MSRI-MPI Leipzig Summer Graduate School 2023

1. Exercise list. Monday Week 1

Exercise 1.1 (A calcium transport network). We consider the reaction network

$$0 \xrightarrow{\kappa_1} X_1 \qquad X_1 + X_2 \xrightarrow{\kappa_3} 2X_1 \qquad X_1 + X_3 \xrightarrow{\kappa_4} X_4 \xrightarrow{\kappa_6} X_2 + X_3,$$

where X_1 corresponds to calcium in the cytosol, X_2 is calcium in the endoplasmatic reticulum, X_3 is an enzyme catalysing the transfer via a Michaelis-Menten mechanism with complex formation X_4 .

- (i) Write down the associated mass-action system, the stoichiometric matrix and a basis of the stoichiometric subspace.
- (ii) Find equations of the stoichiometric compatibility classes. Is the network conservative?
- (iii) Show that the positive steady state variety admits a parametrization in one variable.
- (iv) Show that the network is not multistationary.

This network is analysed in the paper [Gatermann, Eiswirth, Sensse, "Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems", Journal of Symbolic Computation 40(6), 2005, Pages 1361-1382]

Exercise 1.2 (An enzymatic network). We consider the reaction network

$$S_1 + E \xrightarrow{\kappa_1} Y_1$$
 $S_2 + Y_1 \xrightarrow{\kappa_3} Y_2 \xrightarrow{\kappa_5} P + E,$ $P \xrightarrow{\kappa_6} S_1,$

modeling the transformation of two substrates S_1, S_2 to a product P in a two-step catalytic mechanism involving the enzyme E.

- (i) Write down the associated mass-action system, the stoichiometric matrix and a basis of the stoichiometric subspace.
- (ii) Find equations of the stoichiometric compatibility classes. Is the network conservative?
- (iii) Show that at steady state y_1, y_2 are monomials in s_1, s_2, e .
- (iv) Is the network consistent?

Exercise 1.3. Consider a mass-action system $\dot{x} = f(x)$ in \mathbb{R}^n , with $f = (f_1, \dots, f_n)$. Show that, for every $\ell = 1, \dots, n$, there exist polynomials $p_\ell, q_\ell \in \mathbb{R}[x_1, \dots, x_n]$ with all coefficients nonnegative, such that

$$f_{\ell}(x) = p_{\ell}(x) - x_{\ell} q_{\ell}(x).$$

Exercise 1.4 (Linear first integrals). Consider a mass-action network with n species, stoichiometric subspace S, stoichiometric matrix N and mass-action system $\dot{x} = f(x)$. Recall that a **linear first integral** is a vector λ that satisfies

$$\lambda \cdot x(t) = \sum_{i=1}^{n} \lambda_i x_i(t)$$
 is constant for all trajectories $x(t)$.

Let

$$\Lambda = \{ \lambda \in \mathbb{R}^n : \lambda \text{ is a linear first integral} \}.$$

Show that the following statements are true:

- (i) $\lambda \in \Lambda$ if and only if $\lambda \cdot f(x) = \sum_{i} \lambda_{i} f_{i}(x) = 0$ for all $x \in \mathbb{R}^{n}$. (ii) $S^{\perp} \subseteq \Lambda$. (*Hint*: observe that $S^{\perp} = \ker(N^{\top})$).
- (iii) Λ is a real vector space.
- (iv) Given an initial condition $x_0 \in \mathbb{R}^n_{>0}$, let x^0 be the solution of the mass-action system $\dot{x} = f(x)$ defined in an interval $I \subset \mathbb{R}$ around the origin such that $x^{0}(0) = x_{0}$. Then, the points $x^{0}(t)$ for all $t \in I$ are contained in the translate

$$x_0 + \Lambda^{\perp} = \{x_0 + v \colon \lambda \cdot v = 0, \text{ for all } \lambda \in \Lambda\}.$$

(v) Let x_0 , x^0 and I be as in item (iv). Prove that for any $t \in I$, $x^0(t) \in x(0) + S$.

Recall that the linear first integrals arising from S^{\perp} are called **conservation laws** and define the stoichiometric compatibility classes. These are the linear first integrals that do not depend on the choice of reaction rate constants.

Exercise 1.5. Consider the (linear) mass-action system associated with the massaction network

$$X_3 \xleftarrow{\kappa_1} X_1 \xrightarrow{\kappa_2} X_2 \xrightarrow{\kappa_4} X_4.$$

Prove that $\dim \Lambda > \dim S^{\perp}$ and compute both vector subspaces (where Λ is defined in Exercise 1.4.)

Note that in this case there are linear first integrals whose coefficients vary with the reaction rate constants, that is, are not conservation laws

The equality $\Lambda = S^{\perp}$ is tacitly assumed in the literature, but it might not be true as you proved in this exercise. There is a a combinatorial condition on the reaction network G due to Feinberg and Horn [Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces, Arch. Ration. Mech. Anal. 66(1) (1977), 83–97] to ensure that $\Lambda = S^{\perp}$: There is a single terminal strongly connected component in each connected component of G.

Exercise 1.6. Provide a reaction network for which the mass-action kinetics system associated to it is the Lotka-Volterra predator-prev system:

$$\dot{x} = \alpha x - \beta xy, \quad \dot{y} = \delta xy - \gamma y,$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}_{>0}$. In most biological networks, the reaction network gives insight about the mechanism. Do you see an interpretation of the reactions here?

Exercise 1.7. In this exercise, you will prove that a model for the specificity of a Tcell in the immune system, according to McKeithan's formulation, has a single positive steady state in each stoichiometric compatibility class (hence is not multistationary). The mass-action network is as follows:

For each species T, M, X_1, \ldots, X_N , we denote its concentration by $x_T, x_M, x_1, \ldots, x_N$, respectively.

MSRI-MPI Leipzig Summer Graduate School 2023

- (i) Describe the associated mass-action system.
- (ii) Check that the following are two linearly independent conservation laws: $x_M + x_1 + \cdots + x_N = M_{\text{tot}}$ and $x_T + x_1 + \cdots + x_N = T_{\text{tot}}$. Are there any other linearly independent conservation laws?
- (iii) Prove that any steady state x verifies that $x_i = \mu_i x_T x_M$ for any i = 1, ..., N, where μ_i can be written in terms of the given reaction rate constants.
- (iv) Use the conservation law for T_{tot} to find an expression of x_T in terms of x_M at steady state.
- (v) Use the conservation law for M_{tot} to conclude that for each choice of T_{tot} , $M_{\text{tot}} > 0$ there exists a unique positive steady state x with $x_M + x_1 + \cdots + x_N = M_{\text{tot}}$ and $x_T + x_1 + \cdots + x_N = T_{\text{tot}}$.

Hint: Start with the case N = 2. We will give in the course results that will provide a straightforward proof of this last statement.

Exercise 1.8. Consider the following ODE system:

$$\dot{x}_1 = -2\kappa_1 x_1^2 x_4 + 2\kappa_3 x_3^4$$

$$\dot{x}_2 = 3\kappa_1 x_1^2 x_4 - 3\kappa_2 x_2^3 x_4^2$$

$$\dot{x}_3 = 4\kappa_2 x_2^3 x_4^2 - 4\kappa_3 x_3^4$$

$$\dot{x}_4 = \kappa_1 x_1^2 x_4 - 2\kappa_2 x_2^3 x_4^2 + \kappa_3 x_3^4.$$

where $x = (x_1, ..., x_4) \in \mathbb{R}^4$ and $\kappa_1, \kappa_2, \kappa_3 \in \mathbb{R}_{>0}$. Check that this system is the mass-action system associated with the network

Now, consider the mass-action system associated with the following 9 reactions and compare it with the one previously obtained.

What can you conclude?