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Recall some notation

• Mass-action system for  2 Rr
>0:

ẋ = f(x), f(x) = N diag()xB ,

with N 2 Rn⇥r the stoichiometric matrix.

• s = rk(N), d = n � s.

• Matrix of conservation laws W 2 Rd⇥n (W N = 0 and W has full rank d .)

• Equations for the stoichiometric compatibility class given a total amount T 2 Rd :

Wx � T = 0, x 2 Rn
�0.

• Positive steady states in a stoichiometric compatibility class are solutions to

F,T (x) = 0, x 2 Rn
>0.

The function F,T has d rows equal to Wx � T , and s linearly independent polynomials
among f(x).

• C,T = {x 2 Rn
>0| F,T (x) = 0}.
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Multistationarity

Is there a choice of parameters  2 Rr
>0 and T 2 Rd such that

the set C,T contains at least two positive points?

We have seen some approaches to answer the question:

• Injectivity of f(x) with respect to S implies no multistationarity.

• Complex balanced steady states (no multistationarity when the deficiency � is zero).

• (We’ll see shortly) Injectivity of a monomial map when the positive steady state variety is
binomial for all  is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

• Deficiency one theorem precludes multistationarity (conditions for which there is a
monomial parametrization of the steady states, with exponent matrix W , as in complex
balancing) (Feinberg).

• The deficiency one algorithm to assert/preclude multistationarity (Feinberg).

• The higher deficiency algorithm decides upon multistationarity “for almost” all networks
(Ellison, Feinberg, Ji, Knight). Implemented in the CRNT toolbox of Feinberg for Windows
(https://cbe.osu.edu/chemical-reaction-network-theory).
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Today (and next Tuesday)

Explorations of these two questions:

(1) Is there a choice of parameters  2 Rr
>0 and T 2 Rd such that

the set C,T contains at least two positive points?

(2) If the network admits multistationarity, for which values of ,T does this occur?

How to address the questions:

• General approaches coming from semialgebraic geometry.

• Direct approaches using ideas from univariate polynomials.

• Other methods involving the Jacobian (from semialgebraic geometry to polyhedral
geometry).
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A bit more on injectivity

Recall:

f(x) injective with respect to S
for all  2 Rr

>0

)
6(

The network is not
multistationary

But the reverse implication holds when the positive steady state variety can be
parametrized by monomials!
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Monomials and injectivity

Assume:

• Monomial parametrization. There exists a matrix M 2 Zn⇥p such that

f(x) = 0, x 2 Rn
>0 , xM = �()

(this holds for example if the ideal generated by f(x) is binomial, or if V>0(f)
admits a monomial parametrization for all .)

• The network is consistent (that is, kerN \ Rr
>0 6= ;).

Then:

xM injective with respect to S
)
(

The network is not
multistationary

Checkable using the sign condition �(kerM>) \ �(S) = {0}
or the determinant condition if p = dim S
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Monomials and injectivity: Proof

• There exists a matrix M 2 Zn⇥p such that

f(x) = 0, x 2 Rn
>0 , xM = �()

(this holds for example if the ideal generated by f(x) is binomial, or if V>0(f)
admits a monomial parametrization for all .)

• The network is consistent (that is, kerN \ Rr
>0 6= ;).

xM not injective with respect to S implies the network is multistationary
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Recall

Our hybrid histidine kinase example:

HK00
1��! HKp0

2��! HK0p
3��! HKpp

HK0p +Htp
4��! HK00 +Htpp

HKpp +Htp
5��! HKp0 +Htpp

Htpp
6��! Htp

X1
1��! X2

2��! X3
3��! X4

X3 + X5
4��! X1 + X6

X4 + X5
5��! X2 + X6

X6
6��! X5

This network admits multistationarity.
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General approaches
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Semialgebraic sets

Semialgebraic sets.
A semialgebraic set in Rn is a finite union of sets defined by a finite number of
polynomial equations and inequalities:

pi (x1, . . . , xn) > 0, i = 1, . . . , r1, qi (x1, . . . , xn) = 0, i = 1, . . . , r2.

Note: It follows that expressions or the form p(x1, . . . , xn) � 0 and p(x1, . . . , xn) 6= 0 are
also accepted.

Examples:
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Semialgebraic sets

Semialgebraic sets.
A semialgebraic set in Rn is a finite union of sets defined by a finite number of
polynomial equations and inequalities:

pi (x1, . . . , xn) > 0, i = 1, . . . , r1, qi (x1, . . . , xn) = 0, i = 1, . . . , r2.

Any example relevant to “us”?
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Semialgebraic sets

Let ⇡ : Rn+1 ! Rn be the projection map sending (x1, . . . , xn, xn+1) to (x1, . . . , xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in Rn+1 for some n � 1, then
⇡(X ) is a semialgebraic set in Rn.

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

How can we use this?

• Nonemptyness. Consider the set of positive steady states

V := {x 2 Rn
>0 : f(x) = 0}

and the set K := { 2 Rr
>0 : V 6= ;}. Is K 6= ;?

K is the projection onto the ’s of the semialgebraic set

V := {(, x) 2 Rr
>0 ⇥ Rn

>0 : f(x) = 0}.

By the Tarski-Seidenberg Theorem, K is semialgebraic.
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Semialgebraic sets

Let ⇡ : Rn+1 ! Rn be the projection map sending (x1, . . . , xn, xn+1) to (x1, . . . , xn).

Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in Rn+1 for some n � 1, then
⇡(X ) is a semialgebraic set in Rn.

(In particular, it can be expressed as a finite union of sets defined by equations and
inequalities).

• The proof of the theorem is constructive, although the way to obtain defining
equations with high complexity.

• A method called Cylindrical Algebraic Decomposition of Collins gives a better
approach to find the projection, but it has also high complexity.

Conclusion: we can decide upon for which ’s the steady state variety is nonempty, upon
multistationarity, and to find the parameter region of multistationarity (theoretically).
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Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions Rn into components, called cells, over which a property takes the
same value.

Hybrid Histidine Kinase parameter region with 3
positive steady states, for some fixed values of the
’s and only T1,T2 free.

Partition of the parameter region of

p(t) = t5 � (1 + 9
2 )t

4

+ ( 921 + 21
4 )t

3 + (� 23
4 1 + 3

8 )t
2

+ ( 158 1 � 23
8 )t + ( 1

1002 � 1
16 ).

according to the number of positive roots.
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Quantifier Elimination language

The Tarski-Seidenberg theorem can be expressed in terms of quantifier elimination:

For every first-order formula over the reals there exists an equivalent quantifier-free
formula. Furthermore, there is an explicit algorithm to compute this quantifier-free
formula.

• Example 1:
9x 2 R such that x2 + b x + c = 0

is transformed into a formula without quantifiers

b2 � 4c � 0

• Example 2:
8x 2 R it holds x2 � c x + 1 > 0

is transformed into a formula without quantifiers

c > 2
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Discriminant
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Univariate approaches
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Case Study

Our hybrid histidine kinase example:

HK00
1��! HKp0

2��! HK0p
3��! HKpp

HK0p +Htp
4��! HK00 +Htpp

HKpp +Htp
5��! HKp0 +Htpp

Htpp
6��! Htp

X1
1��! X2

2��! X3
3��! X4

X3 + X5
4��! X1 + X6

X4 + X5
5��! X2 + X6

X6
6��! X5

This network admits multistationarity.
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Manual approach

Recall that we had the following relations:

0 = 4x3x5 � 1x1

0 = 5x4x5 + 1x1 � 2x2

0 = 2x2 � 3x3 � 4x3x5

0 = 6x6 � 4x3x5 � 5x4x5

T1 = x1 + x2 + x3 + x4

T2 = x5 + x6.

x1 =
245T1x

2
5

(1 + 24)5x
2
5 + 1(2 + 3)5x5 + 123

x2 =
1(4x5 + 3)5T1x5

(1 + 24)5x
2
5 + 1(2 + 3)5x5 + 123

x3 =
125T1x5

(1 + 24)5x
2
5 + 1(2 + 3)5x5 + 123

x4 =
123T1

(1 + 24)5x
2
5 + 1(2 + 3)5x5 + 123

x6 = T2 � x5.

These expressions into the remaining equation give the polynomial:

q6(x5) = (1 + 2)456x
3
5 + (1(T124 + 26 + 36)� T2(1 + 2)46)5x

2
5

+ (123(T15 + 6)� T21(2 + 3)56)x5 � T21236.

Any positive root of q6 provides a positive steady state.

(all roots of q6(x5) are smaller than T2).
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Simple idea to assert multistationarity

Write the polynomial as

q6(x5) = a3(,T )x3
5 + a2(,T )x2

5 + a1(,T )x5 + a0(,T )

• Choose any polynomial with three positive roots, e.g.

q(x) = (x � 1)(x � 2)(x � 3) = x3 � 6x2 + 11x � 6.

• Find ,T such that

a3(,T ) = 1, a2(,T ) = �6, a1(,T ) = 11, a0(,T ) = �6.

We find:

1 = 0.06, 2 = 1, 3 = 1, 4 = 7.5,

5 = 0.12, 6 = 1, T1 = 1660, T2 = 100.

Therefore, there exist ,T such that q6(x5) has three positive roots. The network is
multistationary.
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Descartes’ rule of signs

Descartes’ rule of signs: if the polynomial has n positive roots, then the coe�cients
alternate signs and none of them are zero.

In our example

q6(x5) = (1 + 2)456x
3
5 + (1(T124 + 26 + 36)� T2(1 + 2)46)5x

2
5

+ (123(T15 + 6)� T21(2 + 3)56)x5 � T21236

Necessary conditions for 3 positive steady states:

a2(,T ) = (1(T124 + 26 + 36)� T2(1 + 2)46)5 < 0

a1(,T ) = (123(T15 + 6)� T21(2 + 3)56) > 0

p(x) of degree n has n
positive roots

)

Descartes’ rule of signs

6(
signs of the coe�cients
of p(x) alternate
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Sturm’s theorem

p(x) real univariate polynomial.

• Sturm sequence:

p0(x) = p(x), p1(x) = p0(x), and pi+1(x) = �rem(pi�1, pi ),

for i � 1. The sequence stops when pi+1 = 0. pm last nonzero polynomial.

• For c 2 R, let

�(c) = number of sign changes in p0(c), . . . , pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then

�(a)� �(b) = number of distinct roots of p(x) in (a, b].

• For positive roots, (0,+1), pi (+1) = coe�cient of highest degree.

• If degree of p is n and m = n, then p has n positive roots if and only if

�(0) = n, �(+1) = 0.
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Sturm’s theorem

p0(x) = p(x), p1(x) = p0(x), and pi+1(x) = �rem(pi�1, pi ), i � 1

�(c) = number of sign changes in p0(c), . . . , pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then

�(a)� �(b) = number of distinct roots of p(x) in (a, b].

Example 1. p(x) = x3 � 6x2 + 11x � 6.
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Sturm’s theorem

p0(x) = p(x), p1(x) = p0(x), and pi+1(x) = �rem(pi�1, pi ), i � 1

�(c) = number of sign changes in p0(c), . . . , pm(c).

Sturm’s theorem. Let a < b and assume that neither a nor b are multiple roots of p(x).
Then

�(a)� �(b) = number of distinct roots of p(x) in (a, b].

Example 2. p(x) = x3 � 3x2 � 3x + 1.

p0(0) = 1, p1(0) = �3, p2(0) = 0, p3(0) = 3

p0(+1) = 1, p1(+1) = 3, p2(+1) = 4, p3(+1) = 3.
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Sturm’s theorem

p0(x) = a3x3 + a2x2 + a1x + a0. The sequence is:

p0(x) = a3x
3 + a2x

2 + a1x + a0 p2(x) = �
6a3a1x � 2a22x � 9a3a0 + a2a1

9a3

p1(x) = 3a3x
2 + 2a2x + a1 p3(x) = �

9a3(27a23a
2
0 � 18 a3a2a1a0 + 4a0a32 + 4a31a3 � a22a

2
1)

4(3a3a1 � a22)
2

.

In our case, the coe�cients are:

a3 = (1 + 2)456 > 0

a2 = (1(T124 + 26 + 36)� T2(1 + 2)46)5

a1 = 123(c15 + 6)� T21(2 + 3)56

a0 = �T21236 < 0.

Three positive steady states if and only if

a1 > 0 27a23a
2
0 � 18 a3a2a1a0 + 4a0a

3
2 + 4a31a3 � a22a

2
1 < 0

9a0a3 � a1a2 > 0 �3a1a3 + a22 > 0

If we can show that the solution set of these inequalities (a semialgebraic set!) is nonempty, then
we will have three positive solutions.

Problem: The expressions coming from Sturm’s Theorem can be di�cult to work with when
coe�cients are parametric...
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Real rooted polynomials

Definition. A univariate polynomial p(x) is said to be real rooted if all its roots are real.

Example.
Is x3 � 6x2 + 11x � 6 real rooted?
Is x3 � 1 real rooted?

Observation: A real rooted polynomial with sign alternating coe�cients, has all its roots
positive.

Newton Inequalities. Let p(x) = anxn + · · ·+ a1x + a0, with ai � 0, i = 0, . . . , n (all
coe�cients nonnegative). If p(x) is real rooted, then

a2k✓
n
k

◆2 � ak�1✓
n

k � 1

◆ · ak+1✓
n

k + 1

◆

These give necessary conditions for being real rooted. But they are not su�cient!
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Kurtz Theorem

A theorem on real rooted polynomials (Kurtz ’92)

Let p(x) = x2m+1 � a2mx2m + a2m�1x2m�1 � · · ·+ a1x � a0 with ai � 0, and let
a2m+1 = 1 (a polynomial with alternating signs).

If
a2i � 4ai�1ai+1 > 0, i = 1, . . . , 2m

then p(x) has 2m + 1 distinct positive real roots.

Examples.

• q(x) = x3 � 6x2 + 8x � 1: a3 = 1, a2 = 6, a1 = 8, a0 = 1.
Kurtz inequalities are satisfied:

0 < a21 � 4a0a2 = 82 � 4 · 1 · 6 = 40, 0 < a22 � 4a1a3 = 62 � 4 · 8 · 1 = 4.

So the polynomial has three positive real roots.

• q(x) = x3 � 6x2 + 11x � 6: a3 = 1, a2 = 6, a1 = 11, a0 = 6.
Kurtz inequalities are not satisfied

0 < a21 � 4a0a2 = 112 � 4 · 6 · 6 = �23 !!
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Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz ’92)

Let p(x) = x2m+1 � a2mx2m + a2m�1x2m�1 � · · ·+ a1x � a0 with ai � 0, and let a2m+1 = 1 (a
polynomial with alternating signs).

If
a2i � 4ai�1ai+1 > 0, i = 1, . . . , 2m

then p(x) has 2m + 1 distinct positive real roots.

Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

a2(,T ) = (1(T124 + 26 + 36)� T2(1 + 2)46)5 < 0

a1(,T ) = (123(T15 + 6)� T21(2 + 3)56) > 0

Kurtz Theorem tells me that if

a2(,T )2 � 4(1 + 2)456a1(,T ) > 0, a1(,T )2 � 4a2(,T )T21236 > 0,

then the polynomial will have 3 positive real roots.

Recall:

q6(x5) = (1 + 2)456x
3
5 + (1(T124 + 26 + 36)� T2(1 + 2)46)5x

2
5

+ (123(T15 + 6)� T21(2 + 3)56)x5 � T21236

With some work, it is possible to show that this semialgebraic set is nonempty
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General system

Steady states are in one-to-one correspondence with the positive roots of:

pn(x) = a2n+1(,T )x2n+1 + · · ·+ a1(,T )x + a0(,T ) x = [Htp]

• One can construct parameters ,T such that the coe�cients ai (,T ) fulfil the
conditions of Kurtz theorem.

The system can have up to 2n + 1 steady states

(further: alternating ones are unstable)

Kothamanchu VB, Feliu E, Cardelli L, Soyer OS (2015) Unlimited multistability and Boolean logic in microbial signaling. Journal

of the Royal Society Interface. 12:108, 20150234
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Parameter regions

⌦ := {(,T ) 2 R6
>0 ⇥ R2

>0 : q6 has 3 positive roots}.

• Sturm’s theorem gives ⌦.

• Descartes’ rule of signs gives a set that contains ⌦.

• Kurtz theorem gives a region contained in ⌦.

Illustration in 2D

(Previous picture from CAD)

Purple: Descartes’ rule of signs; Yellow: exact region; Blue: Kurtz theorem.

Reaction rate constants: 1 = 7329
10000 ,2 = 100,3 = 7329

100 ,4 = 50,5 = 100,6 = 5.
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Sturm’s theorem

p0(x) = a3x3 + a2x2 + a1x + a0.

a3 = (1 + 2)456 > 0

a2 = (1(T124 + 26 + 36)� T2(1 + 2)46)5

a1 = 123(T15 + 6)� T21(2 + 3)56

a0 = �T21236 < 0.

Three positive steady states if and only if

a1 > 0 27a23a
2
0 � 18 a3a2a1a0 + 4a0a

3
2 + 4a31a3 � a22a

2
1 < 0

9a0a3 � a1a2 > 0 �3a1a3 + a22 > 0

What if I tell you that the projection onto the -space
is the region with 3 > 1?
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Jacobian-based methods
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Jacobian criterion

Injectivity and Jacobians:
Let F : U ! Rn, U ✓ Rn continuously di↵erentiable, such that each coordinate of F is
either a polynomial of degree 1 or 2. Then F is injective if

det(JF (x)) 6= 0 x 2 U.

Example.

F,T = (4x3x5 � 1x1,5x4x5 + 1x1 � 2x2,2x2 � 3x3 � 4x3x5,

6x6 � 4x3x5 � 5x4x5, x1 + x2 + x3 + x4 � T1, x5 + x6 � T2)

Then JF,T (x) =

0

BB@

�1 0 4x5 0 4x3 0
1 �2 0 5x5 5x4 0
0 2 �4x5 � 3 0 �4x3 0
0 0 �4x5 �5x5 �4x3 � 5x4 6
1 1 1 1 0 0
0 0 0 0 1 1

1

CCA

det(JF,T
(x)) = �(1 � 3)245x3x5 � 1234x3 � 1245x4x5

� 1235x4 � (1 + 2)456x
2
5 � (2 + 3)156x5 � 1236

If 1 � 3, then no multistationarity.

So, 1 < 3 is necessary for multistationarity.

(Bass), (Pantea, Koeppl, Craciun)
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Teaser for next Tuesday

Theorem. Consider a network such that . . . (some technical conditions).

Fix . There exists a (computable) polynomial p(x) such that

(A) Uniqueness. If

sign(p(x)) = + for all positive x ,

then #C,T = 1 for all T .

(B) Multistationarity. If

sign(p(x
⇤)) = � for some positive x⇤,

then #C,T � 2 for some T .

With this we will be able to prove that there exists T such that the hybrid HK network is
multistationary if and only if 3 > 1.

Need: Understand how to decide whether a polynomial attains negative values over the
positive orthant. You’ll learn about this on Monday!
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