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1. Exercise list. Monday Week 1

Exercise 1.1 (A calcium transport network). We consider the reaction network

0
κ1−−⇀↽−−
κ2

X1 X1 +X2
κ3−−→ 2X1 X1 +X3

κ4−−⇀↽−−
κ5

X4
κ6−−→ X2 +X3,

where X1 corresponds to calcium in the cytosol, X2 is calcium in the endoplasmatic
reticulum, X3 is an enzyme catalysing the transfer via a Michaelis-Menten mechanism
with complex formation X4.

(i) Write down the associated mass-action system, the stoichiometric matrix and a
basis of the stoichiometric subspace.

(ii) Find equations of the stoichiometric compatibility classes. Is the network con-
servative?

(iii) Show that the positive steady state variety admits a parametrization in one
variable.

(iv) Show that the network is not multistationary.

This network is analysed in the paper [Gatermann, Eiswirth, Sensse, ”Toric ideals
and graph theory to analyze Hopf bifurcations in mass action systems”, Journal of
Symbolic Computation 40(6), 2005, Pages 1361-1382]

Exercise 1.2 (An enzymatic network). We consider the reaction network

S1 + E
κ1−−⇀↽−−
κ2

Y1 S2 + Y1
κ3−−⇀↽−−
κ4

Y2
κ5−−→ P + E, P

κ6−−→ S1,

modeling the transformation of two substrates S1, S2 to a product P in a two-step
catalytic mechanism involving the enzyme E.

(i) Write down the associated mass-action system, the stoichiometric matrix and a
basis of the stoichiometric subspace.

(ii) Find equations of the stoichiometric compatibility classes. Is the network con-
servative?

(iii) Show that at steady state y1, y2 are monomials in s1, s2, e.
(iv) Is the network consistent?

Exercise 1.3. Consider a mass-action system ẋ = f(x) in Rn, with f = (f1, . . . , fn).
Show that, for every ` = 1, . . . , n, there exist polynomials p`, q` ∈ R[x1, . . . , xn] with all
coefficients nonnegative, such that

f`(x) = p`(x)− x` q`(x).

Exercise 1.4 (Linear first integrals). Consider a mass-action network with n species,
stoichiometric subspace S, stoichiometric matrix N and mass-action system ẋ = f(x).
Recall that a linear first integral is a vector λ that satisfies

λ · x(t) =
n∑
i=1

λi xi(t) is constant for all trajectories x(t).

Let
Λ = {λ ∈ Rn : λ is a linear first integral}.

Show that the following statements are true:
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(i) λ ∈ Λ if and only if λ · f(x) =
∑

i λi fi(x) = 0 for all x ∈ Rn.
(ii) S⊥ ⊆ Λ. (Hint: observe that S⊥ = ker(N>)).
(iii) Λ is a real vector space.
(iv) Given an initial condition x0 ∈ Rn

≥0, let x0 be the solution of the mass-action
system ẋ = f(x) defined in an interval I ⊂ R around the origin such that
x0(0) = x0. Then, the points x0(t) for all t ∈ I are contained in the translate

x0 + Λ⊥ = {x0 + v : λ · v = 0, for all λ ∈ Λ}.
(v) Let x0, x

0 and I be as in item (iv). Prove that for any t ∈ I, x0(t) ∈ x(0) + S.

Recall that the linear first integrals arising from S⊥ are called conservation laws
and define the stoichiometric compatibility classes. These are the linear first integrals
that do not depend on the choice of reaction rate constants.

Exercise 1.5. Consider the (linear) mass-action system associated with the mass-
action network

X3
κ1←−− X1

κ2−−⇀↽−−
κ3

X2
κ4−−→ X4.

Prove that dim Λ > dimS⊥ and compute both vector subspaces (where Λ is defined in
Exercise 1.4.)

Note that in this case there are linear first integrals whose coefficients vary with the
reaction rate constants, that is, are not conservation laws

Remark. The equality Λ = S⊥ is tacitly assumed in the literature, but it might
not be true as you proved in this exercise. There is a a combinatorial condition on the
reaction network G due to Feinberg and Horn [Chemical mechanism structure and the
coincidence of the stoichiometric and kinetic subspaces, Arch. Ration. Mech. Anal.
66(1) (1977), 83–97] to ensure that Λ = S⊥: There is a single terminal strongly con-
nected component in each connected component of G.

Exercise 1.6. Provide a reaction network for which the mass-action kinetics system
associated to it is the Lotka-Volterra predator-prey system:

ẋ = αx− β xy, ẏ = δ xy − γ y,
where α, β, γ, δ ∈ R>0. In most biological networks, the reaction network gives insight
about the mechanism. Do you see an interpretation of the reactions here?

Exercise 1.7. In this exercise, you will prove that a model for the specificity of a T -
cell in the immune system, according to McKeithan’s formulation, has a single positive
steady state in each stoichiometric compatibility class (hence is not multistationary).
The mass-action network is as follows:

T +M
a1

// X1
a2
//

b1gg
X2

a2
//

b2
ee

. . .
ai
// Xi

ai+1
//

bi

gg
. . .

aN
// XN

bN

ee

For each species T,M , X1, . . . , XN , we denote its concentration by xT , xM , x1, . . . , xN ,
respectively.
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(i) Describe the associated mass-action system.
(ii) Check that the following are two linearly independent conservation laws: xM +

x1 + · · ·+xN = Mtot and xT +x1 + · · ·+xN = Ttot. Are there any other linearly
independent conservation laws?

(iii) Prove that any steady state x verifies that xi = µi xTxM for any i = 1, . . . , N ,
where µi can be written in terms of the given reaction rate constants.

(iv) Use the conservation law for Ttot to find an expression of xT in terms of xM at
steady state.

(v) Use the conservation law for Mtot to conclude that for each choice of Ttot,Mtot >
0 there exists a unique positive steady state x with xM + x1 + · · ·+ xN = Mtot

and xT + x1 + · · ·+ xN = Ttot.

Hint: Start with the case N = 2. We will give in the course results that will provide
a straightforward proof of this last statement.

Exercise 1.8. Consider the following ODE system:

ẋ1 = −2κ1x
2
1x4 + 2κ3x

4
3

ẋ2 = 3κ1x
2
1x4 − 3κ2x

3
2x

2
4

ẋ3 = 4κ2x
3
2x

2
4 − 4κ3x

4
3

ẋ4 = κ1x
2
1x4 − 2κ2x

3
2x

2
4 + κ3x

4
3.

where x = (x1, . . . , x4) ∈ R4 and κ1, κ2, κ3 ∈ R>0. Check that this system is the
mass-action system associated with the network

4X3 3X2 + 2X4

2X1 +X4

κ3 κ1

κ2

Now, consider the mass-action system associated with the following 9 reactions and
compare it with the one previously obtained.

4X3

X1 + 4X3

3X3

4X3 +X4

2κ3
4κ3

κ3
2X1 +X4

2X1 +X2 +X4

X1 +X4

2X1 + 2X4

2κ1
3κ1

κ1
3X2 + 2X4

3X2 +X3 + 2X4

2X2 + 2X4

3X2 +X4

4κ2
3κ2

2κ2

What can you conclude?
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