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What we have seen so farl!

® Framework to study reaction networks (stoichiometric matrix, stoichiometric
compatibility classes...)

® Tools to study the steady state variety: Grobner bases, linear elimination

® Multistationarity: injectivity theorem, multistationarity via Brouwer degree and the
use of polyhedral geometry techniques and nonnegativity, binomial ideals and
monomial parametrizations; partial parameter regions for multistationarity

® Special networks: complex balancing (one steady state that is asymptotically
stable); MESSI systems; PTM systems

® Next: what about the dynamics?
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Some dynamical aspects

x = f(x) an ODE system.

® |f a trajectory x(t) is defined for all t > 0 and converges to a point x* when t goes
to infinity, then x™ is a steady state.

® For a conservative network, trajectories are defined for all t > 0 and there exists a
nonnegative steady state in each stoichiometric compatibility class.

This is because the stoichiometric compatibility classes are compact and
homeomorphic to a closed ball, and by the Brouwer fix point theorem.

® (Boros) All weakly reversible networks have at least a positive steady state in each
stoichiometric compatibility class.

® Today: stability and Hopf bifurcations.
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Why bistability and oscillations are interesting
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Bistability

Robust switch-like behavior is important in cell signaling.
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Bistability
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Bistability
dx 3 5
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Bistability
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Bistability

Robust switch-like behavior is important in cell signaling via hysteresis
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Response = Concentration of one of the species/proteins

Signal = One of the parameters of the system
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Oscillations

Periodicity is abundant in biological systems: circadian rythm, cell cycle...
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How to detect the presence of periodic solutions? Typical approaches for biochemical
networks involve:

® |dentification of a Hopf bifurcation.

® |dentification of relaxation oscillations.
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Some definitions
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Exponential stability

Consider a system of ordinary differential equations
x = f(x)

and x* a steady state. Let Jr(x™) be the Jacobian of f at x™.

® The steady state x* is exponentially stable if all eigenvalues of J¢(x™) have negative
real part.

Exponential stability implies asymptotic stability: trajectories starting nearby
converge to the steady state.

® |f at least one eigenvalue has positive real part, then x* is unstable: there are always
trajectories starting arbitrarily close to the steady state that diverge.
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Hopf bifurcations

Assume the system is parametric in u:
X = f,(x).

Given a non-singular steady state x* for g, there exists a curve of steady states x™ (1)
around pio.

A Hopf bifurcation arises at o if a pair of eigenvalues of Jr(x™ (1)) crosses the imaginary
axis, and x*(p) goes from stable to unstable at po.

At po: Jr(x*(p0)) has a pair of purely imaginary eigenvalues.

In this case a periodic solution arises for systems with p > po. The periodic orbit can be
stable or unstable.

Goal: Study the sign of the real part of the eigenvalues of Jg (x™)
for x* a steady state of x = f.(x).
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Examples
1. Assume the Jacobian matrix evaluated at a steady state is
-1 2 -4
-5 3 2
5 -2 -7
The characteristic polynomial is
—1—y 2 —4
det R gy 2 =y 4+ 5y% + 17y +13.
5 -2 —7-y

The roots are:

—-1,-2-3i,—2+43i.
As all have negative real part, the steady state is exponentially stable and hence asymptotically
stable.

2. Assume the Jacobian matrix evaluated at a steady state is

5 -2 -8
-1 1 -2
7 -4 -7

The characteristic polynomial is
v 4+ y?+19y +9.
The roots are:
—1,-3i,3i.
There is a pair of purely imaginary eigenvalues. There might be a Hopf bifurcation.
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In our application

The matrices are symbolic, for instance

5)\1 —2>\2 —8)\3
-\ A2 —2)\3
A1 —4X —TX3

Is there \; such that this matrix has a pair of purely imaginary eigenvalues?

The characteristic polynomial is

p(y) = y3 — (—7)\3 + X+ 5/\1)}/2 — (—3)\1)\2 — 21\ )3 + 15/\2)\3)}/ + 91 )3,

How to study the roots?
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Is there a choice of parameters for which this solution consists of a pair of purely
imaginary eigenvalues?
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We had from before that A\; = Ao = A\3 = 1 works.
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Goal: Study the sign of the real part of the eigenvalues of Jg, (x™)
for x* a steady state of x = f,;(x).

Problem: We cannot solve symbolically for x* nor for the
eigenvalues!

There are ways around!

For n=2: %1 = fi(x), % = f2(x),

dfi  df
dx1 B a b
#(x)z(a >=( ‘)
dxy dxp
The characteristic polynomial is

b

chy(y) = det ("’ v b y) = )P — Te(Ur(x))y + det Jr(x).

The roots a1, o are such that cyaz = det Jr(x) and a1 + ao = Tr(Jr(x)).
This polynomial has:

® Two roots with negative real part if and only if det J¢(x) > 0 and Tr(Jr(x)) < 0.
® Two purely imaginary roots if and only if det Jr(x) > 0 and Tr(J¢(x)) = 0.
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General case: Routh-Hurwitz criteria
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Hurwitz matrix

Given a real polynomial

n—1

p(z) = awz"+ ouz" "+ a1z + an, ag >0,
How many roots have positive real part and how many have negative real part?

Does it have a pair of imaginary roots?

a1 a3 a5 ... ... O
ap 2 Q4 Qe 0
H= 0 a a3 as ... 0 H; = i-th leading principal minor.

0 w o2 g

Qp
(note H, = anHp-1.)
a o a1 [0%:] (071
Hi = as, H2:det[ ! 3 :|, H3 = det Qp Qo Qg
Q0 (0%

0 a1 o3
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Hurwitz matrix: Stability criterion

ar a3 05 0
Qg a2 o O 0
H=| 0 @ a as ... 0 H; = i-th leading principal minor

0 o a2 g

Qn

Criterion 1 (Routh-Hurwitz): Negative real part

® If Hi>0foralli=1,...,n—1and a, > 0, then all roots of p(z) have negative
real part.

® |f not, if none is zero, then the number of roots with positive real part can be
determined (and there is at least one).

Example: p(z) = 2% — Tr(Jr(x))z + det J¢(x):

Hi = —Tr(Jr(x)), a2 = detJr(x).
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Hurwitz matrix: Stability criterion

ar a3 Qs 0
ay 2 a4 O 0
H=| 0 a as os 0 H; = i-th leading principal minor

Qn

Criterion 2 (Liu): Imaginary roots

® p(z) has a simple pair of imaginary roots and the rest of the roots have negative real
part, if and only if

H1>0,...,Hn_2>0, H,,_1=0, an > 0.

Example: p(z) = z* — Tr(Jr(x))z + det Jr(x):

Hy = —Tr(J(x)), a2 = detJe(x).
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Observation

n—1

p(z) = az" +a1z" "+ +apaz+an, a0 >0.

Let w1, ..., u, be the roots of p. It holds (Orlando’s formula):

n(n—1)
Hpoi=(-1) 2 H (ui + ;).

1<i<j<n
So, if Hy—1 = 0, then there exists a pair of roots uj, uj:
ui+u; =0.

This implies
uj = —uj.

If both real, noninteresting... If both complex, they need to be purely imaginary roots.
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For reaction networks

We apply these criteria to the characteristic polynomial of the Jacobian of f.(x)
evaluated at a parametrisation of the steady states, after removing d = n — Rank(N)
zero roots, either of the positive steady state variety or using convex parameters:

chex(y) = y? (a0(k, x)y° + ar(r, x)y" 4+ + as—1(k, x)y + as(k, x))

Ch/\,h(.y) = yd (ao(/\, h)ys + 31()\, h)y571 +eee aS*I(Av h)y + aS(Aa h))
The questions on stability and Hopf bifurcations reduce to deciding (determining when)
some semi-algebraic sets are non-empty.
Stability:
k>0,x>0 or A>0,h>0
Hi>0,...,Hs—1 >0,as >0
Hopf bifurcations:
k>0,x>0 or A>0,h>0

Hi>0,...,Hs—2 >0, Hs—1=0, as>0

dHs_ e . .
%(MO) # 0 for some parameter p, and pp satisfying the above inequalities
n
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Example: enzymatic transfer of calcium ions

A2 EN K3
0 X1 X1+ X 2X X1 = cytosolic calcium Ca™™,

ra e X = Ca™™ in the endoplasmic reticulum
X1+ X3 Nﬁs Xy — X0+ X3 X3 = enzyme catalyzing the transport

With convex parameters A, h: The polynomials H; and a3 have positive coefficients. We also have
B2y 4+ h2 A3 A3 + B2 A A2 4 2h2 o Ai Ao ds+ho hod A — R hs A2y — B2 hs A2 s — Rk A A2
+ B3 AAl 4 W2 hs A3z + B hsdo Al 4+ h2 A1 dads + B A Al + W2 A3z + B hado Xl + hi 2N
+ h 3NN + A2 g 4 2 hyhs A3 Xg + 2hhoh3 AT A3 + 2h1hahs A1 A3 + 2h1 hahs A Ao As + hyhoha X3
+ 3hihaha A3 Mg + 2h1haha A3 A3 4 2h1 haha At A3 + 2hi hahy A1 Ao s — B h2AT — 2 K22,
+ hhIAZ A — b2 A2 + 2h KA Ao s + hiB3AIAs — hihsha A3 — 2h1hsha A2 X0 + 2h h3ha A3
— hih3ha A1 A3 + 4hyhsha A1 Ao s + 2R hsha A2 A3 + hi P2 A2 A3 + 2k h2 A AaAs + hiB2A3As + hahs A3
+ BN Ny + W3R Ad + R2RaAI g + hah3A3 4+ 2 W2 N3N + a5 A3 + 2hah3hg A
+ dhah3ha NI Na + 2hah3ha A1 N; + i N} + 2hahi AT he + i A XS

There are coefficients of both signs which are vertices of the Newton Polytope of Hp. There exist
values of A, h such that Ho = 0. There is a pair of purely imaginary eigenvalues.

Also % > 0, so the extra condition holds. There is a Hopf bifurcation, hence the network
displays periodic solutions.
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Example: enzymatic transfer of calcium ions

X1 = cytosolic calcium Ca®™,
K
X1+ Xo 252X X

X3 = enzyme catalyzing the transport

Ca™™ in the endoplasmic reticulum

X1+ Xs o= Xa =2 Xo + Xs

The Hurwitz determinants of the characteristic polynomial of the Jacobian of the system
evaluated at a parametrization of the positive steady state variety are (bi(k),. .., bs(x) > 0)

Hy = bl(K)(fi§H5X4 + Hfﬁg + 5%54 + mm% + K1Kk2Ks5 + K1K2K6)
Hy = ba(r)(K5ks(k3ks + Kk3ke — Kake)xe + bs(k)xa + b3(k))
a3 = bs(k)k1k3(K1Ka + Kaks + Koke)

H> = 0 for some steady state x4, and hence there is a pair of imaginary eigenvalues if
and only if (ksks + K3ke — kaks) < 0, or equivalently

KR4

k3 < K5+Ke "

With © = T = x3 + x4 as bifurcation parameter, there is a Hopf bifurcation.

Gatermann, Eiswirth, Sensse, '05
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Monostability

Networks with one positive steady state in each stoichiometric compatibility class:

DEPARTMENT

@

Sy +E=S,E—S, +E
S, +F=SF—S,+F

2

Sy +E=SE—S, +E
S, +E=S,E—S,+E

3

Sy +E, =SE, — S, +E,
Sp+E, =SB, — S, +E,
S, +F=S,F—S,+F

@

Sy +E, =SE, =S, +E,
Sy +E, =SeE, = S, +E,
S| +F, =S,F, =S, +F,
S +F, =S,F, > S, +F,

(©)]

Sy +E; = SoE; — S, +E;
S +E, =S,E, =S, +E,
S +F =SF =S, +F
S, +F, =S,F, » S, +F,

(6)

Sy +E=SE—S, +E
P, +E=P,E—P +E
S, +F, =S,F =S +F,
P,+F,=PF, =P +F,

For all these networks, the polynomials

Hi(A\ h) > 0,..., He1(\ h) > 0,a5(\, h) > 0

and this holds because the polynomials only have positive coefficients.

OF MATHEMATICAL SCIENCES

So, there is monostability.
Torres, Feliu (2021). Symbolic proof of bistability in reaction networks. SIADS
E Feliu
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Bistability

Hybrid histidine kinase
HKoo —% HK o —2 HKop —2 HKpp
HKop + Htp —% HKoo + Htp,,
HKpp + Htp = HKpo + Htp,
Htp, BN Htp

Multi & k1 < K3

DEPARTMENT OF MATHEMATICAL SCIENCES

Gene transcription network
X1 — X1+ P2 P —0
Xo — Xo+ Py P, — 0
Xo+ Pr = XoP1 2P, = PP,
X1+ PPy == X1P2P>

Multi for all k

These networks admit 3 positive steady states for some choice of parameter values. How
can we guarantee that two are asymptotically stable?

E Feliu
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Bistability vs. multistationarity

When can we assert that there is bistability whenever the network has 3 steady states?
How can we “prove” the existence of bistability (symbolically)?

For small networks we often have

® All Hurwitz determinants Hi, ..., Hs_1 are positive. Then, the steady state is
asymptotically stable if as > 0 and unstable if as < 0.

® |t is possible to reduce the equations defining C c to one
polynomial equation gx,c(x;) = 0, such that x; are
positive rational functions of x;.

® For a steady state x™

sign(as(x")) = sign(qr..(x"))- : /\

® “The stability of the steady states alternates with x;".

® So, if the independent term of g c(x;) = 0 is positive,
and there are 3 steady states, two are asymptotically
stable and one is unstable.

Torres, Feliu (2021). Symbolic proof of bistability in reaction networks. SIADS
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Bistability

The following networks admit two asymptotically stable steady states and one unstable

steady state:

E Feliu

(Hybrid histidine kinase
HKo = HK g = HK,, = HK,,, Htp, — Htp

HK,, + Htp — HK o + Htp, HKq, + Htp — HKoo + Htp,

Two substrate enzyme catalysis
E+S,=ES; E+S; = ES, ES:S;=E+P
S, + ES; = ES; S, S: + ES, =ES; S,

Gene transcription network

X,=X;+P, Xo—=Xy+Py, P,—0 Py—0

(Xa+Pi=2XoPr 2Py 2PoPy Xy +PoPa 2 XP,P, |

Torres, Feliu (2021). Symbolic proof of bistability in reaction networks. SIADS

June 2023
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Two stories on the MAPK cascade

E Feliu June 2023 30/ 36



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

On the origin of oscillations in the MAPK cascade

MAPKKK A Ap

MAPKK B B, Bpp

MAPK C G Cop

Huang, Ferrell model, ‘99
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MAPK cascade. Bistability

MAPKKK A Ap

MAPKK

MAPK

Huang, Ferrell model, ‘99
Markevich, Hoeck, Kholodenko, ‘04
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MAPK cascade. Oscillations

Ev-"T70s e
— RN
MAPKKK A Ap N
~__ S
F \\\
— — \\
MAPKK B By Bpp N
Y\ ~_ - ‘\
F F2J |

L e !
MAPK C Gy Cop ™
~_ ~~
F =]

Suggest: Single-stage bistability is necessary for the oscillatory behavior

Kholodenko, ‘00
Qiao, Nachbar, Kevrekidis, Shvartsman, ‘07
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A single-phosphorylation cascade admits oscillations!

E
L Full model
AN A+E—Xi — Ay +E
F1 Ap+Fie=—=Xo — A+ F
B+A,=—=Y1— By + A
Bp+F=—=Y,— B+ F
—
B B, We make use of a model reduction tech-
T— nique.

F

Hy has 37,235 terms in x and x with both negative and positive coefficients.
(Torres, Feliu, In preparation)
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Does the double-phosphorylation cycle admit oscillations?

E E
B+E—Xi— By +E=—Xo — Bpp+ E /—\B/_\B
B
Bp+Fe=Y, 3By +Fe==Y, — B+F e
F F
Hy >0,...,H,—2 >0, Hp—1 and a, have both positive and negative terms.

® Several failed attempts to show the existence of Hopf bifurcations

® If F acts processively, the network has Hopf bifurcations (Conradi, Mincheva, Shiu '19)

® Reduced systems: irreversible reactions and keep two intermediates. For example
B+E— Xy —By,+E— Bpp+E
Bp+F—Y> —By,+F —B+F
® After a very detailed analysis of H;: No reduced network with two intermediates admits a

Hopf bifurcation (Conradi, Feliu, Mincheva (2019)). The same analysis extends to any choice of
three intermediates (not published).

® Conjecture: The double-phosphorylation cycle does not admit Hopf bifurcations.
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Appendix: computational approach

To work with Hurwitz determinants, we do as follows:
® Use N and B to find a matrix of conservation laws W, and the generators of ker(N) NRZ .
Write the generators as columns of a matrix E. B

® Construct the matrix N diag(EX)BT diag(h). Find the characteristic polynomial ch(y) of
this matrix and divide it by y"~°. Call the new polynomial p(y), which has degree s.

® Find s = rk(/N) and consider the general Hurwitz matrix of size s (see slides above, let the
coefficients of the polynomial be symbols a; for now). Compute the Hurwitz determinants
Hi, ..., Hs_1 by finding the principal minors of size 1,...,s — 1. Substitute the a; by the
actual coefficients of p(y).

® Check the signs of the coefficients of Hy,..., Hs—1 and as.

® |If all positive, then all steady states are asymptotically stable.

® If Hs_1 has coefficients of both sign and the rest of the polynomials have only positive
coefficients, decide whether there are vertices of the Newton polytope of Hs_; that
have positive coefficients and some that have negative coefficients. If this is the case,
check the derivative condition to conclude that there are Hopf bifurcations and hence
periodic solutions.

® If a5 has coefficients of both sign and the rest of the polynomials have only positive
coefficients, decide whether the steady state equations can be reduced to one
polynomial equation (see above).

® By working with a parametrization of the positive steady state variety instead of convex
parameters, you can get parameter conditions for the existence of Hopf bifurcations or
unstable steady states.
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