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What we have seen so far!

• Framework to study reaction networks (stoichiometric matrix, stoichiometric
compatibility classes...)

• Tools to study the steady state variety: Gröbner bases, linear elimination

• Multistationarity: injectivity theorem, multistationarity via Brouwer degree and the
use of polyhedral geometry techniques and nonnegativity, binomial ideals and
monomial parametrizations; partial parameter regions for multistationarity

• Special networks: complex balancing (one steady state that is asymptotically
stable); MESSI systems; PTM systems

• Next: what about the dynamics?
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Some dynamical aspects

ẋ = f (x) an ODE system.

• If a trajectory x(t) is defined for all t ≥ 0 and converges to a point x∗ when t goes
to infinity, then x∗ is a steady state.

• For a conservative network, trajectories are defined for all t ≥ 0 and there exists a
nonnegative steady state in each stoichiometric compatibility class.

This is because the stoichiometric compatibility classes are compact and
homeomorphic to a closed ball, and by the Brouwer fix point theorem.

• (Boros) All weakly reversible networks have at least a positive steady state in each
stoichiometric compatibility class.

• Today: stability and Hopf bifurcations.
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Why bistability and oscillations are interesting
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Bistability

Robust switch-like behavior is important in cell signaling.

dx1

dt
= −x3

1 + 6x2
1 − 11x1 + 6,

dx2

dt
= x1 − x2.
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Bistability

dx1

dt
= −x3

1 + κ x2
1 − 11x1 + 6,

dx2

dt
= x1 − x2.

κ = 5.5 κ = 6 κ = 6.4
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Bistability

dx1

dt
= −x3

1 + κ x2
1 − 11x1 + 6

dx2

dt
= x1 − x2. 5.93 6.2

31 1

κ

Steady states
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Bistability

dx1

dt
= −x3

1 + κ x2
1 − 11x1 + 6

dx2

dt
= x1 − x2. 5.93 6.2

31 1

κ

Steady states

→ ←
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Bistability

Robust switch-like behavior is important in cell signaling via hysteresis

Response = Concentration of one of the species/proteins

Signal = One of the parameters of the system
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Oscillations

Periodicity is abundant in biological systems: circadian rythm, cell cycle...

How to detect the presence of periodic solutions? Typical approaches for biochemical
networks involve:

• Identification of a Hopf bifurcation.

• Identification of relaxation oscillations.
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Some definitions
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Exponential stability

Consider a system of ordinary differential equations

ẋ = f (x)

and x∗ a steady state. Let Jf (x∗) be the Jacobian of f at x∗.

• The steady state x∗ is exponentially stable if all eigenvalues of Jf (x∗) have negative
real part.

Exponential stability implies asymptotic stability: trajectories starting nearby
converge to the steady state.

• If at least one eigenvalue has positive real part, then x∗ is unstable: there are always
trajectories starting arbitrarily close to the steady state that diverge.
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Hopf bifurcations

Assume the system is parametric in µ:

ẋ = fµ(x).

Given a non-singular steady state x∗ for µ0, there exists a curve of steady states x∗(µ)
around µ0.

A Hopf bifurcation arises at µ0 if a pair of eigenvalues of Jf (x∗(µ)) crosses the imaginary
axis, and x∗(µ) goes from stable to unstable at µ0.

At µ0: Jf (x∗(µ0)) has a pair of purely imaginary eigenvalues.

In this case a periodic solution arises for systems with µ > µ0. The periodic orbit can be
stable or unstable.

Goal: Study the sign of the real part of the eigenvalues of Jfκ(x∗)
for x∗ a steady state of ẋ = fκ(x).
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Examples
1. Assume the Jacobian matrix evaluated at a steady state is−1 2 −4

−5 3 2
5 −2 −7


The characteristic polynomial is

det

−1− y 2 −4
−5 3− y 2
5 −2 −7− y

 = y3 + 5y2 + 17y + 13.

The roots are:
− 1,−2− 3i ,−2 + 3i .

As all have negative real part, the steady state is exponentially stable and hence asymptotically
stable.

2. Assume the Jacobian matrix evaluated at a steady state is 5 −2 −8
−1 1 −2
7 −4 −7


The characteristic polynomial is

y3 + y2 + 19y + 9.

The roots are:
− 1,−3i , 3i .

There is a pair of purely imaginary eigenvalues. There might be a Hopf bifurcation.
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In our application

The matrices are symbolic, for instance5λ1 −2λ2 −8λ3

−λ1 λ2 −2λ3

7λ1 −4λ2 −7λ3


Is there λi such that this matrix has a pair of purely imaginary eigenvalues?

The characteristic polynomial is

p(y) = y 3 − (−7λ3 + λ2 + 5λ1)y 2 − (−3λ1λ2 − 21λ1λ3 + 15λ2λ3)y + 9λ1λ2λ3.

How to study the roots?
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Is there a choice of parameters for which this solution consists of a pair of purely
imaginary eigenvalues?

We had from before that λ1 = λ2 = λ3 = 1 works.
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Goal: Study the sign of the real part of the eigenvalues of Jfκ(x∗)
for x∗ a steady state of ẋ = fκ(x).

Problem: We cannot solve symbolically for x∗ nor for the
eigenvalues!

There are ways around!

For n = 2: ẋ1 = f1(x), ẋ2 = f2(x),

Jf (x) =

(
df1
dx1

df1
dx2

df2
dx1

df2
dx2

)
=

(
a b
c d

)
The characteristic polynomial is

chf (y) = det

(
a− y b
c d − y

)
= y 2 − Tr(Jf (x))y + det Jf (x).

The roots α1, α2 are such that α1α2 = det Jf (x) and α1 + α2 = Tr(Jf (x)).
This polynomial has:

• Two roots with negative real part if and only if det Jf (x) > 0 and Tr(Jf (x)) < 0.

• Two purely imaginary roots if and only if det Jf (x) > 0 and Tr(Jf (x)) = 0.
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General case: Routh-Hurwitz criteria
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Hurwitz matrix

Given a real polynomial

p(z) = α0z
n + α1z

n−1 + · · ·+ αn−1z + αn, α0 > 0,

How many roots have positive real part and how many have negative real part?

Does it have a pair of imaginary roots?

H =


α1 α3 α5 . . . . . . 0
α0 α2 α4 α6 . . . 0
0 α1 α3 α5 . . . 0
0 α0 α2 α4 . . .
...

...
...

...
... αn

 Hi = i-th leading principal minor.

(note Hn = αnHn−1.)

H1 = α1, H2 = det

[
α1 α3

α0 α2

]
, H3 = det

 α1 α3 α5

α0 α2 α4

0 α1 α3


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Hurwitz matrix: Stability criterion

H =


α1 α3 α5 . . . . . . 0
α0 α2 α4 α6 . . . 0
0 α1 α3 α5 . . . 0
0 α0 α2 α4 . . .
...

...
...

...
... αn

 Hi = i-th leading principal minor

Criterion 1 (Routh-Hurwitz): Negative real part

• If Hi > 0 for all i = 1, . . . , n − 1 and αn > 0, then all roots of p(z) have negative
real part.

• If not, if none is zero, then the number of roots with positive real part can be
determined (and there is at least one).

Example: p(z) = z2 − Tr(Jf (x))z + det Jf (x):

H1 = −Tr(Jf (x)), α2 = det Jf (x).
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Hurwitz matrix: Stability criterion

H =


α1 α3 α5 . . . . . . 0
α0 α2 α4 α6 . . . 0
0 α1 α3 α5 . . . 0
0 α0 α2 α4 . . .
...

...
...

...
... αn

 Hi = i-th leading principal minor

Criterion 2 (Liu): Imaginary roots

• p(z) has a simple pair of imaginary roots and the rest of the roots have negative real
part, if and only if

H1 > 0, . . . ,Hn−2 > 0, Hn−1 = 0, αn > 0.

Example: p(z) = z2 − Tr(Jf (x))z + det Jf (x):

H1 = −Tr(Jf (x)), α2 = det Jf (x).
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Observation

p(z) = α0z
n + α1z

n−1 + · · ·+ αn−1z + αn, α0 > 0.

Let u1, . . . , un be the roots of p. It holds (Orlando’s formula):

Hn−1 = (−1)
n(n−1)

2

∏
1≤i<j≤n

(ui + uj).

So, if Hn−1 = 0, then there exists a pair of roots ui , uj :

ui + uj = 0.

This implies
ui = −uj .

If both real, noninteresting... If both complex, they need to be purely imaginary roots.

E Feliu June 2023 22 / 36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

For reaction networks
We apply these criteria to the characteristic polynomial of the Jacobian of fκ(x)
evaluated at a parametrisation of the steady states, after removing d = n − Rank(N)
zero roots, either of the positive steady state variety or using convex parameters:

chκ,x(y) = yd (a0(κ, x)y s + a1(κ, x)y s−1 + · · ·+ as−1(κ, x)y + as(κ, x)
)

chλ,h(y) = yd (a0(λ, h)y s + a1(λ, h)y s−1 + · · ·+ as−1(λ, h)y + as(λ, h)
)

The questions on stability and Hopf bifurcations reduce to deciding (determining when)
some semi-algebraic sets are non-empty.

Stability:

κ > 0, x > 0 or λ > 0, h > 0

H1 > 0, . . . ,Hs−1 > 0, as > 0

Hopf bifurcations:

κ > 0, x > 0 or λ > 0, h > 0

H1 > 0, . . . ,Hs−2 > 0, Hs−1 = 0, as > 0

dHs−1(µ0)

dµ
6= 0 for some parameter µ, and µ0 satisfying the above inequalities
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Example: enzymatic transfer of calcium ions

0
κ1−−⇀↽−−
κ2

X1 X1 + X2
κ3−−→ 2X1

X1 + X3
κ4−−⇀↽−−
κ5

X4
κ6−−→ X2 + X3

X1 = cytosolic calcium Ca++,
X2 = Ca++ in the endoplasmic reticulum
X3 = enzyme catalyzing the transport

With convex parameters λ, h: The polynomials H1 and a3 have positive coefficients. We also have

h2
1h2λ

2
1λ2 + h2

1h2λ
2
1λ3 + h2

1h2λ1λ
2
2 + 2h2

1h2λ1λ2λ3+h2
1h2λ1λ

2
3 − h2

1h3λ
2
1λ2 − h2

1h3λ
2
1λ3 − h2

1h3λ1λ
2
2

+ h2
1h3λ1λ

2
3 + h2

1h3λ
2
2λ3 + h2

1h3λ2λ
2
3 + h2

1h4λ1λ2λ3 + h2
1h4λ1λ

2
3 + h2

1h4λ
2
2λ3 + h2

1h4λ2λ
2
3 + h1h

2
2λ

3
1

+ h1h
2
2λ

2
1λ2 + h1h

2
2λ

2
1λ3 + 2h1h2h3λ

2
1λ2 + 2h1h2h3λ

2
1λ3 + 2h1h2h3λ1λ

2
2 + 2h1h2h3λ1λ2λ3 + h1h2h4λ

3
1

+ 3h1h2h4λ
2
1λ2 + 2h1h2h4λ

2
1λ3 + 2h1h2h4λ1λ

2
2 + 2h1h2h4λ1λ2λ3 − h1h

2
3λ

3
1 − 2h1h

2
3λ

2
1λ2

+ h1h
2
3λ

2
1λ3 − h1h

2
3λ1λ

2
2 + 2h1h

2
3λ1λ2λ3 + h1h

2
3λ

2
2λ3 − h1h3h4λ

3
1 − 2h1h3h4λ

2
1λ2 + 2h1h3h4λ

2
1λ3

− h1h3h4λ1λ
2
2 + 4h1h3h4λ1λ2λ3 + 2h1h3h4λ

2
2λ3 + h1h

2
4λ

2
1λ3 + 2h1h

2
4λ1λ2λ3 + h1h

2
4λ

2
2λ3 + h2

2h3λ
3
1

+ h2
2h3λ

2
1λ2 + h2

2h4λ
3
1 + h2

2h4λ
2
1λ2 + h2h

2
3λ

3
1 + 2h2h

2
3λ

2
1λ2 + h2h

2
3λ1λ

2
2 + 2h2h3h4λ

3
1

+ 4h2h3h4λ
2
1λ2 + 2h2h3h4λ1λ

2
2 + h2h

2
4λ

3
1 + 2h2h

2
4λ

2
1λ2 + h2h

2
4λ1λ

2
2

There are coefficients of both signs which are vertices of the Newton Polytope of H2. There exist
values of λ, h such that H2 = 0. There is a pair of purely imaginary eigenvalues.

Also dH2
dh2

> 0, so the extra condition holds. There is a Hopf bifurcation, hence the network

displays periodic solutions.
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Example: enzymatic transfer of calcium ions

0
κ1−−⇀↽−−
κ2

X1

X1 + X2
κ3−−→ 2X1

X1 + X3
κ4−−⇀↽−−
κ5

X4
κ6−−→ X2 + X3

X1 = cytosolic calcium Ca++,

X2 = Ca++ in the endoplasmic reticulum

X3 = enzyme catalyzing the transport

The Hurwitz determinants of the characteristic polynomial of the Jacobian of the system
evaluated at a parametrization of the positive steady state variety are (b1(κ), . . . , b5(κ) > 0)

H1 = b1(κ)(κ2
2κ5x4 + κ2

1κ3 + κ2
1κ4 + κ1κ

2
2 + κ1κ2κ5 + κ1κ2κ6)

H2 = b2(κ)(κ4
2κ5(κ3κ5 + κ3κ6 − κ4κ6)x2

4 + b5(κ)x4 + b3(κ))

a3 = b4(κ)κ1κ3(κ1κ4 + κ2κ5 + κ2κ6)

H2 = 0 for some steady state x4, and hence there is a pair of imaginary eigenvalues if
and only if (κ3κ5 + κ3κ6 − κ4κ6) < 0, or equivalently

κ3 <
κ6κ4
κ5+κ6

.

With µ = T = x3 + x4 as bifurcation parameter, there is a Hopf bifurcation.

Gatermann, Eiswirth, Sensse, ’05
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Monostability
Networks with one positive steady state in each stoichiometric compatibility class:

(1)
S0 + E−⇀↽− S0E−→ S1 + E

S1 + F−⇀↽− S1F−→ S0 + F
(2)

S0 + E−⇀↽− S0E−→ S1 + E

S1 + E−⇀↽− S1E−→ S0 + E

(3)
S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S0 + E2 −⇀↽− S0E2 −→ S1 + E2

S1 + F−⇀↽− S1F−→ S0 + F

(4)
S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S0 + E2 −⇀↽− S0E2 −→ S1 + E2

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

S1 + F2 −⇀↽− S1F2 −→ S0 + F2

(5)

S0 + E1 −⇀↽− S0E1 −→ S1 + E1

S1 + E2 −⇀↽− S1E2 −→ S2 + E2

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

S2 + F2 −⇀↽− S2F2 −→ S1 + F2

(6)

S0 + E−⇀↽− S0E−→ S1 + E

P0 + E−⇀↽− P0E−→ P1 + E

S1 + F1 −⇀↽− S1F1 −→ S0 + F1

P1 + F2 −⇀↽− P1F2 −→ P0 + F2

1

For all these networks, the polynomials

H1(λ, h) > 0, . . . ,Hs−1(λ, h) > 0, as(λ, h) > 0

and this holds because the polynomials only have positive coefficients.
So, there is monostability.

Torres, Feliu (2021). Symbolic proof of bistability in reaction networks. SIADS
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Bistability

Hybrid histidine kinase

HK00
κ1−−→ HKp0

κ2−−→ HK0p
κ3−−→ HKpp

HK0p + Htp
κ4−−→ HK00 + Htpp

HKpp + Htp
κ5−−→ HKp0 + Htpp

Htpp
κ6−−→ Htp

Multi ⇔ κ1 < κ3

Gene transcription network

X1 −−→ X1 + P1 P1 −−→ 0

X2 −−→ X2 + P2 P2 −−→ 0

X2 + P1 −−⇀↽−− X2P1 2P2 −−⇀↽−− P2P2

X1 + P2P2 −−⇀↽−− X1P2P2

Multi for all κ

These networks admit 3 positive steady states for some choice of parameter values. How
can we guarantee that two are asymptotically stable?
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Bistability vs. multistationarity

When can we assert that there is bistability whenever the network has 3 steady states?
How can we “prove” the existence of bistability (symbolically)?

For small networks we often have

• All Hurwitz determinants H1, . . . ,Hs−1 are positive. Then, the steady state is
asymptotically stable if as > 0 and unstable if as < 0.

• It is possible to reduce the equations defining Cκ,c to one
polynomial equation qκ,c(xi ) = 0, such that xj are
positive rational functions of xi .

• For a steady state x∗

sign(as(x
∗)) = sign(q′κ,c(x∗i )).

• “The stability of the steady states alternates with xi”.

• So, if the independent term of qκ,c(xi ) = 0 is positive,
and there are 3 steady states, two are asymptotically
stable and one is unstable.

Torres, Feliu (2021). Symbolic proof of bistability in reaction networks. SIADS
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Bistability

The following networks admit two asymptotically stable steady states and one unstable
steady state:

Hybrid histidine kinase

HK00−→HKp0−→HK0p−→HKpp Htpp−→Htp

HK0p +Htp−→HK00 +HtppHKpp +Htp−→HKp0 +Htpp

Two substrate enzyme catalysis

E + S1−⇀↽−ES1 E + S2−⇀↽−ES2

S2 + ES1−⇀↽−ES1S2

ES1S2−⇀↽−E + P

S1 + ES2−⇀↽−ES1S2

Gene transcription network

X1−→X1 + P1 X2−→X2 + P2 P1−→ 0 P2−→ 0

X2 + P1−⇀↽−X2P1 2P2−⇀↽−P2P2 X1 + P2P2−⇀↽−X1P2P2

1Torres, Feliu (2021). Symbolic proof of bistability in reaction networks. SIADS
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Two stories on the MAPK cascade
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On the origin of oscillations in the MAPK cascade

MAPKKK A Ap

E

F1

MAPKK B Bp Bpp

F2 F2

MAPK C Cp Cpp

F3 F3

Huang, Ferrell model, ‘99
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MAPK cascade. Bistability

MAPKKK A Ap

E

F1

MAPKK B Bp Bpp

F2 F2

MAPK C Cp Cpp

F3 F3

Huang, Ferrell model, ‘99

Markevich, Hoeck, Kholodenko, ‘04
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MAPK cascade. Oscillations

MAPKKK A Ap

E

F1

MAPKK B Bp Bpp

F2 F2

MAPK C Cp Cpp

F3 F3

Suggest: Single-stage bistability is necessary for the oscillatory behavior

Kholodenko, ‘00

Qiao, Nachbar, Kevrekidis, Shvartsman, ‘07
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A single-phosphorylation cascade admits oscillations!

A Ap

E

F1

B Bp

F2

Full model

A + E −−⇀↽−− X1 −−→ Ap + E

Ap + F1 −−⇀↽−− X2 −−→ A + F1

B + Ap −−⇀↽−− Y1 −−→ Bp + Ap

Bp + F2 −−⇀↽−− Y2 −−→ B + F2

We make use of a model reduction tech-

nique.

H4 has 37,235 terms in x and κ with both negative and positive coefficients.
(Torres, Feliu, In preparation)

E Feliu June 2023 34 / 36



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Does the double-phosphorylation cycle admit oscillations?

B + E −−⇀↽−− X1 −−→ Bp + E −−⇀↽−− X2 −−→ Bpp + E

Bpp + F −−⇀↽−− Y2 −−→ Bp + F −−⇀↽−− Y1 −−→ B + F
B Bp Bpp

F F

E E

H1 > 0, . . . ,Hn−2 > 0, Hn−1 and αn have both positive and negative terms.

• Several failed attempts to show the existence of Hopf bifurcations

• If F acts processively, the network has Hopf bifurcations (Conradi, Mincheva, Shiu ’19)

• Reduced systems: irreversible reactions and keep two intermediates. For example

B + E −−→ X1 −−→ Bp + E −−→ Bpp + E

Bpp + F −−→ Y2 −−→ Bp + F −−→ B + F

• After a very detailed analysis of Hi : No reduced network with two intermediates admits a
Hopf bifurcation (Conradi, Feliu, Mincheva (2019)). The same analysis extends to any choice of
three intermediates (not published).

• Conjecture: The double-phosphorylation cycle does not admit Hopf bifurcations.
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Appendix: computational approach
To work with Hurwitz determinants, we do as follows:

• Use N and B to find a matrix of conservation laws W , and the generators of ker(N) ∩ Rn
≥0.

Write the generators as columns of a matrix E .

• Construct the matrix N diag(Eλ)B> diag(h). Find the characteristic polynomial ch(y) of
this matrix and divide it by yn−s . Call the new polynomial p(y), which has degree s.

• Find s = rk(N) and consider the general Hurwitz matrix of size s (see slides above, let the
coefficients of the polynomial be symbols ai for now). Compute the Hurwitz determinants
H1, . . . ,Hs−1 by finding the principal minors of size 1, . . . , s − 1. Substitute the ai by the
actual coefficients of p(y).

• Check the signs of the coefficients of H1, . . . ,Hs−1 and as .

• If all positive, then all steady states are asymptotically stable.
• If Hs−1 has coefficients of both sign and the rest of the polynomials have only positive

coefficients, decide whether there are vertices of the Newton polytope of Hs−1 that
have positive coefficients and some that have negative coefficients. If this is the case,
check the derivative condition to conclude that there are Hopf bifurcations and hence
periodic solutions.

• If as has coefficients of both sign and the rest of the polynomials have only positive
coefficients, decide whether the steady state equations can be reduced to one
polynomial equation (see above).

• By working with a parametrization of the positive steady state variety instead of convex
parameters, you can get parameter conditions for the existence of Hopf bifurcations or
unstable steady states.
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