

(1) Is there a choice of parameters k € R%y and T € RY such that
the set C. 7 contains at least two positive points?

(2) If the network admits multistationarity, for which values of x, T does this occur?

How to address the questions:
® General approaches coming from semialgebraic geometry.
® Direct approaches using ideas from univariate polynomials.

® QOther methods involving the Jacobian (from semialgebraic geometry to polyhedral
geometry).
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A bit more on injectivity
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A bit more on injectivity

Recall:

The network is not
multistationary

f.(x) injective with respect to S
for all K € R,

iR
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A bit more on injectivity

Recall:

f.(x) injective with respect to S = The network is not
for all kK € RY, = multistationary

But the reverse implication holds when the positive steady state variety can be
parametrized by monomials!

E Feliu MPI Leipzig, June 2023 5/35



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Monomials and injectivity

Assume:

® Monomial parametrization. There exists a matrix M € Z"*P such that
f.(x) =0, xe Ry, <« xM = v(k)

(this holds for example if the ideal generated by f.(x) is binomial, or if Vso(fx)
admits a monomial parametrization for all x.)

® The network is consistent (that is, ker N N RS, # ().
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Monomials and injectivity

Assume:

® Monomial parametrization. There exists a matrix M € Z"*P such that
f.(x) =0, xe Ry, <« xM = v(k)

(this holds for example if the ideal generated by f.(x) is binomial, or if Vso(fx)
admits a monomial parametrization for all x.)

® The network is consistent (that is, ker N N RS, # ().

Then:

The network is not
multistationary

YIS : =
x"" injective with respect to S —

o~

Checkable using the sign condition o(ker M') N o(S) = {0}
or the determinant condition if p =dim S
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Monomials and injectivity: Proof ﬁklﬂg 0\ ”“’8( k) x P
® There exists a matrix M € Z"*P such that
f.(x) =0, xe Ry, <« xM = v(K)

(this holds for example if the ideal generated by f.(x) is binomial, or if Vso(fx)
admits a monomial parametrization for all x.)

® The network is consistent (that is, ker N N R, # ().

xM not injective with respect to § implies the network is multistationary
n
g e Ry x=yes, X3y XM M @
Sk o @A’t\g)(K)xB < 2, whue 2€e K NN IQ‘;o
L 31( (x)=0

de oy @ XM=k © gt © fely) =0
Y

—  Mulltndt .
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Recall

Our hybrid histidine kinase example:

HKoo — HKpg — HKop —5 HKpp X1 25 Xo 25 Xz =25 X,
HKop + Htp —% HKqp + Htp, X3+ Xs —5 X1+ Xo
HKpp + Htp — HKpo + Htp,, Xy 4+ Xs =25 X5 + Xg

Htp, =% Htp Xs —% Xs

This network admits multistationarity.
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General approaches
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Semialgebraic sets

Semialgebraic sets.

A semialgebraic set in R" is a finite union of sets defined by a finite number of
polynomial equations and inequalities:

pi(xi,...,xn) >0, i=1,...,r, qgi(x1,...,x,) =0, i=1... n.
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Semialgebraic sets

Semialgebraic sets.

A semialgebraic set in R” is a finite union of sets defined by a finite number of

polynomial equations and inequalities:

pi(xi,...,xn) >0, i=1,...,r, qgi(x1,...,x,) =0, i=1,..

Note: It follows that expressions or the form p(xi, .

also accepted.
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Semialgebraic sets

Semialgebraic sets.

A semialgebraic set in R" is a finite union of sets defined by a finite number of
polynomial equations and inequalities:

pi(xi,...,xn) >0, i=1,...,r, qgi(x1,...,x,) =0, i=1... n.

Note: It follows that expressions or the form p(xi,...,x,) > 0 and p(x1,...,x,) # 0 are
also accepted.
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Semialgebraic sets

Semialgebraic sets.

DEPARTMENT OF MATHEMATICAL SCIENCES

A semialgebraic set in R" is a finite union of sets defined by a finite number of

polynomial equations and inequalities:

p,'(Xl,...,Xn)>0, I=1,...

lus” ?

Voo (L)
_ P

()

Any example relevant to

E Feliu

,» I, qi(Xla"

MPI Leipzig, June 2023

., Xn) =0,

i=1,..

., .

11/ 35



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Semialgebraic sets

Let 7: R"™' — R" be the projection map sending (x1, ..., X, Xnt1) to (X1, ..., Xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"™ for some n > 1, then
m(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).
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Semialgebraic sets

Let 7: R"™' — R" be the projection map sending (x1, ..., X, Xnt1) to (X1, ..., Xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"™ for some n > 1, then
w(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

How can we use this?

® Nonemptyness. Consider the set of positive steady states
Vi .= {x € Ry,: fi(x) =0}
and the set K .= {k e Ry, : V. #0}. Is K £ (7
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Semialgebraic sets

Let 7: R"™' — R" be the projection map sending (x1, ..., X, Xnt1) to (X1, ..., Xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"™ for some n > 1, then
m(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

How can we use this?

® Nonemptyness. Consider the set of positive steady states
Vi .= {x € Ry,: fi(x) =0}
and the set K .= {k e Ry, : V. #0}. Is K £ (7

K is the projection onto the x's of the semialgebraic set
V:={(k,x) € Ry x Ry,: f.(x) = 0}.

By the Tarski-Seidenberg Theorem, K is semialgebraic.

E Feliu MPI Leipzig, June 2023 12 /35



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Semialgebraic sets

Let 7: R""' — R" be the projection map sending (xi, ..., Xn, Xnt1) to (X1, ..., Xn).
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"** for some n > 1, then
w(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

How can we use this?

® Multistationarity: 0

2

M = {rk € R{,: exists x # y such that f,(x) = f.(y), Wx = Wy}.
Is M +£ (7
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Semialgebraic sets

Let 7: R""' — R" be the projection map sending (xi, ..., Xn, Xnt1) to (X1, ..., Xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"** for some n > 1, then
w(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

How can we use this?

® Multistationarity:

M = {rk € R{,: exists x # y such that f,(x) = f.(y), Wx = Wy}.
Is M +£ (7
Rephrasing: M is the projection onto the k's of the semialgebraic set
{(k,x,y) € REo x R x RLg: fi(x) = fuly) = 0, W(x —y) = 0, (x —y)* > 0}

By the Tarski-Seidenberg Theorem, M is semialgebraic.
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Semialgebraic sets

Let m: R"™' — R" be the projection map sending (xi, ..., Xn, Xpt1) to (X1,. .., Xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"** for some n > 1, then
m(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

® The proof of the theorem is constructive, although the way to obtain defining
equations with high complexity.
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Semialgebraic sets

Let m: R"™' — R" be the projection map sending (xi, ..., Xn, Xpt1) to (X1,. .., Xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in R"** for some n > 1, then
w(X) is a semialgebraic set in R".

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

® The proof of the theorem is constructive, although the way to obtain defining
equations with high complexity.

® A method called Cylindrical Algebraic Decomposition of Collins gives a better
approach to find the projection, but it has also high complexity.

Conclusion: we can decide upon for which k's the steady state variety is nonempty, upon
multistationarity, and to find the parameter region of multistationarity (theoretically).
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Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions R” into components, called cells, over which a property takes the
same value.
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Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions R” into components, called cells, over which a property takes the
same value.

4 /

Hybrid Histidine Kinase parameter region with 3

: positive steady states, for some fixed values of the
" ,

rk's and only Ty, T, free.

o
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Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions R” into components, called cells, over which a property takes the
same value.

Hybrid Histidine Kinase parameter region with 3
. positive steady states, for some fixed values of the
rk's and only Ty, T, free.

Partition of the parameter region of
pe(t) = " — (k1 + 3)t"
+ (351 +21)t +(=2r+ Pt
+(Fr1— F)t+ (100 — 36)-

3 according to the number of positive roots.
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Quantifier Elimination language

The Tarski-Seidenberg theorem can be expressed in terms of quantifier elimination:

For every first-order formula over the reals there exists an equivalent quantifier-free
formula. Furthermore, there is an explicit algorithm to compute this quantifier-free
formula.

® Example 1:
JIx € R such that x> + bx +¢c =0

is transformed into a formula without quantifiers

b2—4c20
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Quantifier Elimination language

The Tarski-Seidenberg theorem can be expressed in terms of quantifier elimination:

For every first-order formula over the reals there exists an equivalent quantifier-free
formula. Furthermore, there is an explicit algorithm to compute this quantifier-free
formula.

® Example 1:
JIx € R such that x> + bx +¢c =0

is transformed into a formula without quantifiers
b* — 4c¢ >0

® Example 2:
Vx € R it holds x* —cx+1 >0

Is transformed into a formula without quantifiers

c¥2
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Discriminant
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Univariate approaches
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Case Study

Our hybrid histidine kinase example:

HKoo — HKpg — HKop —5 HKpp X1 25 Xo 25 Xz =25 X,
HKop + Htp —% HKqp + Htp, X3+ Xs —5 X1+ Xo
HKpp + Htp — HKpo + Htp,, Xy 4+ Xs =25 X5 + Xg

Htp, =% Htp Xs —% Xs

This network admits multistationarity.
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Manual approach

Recall that we had the following relations:

Ko K4K5 T1x52

X1 =
(k1 + Koka)rsxE + K1(k2 + K3)KsXs + K1K2K3
0 = Kgx3x5 — K1X1
. N ; k1(kaxs + k3)k5 T1x5
= KpX4Xg K1X1 — K2X2 2 =
(k1 + K2ra)rsxe + K1(k2 + K3)KEX5 4+ K1K2K3
0 = RoXp — K3X3 — K4X3Xg
0 K1Kk2Kks T1x5
= KX — K4X3X5 — KEX4X5 X3 =
(k1 + Koka)rsxE + K1(ko + K3)KsX5 + K1K2K3
hi=x1+x+x3+x
K1kok3 T1
Tro = x5 + Xxp. X4 =

(k1 + roka)rsxg + k1(k2 + K3)K5X5 + K1K2K3

Xp — T2 — X5.

These expressions into the remaining equation give the polynomial:

g6(x5) = (K1 + K2)karskexe + (k1( Tikoka + Kaoke + K3ke) — T2(k1 + K2)Kake)ksXE
+ (Iﬁ:lli2/€3(T1H;5 + lﬁ:6) — Tglﬁzl(lﬁsg + 113)I€5I<;6)X5 — ToK1K2K3K6.-

Any positive root of gs provides a positive steady state.

(all roots of gs(xs) are smaller than T3).
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Simple idea to assert multistationarity

Write the polynomial as
gs(xs) = az(k, T)xz + ax(k, T)xe + ar(k, T)xs + ao(k, T)
® Choose any polynomial with three positive roots, e.g.
g(x) = (x —1)(x —2)(x —3) = x> — 6x° + 11x — 6.
® Find k, T such that

a3(k, T)=1, ax(k, T)=-6, ai(k,T)=11, ao(k, T)= —6.
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Simple idea to assert multistationarity

Write the polynomial as
gs(xs) = az(k, T)xz + ax(k, T)xe + ar(k, T)xs + ao(k, T)
® Choose any polynomial with three positive roots, e.g.
g(x) = (x —1)(x — 2)(x —3) = x> — 6x° + 11x — 6.
® Find k, T such that
as(k, T)=1 ax(k,T)=—-6, ai(k, T)=11, ao(k, T)= —6.
We find:

k1 = 0.06, Ko =1, k3 =1, Ka = 1.5,
ks = 0.12, ke = 1, T1 = 1660, T, = 100.

Therefore, there exist x, T such that gs(xs) has three positive roots. The network is
multistationary.
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Descartes’ rule of signs

Descartes’ rule of signs: if the polynomial has n positive roots, then the coefficients
alternate signs and none of them are zero.

In our example

g6(x5) = (k1 + K2)karskexc + (k1(Tikoka + Koke + kake) — Ta(k1 + K2)kake)KsXE
+ (k1r2k3(Tiks + ke) — Tori1(Kk2 + K3)KsK6)Xs — ToKk1K2K3KE

Necessary conditions for 3 positive steady states:

32(/{,, T) = (lil(TlliglM —+ KoKke + I€3/<66) — TQ(FLl -+ /€2)H;4/€6)/<35 <0
al(li, T) = (143114321%3(7_1/635 + Iiﬁ) — T2H:1(I<:2 -+ KJ3)I€5KJ6) >0
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Descartes’ rule of signs

Descartes’ rule of signs: if the polynomial has n positive roots, then the coefficients
alternate signs and none of them are zero.

In our example

g6(x5) = (k1 + K2)karskexc + (k1(Tikoka + Koke + kake) — Ta(k1 + K2)kake)KsXE
+ (r1k2k3(Tiks + Kke) — Tok1(k2 + K3)Ks5kKe)X5 — ToR1K2K3KE

Necessary conditions for 3 positive steady states:

ag(li, T) = (lil(TlliglM —+ KoKke + I€3/<66) — Tz(/ﬁl -+ /iz)/ﬁ;4/£6)/£5 <0
31(KJ, T) = (143114321%3(7_1/635 + Hﬁ) — Tzlﬁll(lﬁ:z -+ KJ3)I€5KJ6) >0

Descartes’ rule of signs

|

p(x) of degree n has n — signs of the coefficients
positive roots 4« | of p(x) alternate
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Sturm'’s theorem

p(x) real univariate polynomial.

® Sturm sequence:

po(x) = p(x), pi(x) =p'(x), and pis1(x) = —rem(p;_1, pi),

for i > 1. The sequence stops when p;;+1 = 0. p,, last nonzero polynomial.
® For c € R, let

o(c) = number of sign changes in po(c), ..., pm(c).
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Sturm’s theorem

p(x) real univariate polynomial.

® Sturm sequence:

po(x) = p(x), pi(x) = p'(x), and piy1(x) = —rem(p;_1, pi),

for i > 1. The sequence stops when p;;+1 = 0. p,, last nonzero polynomial.
® For c € R, let

o(c) = number of sign changes in po(c), ..., pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then
o(a) — o(b) = number of distinct roots of p(x) in (a, b].
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Sturm’s theorem

p(x) real univariate polynomial.

® Sturm sequence:

po(x) = p(x), pi(x) = p'(x), and piy1(x) = —rem(p;_1, pi),

for i > 1. The sequence stops when p;;+1 = 0. p,, last nonzero polynomial.
® For c € R, let

o(c) = number of sign changes in po(c), ..., pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then
o(a) — o(b) = number of distinct roots of p(x) in (a, b].

® For positive roots, (0, +00), pi(+0oc) = coefficient of highest degree.

® |f degree of p is n and m = n, then p has n positive roots if and only if

o(0) = n, o(+o0) = 0.
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Sturm'’s theorem

po(x) = p(x), pi(x) = p'(x), and pipi(x) = —rem(pi-1,p;), i>1
o(c) = number of sign changes in po(c), ..., pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then

o(a) — o(b) = number of distinct roots of p(x) in (a, b].

Example 1. p(x) = x> — 6x* + 11x — 6.
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Sturm’s theorem

po(x) = p(x), pi(x) = p'(x), and pipi(x) = —rem(pi-1,p;), i>1
o(c) = number of sign changes in po(c), ..., pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then

o(a) — o(b) = number of distinct roots of p(x) in (a, b].
Example 2. p(x) = x> —3x* — 3x + 1.

po(0) =1, p1(0) = =3, p2(0) =0, p3(0) =3
po(+0o0) =1, p1(+o0) =3, p2(+0o0) = 4, p3(+o0) = 3.

) = 2 & ool I [0,+(‘0) 'S
(o) = 0 o<1
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Sturm'’s theorem

po(x) = azx® + apxx? + a;x + ag. The sequence is:

6azaix — 2a2x — 9aza ara
pO(X):a3X3—|—32X2—|—alx—|—aO P2(X) —— 341 2 3ap + azai

933

9a3(27a§ag — 18 azaraiag + 4aoa:23 + 4a:i’a3 — a%a%)

x:3.ax2—|—2ax—|—a X) = —
p1(x) 3 2 1 p3(x) (Barar — B
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Sturm’s theorem

po(x) = azx® + apxx? + a;x + ag. The sequence is:

6azaix — 2a2x — 9aza ara
pO(X):a3X3+32X2—|—alx—|—ao p2(X) —— 341 2 3ap + azai

933

9a3(27a§ag — 18 azaraiag + 430.3:23 + 43:1533 — agaf)

x:33x2—|-23><—|—a X) = —
p1(x) 3 2 1 p3(x) (Barar — B

In our case, the coefficients are:

a3 = (k1 + K2)Kakske > 0

ar = (k1(Tik2ka + Koke + Kake) — Ta(K1 + K2)Kake)Ks
a1 = rk1koks(Fiks + ke) — Tari(k2 + K3)Kske

ag = — Iokr1kok3ke < 0.

Three positive steady states if and only if
ap >0 273538 — 18 azaraiag + 4apas + 4asaz — asa3 < 0

Ogpaz3 — ajar» > 0 —3a1a3z + a% >0
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Sturm’s theorem

po(x) = azx® + apxx? + a;x + ag. The sequence is:

bazaix — 2a§x — 9a3zag + azay

po(x) = asx® + ax® + aix + a0 pa(x) = — s
3

933(273%33 — 18 azaraiag + 4ao..=::23 + 43:1533 — a%a%)
4(3aza; — a3)? ‘

Pl(X) = 3.573X2 + 2arx + a; p3(X) —

In our case, the coefficients are:

a3 = (k1 + K2)Kakske > 0

ar = (k1(Tik2ka + Koke + Kake) — Ta(K1 + K2)Kake)Ks
a1 = Kikak3(f1ks + Ke) — Tor1(K2 + K3)K5K6

ag = — Iokr1kok3ke < 0.

Three positive steady states if and only if
ai >0 273533 — 18 azaraiag + 4aoag + 43%33 — a%a% <0
Ogpaz3 — ajar» > 0 —3a1a3z + a% >0

If we can show that the solution set of these inequalities (a semialgebraic set!) is nonempty, then
we will have three positive solutions.

Problem: The expressions coming from Sturm’s Theorem can be difficult to work with when
coefficients are parametric...
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Real rooted polynomials

Definition. A univariate polynomial p(x) is said to be real rooted if all its roots are real.
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Real rooted polynomials

Definition. A univariate polynomial p(x) is said to be real rooted if all its roots are real.

Example.
Is x> — 6x° + 11x — 6 real rooted?
Is x> — 1 real rooted?

E Feliu MPI Leipzig, June 2023 27 / 35



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Real rooted polynomials

Definition. A univariate polynomial p(x) is said to be real rooted if all its roots are real.

Example.
Is x> — 6x° + 11x — 6 real rooted?
Is x> — 1 real rooted?

Observation: A real rooted polynomial with sign alternating coefficients, has all its roots
positive.
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Real rooted polynomials

Definition. A univariate polynomial p(x) is said to be real rooted if all its roots are real.

Example.
Is x> — 6x° + 11x — 6 real rooted?
Is x> — 1 real rooted?

Observation: A real rooted polynomial with sign alternating coefficients, has all its roots
positive.

Newton Inequalities. Let p(x) = anx" 4+ -+ + aix + ao, with a; >0, i =0,...,n (all
coefficients nonnegative). If p(x) is real rooted, then

2
d dk—1 dk+1

O () (8

These give necessary conditions for being real rooted. But they are not sufficient!
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Kurtz Theorem

A theorem on real rooted polynomials (Kurtz '92)

Let p(x) = x*™ — amx®™ + aom_1x*™ "t — - 4 a1x — ap with a; > 0, and let
axm+1 = 1 (a polynomial with alternating signs).
|f

a7 — 4a;_1aj41 > 0, I=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.
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Kurtz Theorem

A theorem on real rooted polynomials (Kurtz '92)

Let p(x) = x*™ — amx®™ + aom_1x*™ "t — - 4 a1x — ap with a; > 0, and let
axm+1 = 1 (a polynomial with alternating signs).
|f

a7 — 4a;_1aj41 > 0, I=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.

Examples.

® Q(X) :X3—6X2—|—8X—1: az =1 a =6,a1 =8,a = 1.
Kurtz inequalities are satisfied:

0<a§—4a032:82—4-1-6:40, O<a§—43133:62—4-8-1:4.

So the polynomial has three positive real roots.
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Kurtz Theorem

A theorem on real rooted polynomials (Kurtz '92)

Let p(x) = x*™ — amx®™ + aom_1x*™ "t — - 4 a1x — ap with a; > 0, and let
axm+1 = 1 (a polynomial with alternating signs).
|f

a7 — 4a;_1ai:1 > 0, I=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.

Examples.

® Q(X) :X3—6X2—|—8X—1: az =1 a =6,a1 =8,a = 1.
Kurtz inequalities are satisfied:

0<a§—4a032:82—4-1-6:40, O<a§—43133:62—4-8-1:4.

So the polynomial has three positive real roots.

* g(x)=x>—6x"+11x—6: a3 =1, ay=6,a; = 11,a0 = 6.
Kurtz inequalities are not satisfied

0<al—4dagay =11°—4-6-6 = —23 I
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Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)

Let p(x) = x*™1 — 25, x®™ + apm_1x?™"1 — ..+ a1x — ap with a; > 0, and let a1 =1 (a
polynomial with alternating signs).
If

a? —4aj_q1ai1 >0, i=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.

E Feliu MPI Leipzig, June 2023 29 / 35



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)

2m-+1 2m—1

Let p(x) = x — Ay X2™M 4 Ay, 1X +++ 4 a;x — ag with a; > 0, and let ayp41 = 1 (a

polynomial with alternating signs).

If
a? —4a;_iaj;1 > 0, i=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.
Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

a(k, T) = (k1(T1koka + Koke + K3ke) — T2(k1 + K2)Kake)ks < 0
al(l-ﬁ:, T) = (K,1K:2KJ3(T1KJ5 -+ /‘36) — T2/€1(I<:2 + &3)&5/’%6) >0
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Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)

2m-+1 2m—1

Let p(x) = x — Ay X2™M 4 Ay, 1X +++ 4 a;x — ag with a; > 0, and let ayp41 = 1 (a

polynomial with alternating signs).

If
a? —4a;_iaj;1 > 0, i=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.
Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

a(k, T) = (k1(T1koka + Koke + K3ke) — T2(k1 + K2)Kake)ks < 0
al(l-ﬁ:, T) = (KJ1K22KJ3(T1/€5 -+ /‘36) — T2/€1(I<:2 + KJ3)KJ5/€6) >0

Kurtz Theorem tells me that if

ax(k, T)? — 4(k1 + k2)kakskear(k, T) > 0, a1(k, T)? — dax(k, T) Tari1Kkok3ke > 0,
then the polynomial will have 3 positive real roots.
Recall:

g6(x5) = (k1 + K2)karskexc + (k1(Tikoka + Koke + K3ke) — Ta(k1 + K2)kake)KsXE
+ (k1k2k3(Tiks + ke) — Tor1(Ko + K3)Kske)X5s — ToK1K2K3Ke
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Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)

2m-+1 2m—1

Let p(x) = x — Ay X2™M 4 Ay, 1X +++ 4 a;x — ag with a; > 0, and let ayp41 = 1 (a

polynomial with alternating signs).

If
a? —4a;_iaj;1 > 0, i=1,...,2m

then p(x) has 2m + 1 distinct positive real roots.
Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

a(k, T) = (k1(T1koka + Koke + K3ke) — T2(k1 + K2)Kake)ks < 0
al(l-ﬁ:, T) = (KJ1K22KJ3(T1/€5 -+ /‘36) — T2/€1(I<32 + KJ3)KJ5/€6) >0

Kurtz Theorem tells me that if

ax(k, T)? — 4(k1 + k2)kakskear(k, T) > 0, a1(k, T)? — dax(k, T) Tari1Kkok3ke > 0,
then the polynomial will have 3 positive real roots.
Recall:

g6(x5) = (k1 + K2)karskexc + (k1(Tikoka + Koke + K3ke) — Ta(k1 + K2)kake)KsXE
+ (k1k2k3(Tiks + ke) — Tor1(Ko + K3)Kske)X5s — ToK1K2K3Ke

With some work, it is possible to show that this semialgebraic set is nonempty
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General system

i S —_—
HK, HK, HK,
ATP, ATP ATP
ADP ADP ADP
P

Steady states are in one-to-one correspondence with the positive roots of:
p”(X) — 32n+1(ﬁ"7 T)X2n+1 Tt al(’@ T)X + 30(/{, T) X = [Htp]

® One can construct parameters k, T such that the coefficients a;(x, T) fulfil the
conditions of Kurtz theorem.
The system can have up to 2n + 1 steady states

(further: alternating ones are unstable)

Kothamanchu VB, Feliu E, Cardelli L, Soyer OS (2015) Unlimited multistability and Boolean logic in microbial signaling. Journal
of the Royal Society Interface. 12:108, 20150234
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Parameter regions

Q:={(r,T) € R, x R2,: g6 has 3 positive roots}.
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Parameter regions
Q:={(r,T) € R, x R2,: g6 has 3 positive roots}.

® Sturm’s theorem gives (.
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Parameter regions
Q:={(r,T) € R, x R2,: g6 has 3 positive roots}.

® Sturm’s theorem gives (.

® Descartes’ rule of signs gives a set that contains (2.
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Parameter regions
Q:={(r,T) € R, x R2,: g6 has 3 positive roots}.

® Sturm’s theorem gives (.
® Descartes’ rule of signs gives a set that contains (2.

® Kurtz theorem gives a region contained in 2.

E Feliu MPI Leipzig, June 2023 31/35



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Parameter regions
Q:={(r,T) € R, x R2,: g6 has 3 positive roots}.

® Sturm’s theorem gives €2.
® Descartes’ rule of signs gives a set that contains (2.
® Kurtz theorem gives a region contained in 2.

Illustration in 2D

Purple: Descartes’ rule of signs; Yellow: exact region; Blue: Kurtz theorem.

Reaction rate constants: w1 = %, ko = 100, k3 = %, k4 = b0, k5 = 100, kg = b.
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Parameter regions
Q:={(r,T) € R, x R2,: g6 has 3 positive roots}.

® Sturm’s theorem gives €2.
® Descartes’ rule of signs gives a set that contains (2.
® Kurtz theorem gives a region contained in 2.

Illustration in 2D

(Previous picture from CAD)

Purple: Descartes’ rule of signs; Yellow: exact region; Blue: Kurtz theorem.

Reaction rate constants: w1 = %, ko = 100, k3 = %, k4 = b0, k5 = 100, kg = b.
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Sturm'’s theorem

po(X) = é)3X3 -+ azX2 + a1x + ao.

a3 = (k1 + K2)Kakske > 0

ay = (k1(T1kokKa + Koke + K3ke) — T2(K1 + K2)Kake)Ks
a1 = K1kak3(Tiks + Kke) — Tak1(k2 + K3)K5Ke

ag = — Ior1kok3ke < 0.

Three positive steady states if and only if

a >0 273%33 — 18 azazaiap + 4aoa§ + 4a:fag — a%a% <0

Qagasz — aia» > 0 —3a1a3 + ag >0
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Sturm'’s theorem

po(X) = a3x3 -+ azX2 + a1x + ao.

a3 = (k1 + K2)Kakske > 0

ay = (k1(TikoKa + Koke + K3ke) — Ta(K1 + K2)Kake)Ks
a1 = K1kak3(Tiks + Kke) — Tak1(k2 + K3)K5Ke

ag = — Ior1kok3ke < 0.

Three positive steady states if and only if

a >0 273%33 — 18 azazaiap + 4aoa§ + 43:1333 — a%a% <0

Qagasz — aia» > 0 —3a1a3 + a% >0

What if | tell you that the projection onto the k-space
is the region with k3 > k17
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Jacobian-based methods
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Jacobian criterion
Injectivity and Jacobians:

Let F: U — R", U C R" continuously differentiable, such that each coordinate of F is
either a polynomial of degree 1 or 2. Then F is injective if

det(Jr(x)) # 0 xeU.

(Bass), (Pantea, Koeppl, Craciun)
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Jacobian criterion
Injectivity and Jacobians:

Let F: U — R", U C R" continuously differentiable, such that each coordinate of F is
either a polynomial of degree 1 or 2. Then F is injective if

det(Jr(x)) # 0 xeU.

Example.
Fr. 7 = (KaX3xs — K1X1, K5X4X5 + K1X1 — K2X2, KoX2 — K3X3 — K4X3X5,
KeXe — KaX3Xs — KsXaXs, X1 + X2 +x3 +x4 — T1,x5 + x6 — T2)
— K1 0 K4 X, 0 K4X3 0
K1 —K2 0 K5 X5 K5 X4 0
Then J ( ) L 0 K) —K4X5 — K3 0 —K4X3 0
Fr,T X) = 0 0 — K4X5 —REX5 —HK4X3 — K5X4 Kg
1 1 1 1 0 0
0 0 0 0 1 1

(Bass), (Pantea, Koeppl, Craciun)
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Jacobian criterion
Injectivity and Jacobians:

Let F: U — R", U C R" continuously differentiable, such that each coordinate of F is
either a polynomial of degree 1 or 2. Then F is injective if

det(Jr(x)) # 0 xeU.

Example.
Fr.. T = (KaX3xs — K1X1, K5X4X5 + K1X1 — K2X2, K2X2 — K3X3 — K4X3X5,
K6X6 — KaX3X5 — K5X4X5, X1 + X2 +x3 + x4 — T1,X5 + X6 — T2)

— K1 0 K4 X, 0 K4X3 0
R1 — KD 0 K§ Xgp KB X4 0
Then J ( ) L 0 K) —K4X5 — K3 0 —K4X3 0
Fr,T X) = 0 0 — K4X5 —REX5 —HK4X3 — K5X4 Kg
1 1 1 1 0 0
0 0 0 0 1 1

det(J,:m,T(X)) = —(K1 — K3)KoKaK5X3X5 — K1K2K3KaX3 — K1K2K4K5X4X5

2
— K1kok3ksX4 — (K1 + K2)Kakskexs — (K2 + K3)K1K5KEX5 — K1K2K3K6

If k1 > k3, then no multistationarity.

So, k1 < K3 is necessary for multistationarity.

(Bass), (Pantea, Koeppl, Craciun)
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Teaser for next Tuesday

Fix k. There exists a (computable) polynomial p.(x) such that

(A) Uniqueness. If
sign(px(x)) =+  for all positive x,

then #C,, 7 =1 for all T.

(B) Multistationarity. If

sign(px(x")) = —  for some positive x™,

then #C. 7 > 2 for some T.
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Teaser for next Tuesday

Theorem. Consider a network such that ... (some technical conditions).

Fix k. There exists a (computable) polynomial p,(x) such that

(A) Uniqueness. If
sign(px(x)) =+  for all positive x,

then #C,, 7 =1 for all T.

(B) Multistationarity. If

sign(px(x*)) = —  for some positive x",

then #C. 7 > 2 for some T.

With this we will be able to prove that there exists T such that the hybrid HK network is
multistationary if and only if kK3 > k1.
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Teaser for next Tuesday

Theorem. Consider a network such that ... (some technical conditions).
Fix k. There exists a (computable) polynomial p,(x) such that

(A) Uniqueness. If

sign(px(x)) =+  for all positive x,
then #C,, 7 =1 for all T.
(B) Multistationarity. If

sign(px(x*)) = —  for some positive x",

then #C. 7 > 2 for some T.

With this we will be able to prove that there exists T such that the hybrid HK network is
multistationary if and only if kK3 > k1.

Need: Understand how to decide whether a polynomial attains negative values over the
positive orthant. You'll learn about this on Monday!
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