
Online Learning
Lecture 1

Nicolò Cesa-Bianchi
Università degli Studi di Milano

Contents

1. Online learning, online convex optimization, Follow-the-Leader (FTL)

2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
3. FRTL analysis, regret bounds for OGD and EG
4. Experts, bandits, and feedback graphs
5. Additional topics (parameter-free algorithms, dynamic regret, . . .)
I We do some (short) proofs

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 1 / 16

Contents

1. Online learning, online convex optimization, Follow-the-Leader (FTL)
2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization

3. FRTL analysis, regret bounds for OGD and EG
4. Experts, bandits, and feedback graphs
5. Additional topics (parameter-free algorithms, dynamic regret, . . .)
I We do some (short) proofs

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 1 / 16

Contents

1. Online learning, online convex optimization, Follow-the-Leader (FTL)
2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
3. FRTL analysis, regret bounds for OGD and EG

4. Experts, bandits, and feedback graphs
5. Additional topics (parameter-free algorithms, dynamic regret, . . .)
I We do some (short) proofs

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 1 / 16

Contents

1. Online learning, online convex optimization, Follow-the-Leader (FTL)
2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
3. FRTL analysis, regret bounds for OGD and EG
4. Experts, bandits, and feedback graphs

5. Additional topics (parameter-free algorithms, dynamic regret, . . .)
I We do some (short) proofs

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 1 / 16

Contents

1. Online learning, online convex optimization, Follow-the-Leader (FTL)
2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
3. FRTL analysis, regret bounds for OGD and EG
4. Experts, bandits, and feedback graphs
5. Additional topics (parameter-free algorithms, dynamic regret, . . .)

I We do some (short) proofs

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 1 / 16

Contents

1. Online learning, online convex optimization, Follow-the-Leader (FTL)
2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
3. FRTL analysis, regret bounds for OGD and EG
4. Experts, bandits, and feedback graphs
5. Additional topics (parameter-free algorithms, dynamic regret, . . .)
I We do some (short) proofs

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 1 / 16

Online learning

I Data streams are ubiquitous: sensors, markets, user interactions

I New data is being generated all the time
I The train-test model of statistical learning is not well suited for learning on data streams
I Online learning algorithms incrementally adjust their models after observing each new

data point

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 2 / 16

Online learning

I Data streams are ubiquitous: sensors, markets, user interactions
I New data is being generated all the time

I The train-test model of statistical learning is not well suited for learning on data streams
I Online learning algorithms incrementally adjust their models after observing each new

data point

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 2 / 16

Online learning

I Data streams are ubiquitous: sensors, markets, user interactions
I New data is being generated all the time
I The train-test model of statistical learning is not well suited for learning on data streams

I Online learning algorithms incrementally adjust their models after observing each new
data point

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 2 / 16

Online learning

I Data streams are ubiquitous: sensors, markets, user interactions
I New data is being generated all the time
I The train-test model of statistical learning is not well suited for learning on data streams
I Online learning algorithms incrementally adjust their models after observing each new

data point

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 2 / 16

Some history

I Online learning model formalized by Nick Littlestone and Manfred Warmuth
(Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)

I Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)
I Similar ideas also independently emerged in game theory and information theory:

I Tom Cover
I Adrew Barron
I Rakesh Vohra and Dean Foster
I Sergiu Hart and Andreu Mas-Colell

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 3 / 16

Some history

I Online learning model formalized by Nick Littlestone and Manfred Warmuth
(Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)

I Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)

I Similar ideas also independently emerged in game theory and information theory:
I Tom Cover
I Adrew Barron
I Rakesh Vohra and Dean Foster
I Sergiu Hart and Andreu Mas-Colell

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 3 / 16

Some history

I Online learning model formalized by Nick Littlestone and Manfred Warmuth
(Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)

I Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)
I Similar ideas also independently emerged in game theory and information theory:

I Tom Cover
I Adrew Barron
I Rakesh Vohra and Dean Foster
I Sergiu Hart and Andreu Mas-Colell

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 3 / 16

The online learning protocol

The algorithm starts with a default model h1 ∈ H

For t = 1, 2, . . .

1. The current model ht ∈ H is tested on the next data point (xt, yt) in the stream
2. A is charged with loss `

(
yt, ht(xt)

)
3. ht+1 ∈ H is computed based on ht and (xt, yt)

I Computation of ht+1 relies on local information
I No stochastic assumptions on the generation of the data stream!

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 4 / 16

The online learning protocol

The algorithm starts with a default model h1 ∈ H

For t = 1, 2, . . .

1. The current model ht ∈ H is tested on the next data point (xt, yt) in the stream

2. A is charged with loss `
(
yt, ht(xt)

)
3. ht+1 ∈ H is computed based on ht and (xt, yt)

I Computation of ht+1 relies on local information
I No stochastic assumptions on the generation of the data stream!

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 4 / 16

The online learning protocol

The algorithm starts with a default model h1 ∈ H

For t = 1, 2, . . .

1. The current model ht ∈ H is tested on the next data point (xt, yt) in the stream
2. A is charged with loss `

(
yt, ht(xt)

)

3. ht+1 ∈ H is computed based on ht and (xt, yt)

I Computation of ht+1 relies on local information
I No stochastic assumptions on the generation of the data stream!

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 4 / 16

The online learning protocol

The algorithm starts with a default model h1 ∈ H

For t = 1, 2, . . .

1. The current model ht ∈ H is tested on the next data point (xt, yt) in the stream
2. A is charged with loss `

(
yt, ht(xt)

)
3. ht+1 ∈ H is computed based on ht and (xt, yt)

I Computation of ht+1 relies on local information
I No stochastic assumptions on the generation of the data stream!

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 4 / 16

The online learning protocol

The algorithm starts with a default model h1 ∈ H

For t = 1, 2, . . .

1. The current model ht ∈ H is tested on the next data point (xt, yt) in the stream
2. A is charged with loss `

(
yt, ht(xt)

)
3. ht+1 ∈ H is computed based on ht and (xt, yt)

I Computation of ht+1 relies on local information

I No stochastic assumptions on the generation of the data stream!

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 4 / 16

The online learning protocol

The algorithm starts with a default model h1 ∈ H

For t = 1, 2, . . .

1. The current model ht ∈ H is tested on the next data point (xt, yt) in the stream
2. A is charged with loss `

(
yt, ht(xt)

)
3. ht+1 ∈ H is computed based on ht and (xt, yt)

I Computation of ht+1 relies on local information
I No stochastic assumptions on the generation of the data stream!

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 4 / 16

Regret
Sequential risk
Given a convex loss ` and a stream (x1, y1), (x2, y2), . . ., the sequential risk of an online
learner A generating models h1, h2, . . . is

T∑
t=1

`
(
yt, ht(xt)

)

Regret: RT =
T∑

t=1
`
(
yt, ht(xt)

)
− inf

h∈H

T∑
t=1

`
(
yt, h(xt)

)

I A sequential counterpart to the estimation error in statistical learning
`D(hS)− inf

h∈H
`D(h) where `D(h) = E

[
`
(
Y, h(X)

)]
is the statistical risk of h

I Can we ensure RT

T
→ 0 as T →∞ for all streams?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 5 / 16

Regret
Sequential risk
Given a convex loss ` and a stream (x1, y1), (x2, y2), . . ., the sequential risk of an online
learner A generating models h1, h2, . . . is

T∑
t=1

`
(
yt, ht(xt)

)

Regret: RT =
T∑

t=1
`
(
yt, ht(xt)

)
− inf

h∈H

T∑
t=1

`
(
yt, h(xt)

)

I A sequential counterpart to the estimation error in statistical learning
`D(hS)− inf

h∈H
`D(h) where `D(h) = E

[
`
(
Y, h(X)

)]
is the statistical risk of h

I Can we ensure RT

T
→ 0 as T →∞ for all streams?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 5 / 16

Regret
Sequential risk
Given a convex loss ` and a stream (x1, y1), (x2, y2), . . ., the sequential risk of an online
learner A generating models h1, h2, . . . is

T∑
t=1

`
(
yt, ht(xt)

)

Regret: RT =
T∑

t=1
`
(
yt, ht(xt)

)
− inf

h∈H

T∑
t=1

`
(
yt, h(xt)

)
I A sequential counterpart to the estimation error in statistical learning

`D(hS)− inf
h∈H

`D(h) where `D(h) = E
[
`
(
Y, h(X)

)]
is the statistical risk of h

I Can we ensure RT

T
→ 0 as T →∞ for all streams?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 5 / 16

Regret
Sequential risk
Given a convex loss ` and a stream (x1, y1), (x2, y2), . . ., the sequential risk of an online
learner A generating models h1, h2, . . . is

T∑
t=1

`
(
yt, ht(xt)

)

Regret: RT =
T∑

t=1
`
(
yt, ht(xt)

)
− inf

h∈H

T∑
t=1

`
(
yt, h(xt)

)
I A sequential counterpart to the estimation error in statistical learning

`D(hS)− inf
h∈H

`D(h) where `D(h) = E
[
`
(
Y, h(X)

)]
is the statistical risk of h

I Can we ensure RT

T
→ 0 as T →∞ for all streams?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 5 / 16

Online learning as a repeated game

Learning to play a game (1956)
I Theory of repeated games pioneered by James Hannan and David Blackwell

I Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 6 / 16

Online learning as a repeated game

Learning to play a game (1956)
I Theory of repeated games pioneered by James Hannan and David Blackwell
I Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 6 / 16

Zero-sum 2-person games played more than once

1 2 . . . M

1 `(1, 1) `(1, 2) . . .
2 `(2, 1) `(2, 2) . . .
...

...
... . . .

N

N ×M known loss matrix
I Row player (player)

has N actions
I Column player (opponent)

has M actions

For each game round t = 1, 2, . . .

I Player chooses action it and opponent chooses action yt

I The player suffers loss `(it, yt) (= gain of opponent)

I Player can learn from opponent’s history of past choices y1, . . . , yt−1

I Replace opponent choices with sequence of loss functions, e.g., `t = `
(
yt, ·

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 7 / 16

Zero-sum 2-person games played more than once

1 2 . . . M

1 `(1, 1) `(1, 2) . . .
2 `(2, 1) `(2, 2) . . .
...

...
... . . .

N

N ×M known loss matrix
I Row player (player)

has N actions
I Column player (opponent)

has M actions
For each game round t = 1, 2, . . .

I Player chooses action it and opponent chooses action yt

I The player suffers loss `(it, yt) (= gain of opponent)

I Player can learn from opponent’s history of past choices y1, . . . , yt−1

I Replace opponent choices with sequence of loss functions, e.g., `t = `
(
yt, ·

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 7 / 16

Zero-sum 2-person games played more than once

1 2 . . . M

1 `(1, 1) `(1, 2) . . .
2 `(2, 1) `(2, 2) . . .
...

...
... . . .

N

N ×M known loss matrix
I Row player (player)

has N actions
I Column player (opponent)

has M actions
For each game round t = 1, 2, . . .

I Player chooses action it and opponent chooses action yt

I The player suffers loss `(it, yt) (= gain of opponent)

I Player can learn from opponent’s history of past choices y1, . . . , yt−1

I Replace opponent choices with sequence of loss functions, e.g., `t = `
(
yt, ·

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 7 / 16

Zero-sum 2-person games played more than once

1 2 . . . M

1 `(1, 1) `(1, 2) . . .
2 `(2, 1) `(2, 2) . . .
...

...
... . . .

N

N ×M known loss matrix
I Row player (player)

has N actions
I Column player (opponent)

has M actions
For each game round t = 1, 2, . . .

I Player chooses action it and opponent chooses action yt

I The player suffers loss `(it, yt) (= gain of opponent)

I Player can learn from opponent’s history of past choices y1, . . . , yt−1

I Replace opponent choices with sequence of loss functions, e.g., `t = `
(
yt, ·

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 7 / 16

Zero-sum 2-person games played more than once

1 2 . . . M

1 `(1, 1) `(1, 2) . . .
2 `(2, 1) `(2, 2) . . .
...

...
... . . .

N

N ×M known loss matrix
I Row player (player)

has N actions
I Column player (opponent)

has M actions
For each game round t = 1, 2, . . .

I Player chooses action it and opponent chooses action yt

I The player suffers loss `(it, yt) (= gain of opponent)

I Player can learn from opponent’s history of past choices y1, . . . , yt−1

I Replace opponent choices with sequence of loss functions, e.g., `t = `
(
yt, ·

)
Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 7 / 16

Online convex optimization

Model space V ⊆ Rd convex, closed, and nonempty

For t = 1, 2, . . .

1. The current ht ∈ H is tested on the next data point (xt, yt) in the stream
2. A is charged with loss `

(
yt, ht(xt)

)
3. ht+1 is computed based on ht and (xt, yt)

Regret

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 8 / 16

Online convex optimization

Model space V ⊆ Rd convex, closed, and nonempty

For t = 1, 2, . . .

1. The current wt ∈ V is tested on the next convex loss function `t in the stream
2. A is charged with loss `

(
yt, ht(xt)

)
3. ht+1 is computed based on ht and (xt, yt)

Regret

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 8 / 16

Online convex optimization

Model space V ⊆ Rd convex, closed, and nonempty

For t = 1, 2, . . .

1. The current wt ∈ V is tested on the next convex loss function `t in the stream
2. A is charged loss `t(wt)
3. ht+1 is computed based on ht and (xt, yt)

Regret

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 8 / 16

Online convex optimization

Model space V ⊆ Rd convex, closed, and nonempty

For t = 1, 2, . . .

1. The current wt ∈ V is tested on the next convex loss function `t in the stream
2. A is charged loss `t(wt)
3. wt+1 is computed based on wt and feedback information

(e.g., ∇`t(wt), first-order oracle)

Regret

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 8 / 16

Online convex optimization

Model space V ⊆ Rd convex, closed, and nonempty

For t = 1, 2, . . .

1. The current wt ∈ V is tested on the next convex loss function `t in the stream
2. A is charged loss `t(wt)
3. wt+1 is computed based on wt and feedback information

(e.g., ∇`t(wt), first-order oracle)

Regret

RT (u) =
T∑

t=1
`t(wt)−

T∑
t=1

`t(u) u ∈ V

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 8 / 16

Online convex optimization

Model space V ⊆ Rd convex, closed, and nonempty

For t = 1, 2, . . .

1. The current wt ∈ V is tested on the next convex loss function `t in the stream
2. A is charged loss `t(wt)
3. wt+1 is computed based on wt and feedback information

(e.g., ∇`t(wt), first-order oracle)

Regret

RT =
T∑

t=1
`t(wt)− inf

u∈V

T∑
t=1

`t(u)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 8 / 16

Stochastic optimization

Online convex optimization can be used to minimize the training error

inf
w∈V

m∑
i=1

`
(
w, (xi, yi)

)
`
(
w, (xi, yi)

)
measures the (convex) loss of w on the training example (xi, yi)

I When m is large we cannot afford to spend more than constant time on each data point
I Stochastic optimization:

1. Draw (X1, Y1), (X2, Y2) . . . uniformly i.i.d. from the training set
2. Run online algorithm on the sequence of loss functions `t = `(·, (Xt, Yt))

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 9 / 16

Stochastic optimization

Online convex optimization can be used to minimize the training error

inf
w∈V

m∑
i=1

`
(
w, (xi, yi)

)
`
(
w, (xi, yi)

)
measures the (convex) loss of w on the training example (xi, yi)

I When m is large we cannot afford to spend more than constant time on each data point

I Stochastic optimization:

1. Draw (X1, Y1), (X2, Y2) . . . uniformly i.i.d. from the training set
2. Run online algorithm on the sequence of loss functions `t = `(·, (Xt, Yt))

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 9 / 16

Stochastic optimization

Online convex optimization can be used to minimize the training error

inf
w∈V

m∑
i=1

`
(
w, (xi, yi)

)
`
(
w, (xi, yi)

)
measures the (convex) loss of w on the training example (xi, yi)

I When m is large we cannot afford to spend more than constant time on each data point
I Stochastic optimization:

1. Draw (X1, Y1), (X2, Y2) . . . uniformly i.i.d. from the training set
2. Run online algorithm on the sequence of loss functions `t = `(·, (Xt, Yt))

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 9 / 16

Stochastic optimization

Online convex optimization can be used to minimize the training error

inf
w∈V

m∑
i=1

`
(
w, (xi, yi)

)
`
(
w, (xi, yi)

)
measures the (convex) loss of w on the training example (xi, yi)

I When m is large we cannot afford to spend more than constant time on each data point
I Stochastic optimization:

1. Draw (X1, Y1), (X2, Y2) . . . uniformly i.i.d. from the training set

2. Run online algorithm on the sequence of loss functions `t = `(·, (Xt, Yt))

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 9 / 16

Stochastic optimization

Online convex optimization can be used to minimize the training error

inf
w∈V

m∑
i=1

`
(
w, (xi, yi)

)
`
(
w, (xi, yi)

)
measures the (convex) loss of w on the training example (xi, yi)

I When m is large we cannot afford to spend more than constant time on each data point
I Stochastic optimization:

1. Draw (X1, Y1), (X2, Y2) . . . uniformly i.i.d. from the training set
2. Run online algorithm on the sequence of loss functions `t = `(·, (Xt, Yt))

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 9 / 16

Follow the Leader
I Predict using the best model on previous data: wt+1 = argmin

w∈V

t∑
s=1

`s(w)

I An online version of empirical risk minimization
FTL Lemma

RT =
T∑

t=1
`t(wt)− inf

w∈V

T∑
t=1

`t(w)

=
T∑

t=1

(
`t(wt)− `t(wT +1)

)

=
T∑

t=1

(
Lt(wt)− Lt−1(wt)

)
− LT (wT +1) (Lt = `1 + · · ·+ `t, L0 ≡ 0)

=
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 10 / 16

Follow the Leader
I Predict using the best model on previous data: wt+1 = argmin

w∈V

t∑
s=1

`s(w)

I An online version of empirical risk minimization

FTL Lemma

RT =
T∑

t=1
`t(wt)− inf

w∈V

T∑
t=1

`t(w)

=
T∑

t=1

(
`t(wt)− `t(wT +1)

)

=
T∑

t=1

(
Lt(wt)− Lt−1(wt)

)
− LT (wT +1) (Lt = `1 + · · ·+ `t, L0 ≡ 0)

=
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 10 / 16

Follow the Leader
I Predict using the best model on previous data: wt+1 = argmin

w∈V

t∑
s=1

`s(w)

I An online version of empirical risk minimization
FTL Lemma

RT =
T∑

t=1
`t(wt)− inf

w∈V

T∑
t=1

`t(w)

=
T∑

t=1

(
`t(wt)− `t(wT +1)

)

=
T∑

t=1

(
Lt(wt)− Lt−1(wt)

)
− LT (wT +1) (Lt = `1 + · · ·+ `t, L0 ≡ 0)

=
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 10 / 16

Follow the Leader
I Predict using the best model on previous data: wt+1 = argmin

w∈V

t∑
s=1

`s(w)

I An online version of empirical risk minimization
FTL Lemma

RT =
T∑

t=1
`t(wt)− inf

w∈V

T∑
t=1

`t(w)

=
T∑

t=1

(
`t(wt)− `t(wT +1)

)

=
T∑

t=1

(
Lt(wt)− Lt−1(wt)

)
− LT (wT +1) (Lt = `1 + · · ·+ `t, L0 ≡ 0)

=
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 10 / 16

Follow the Leader
I Predict using the best model on previous data: wt+1 = argmin

w∈V

t∑
s=1

`s(w)

I An online version of empirical risk minimization
FTL Lemma

RT =
T∑

t=1
`t(wt)− inf

w∈V

T∑
t=1

`t(w)

=
T∑

t=1

(
`t(wt)− `t(wT +1)

)

=
T∑

t=1

(
Lt(wt)− Lt−1(wt)

)
− LT (wT +1) (Lt = `1 + · · ·+ `t, L0 ≡ 0)

=
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 10 / 16

Follow the Leader
I Predict using the best model on previous data: wt+1 = argmin

w∈V

t∑
s=1

`s(w)

I An online version of empirical risk minimization
FTL Lemma

RT =
T∑

t=1
`t(wt)− inf

w∈V

T∑
t=1

`t(w)

=
T∑

t=1

(
`t(wt)− `t(wT +1)

)

=
T∑

t=1

(
Lt(wt)− Lt−1(wt)

)
− LT (wT +1) (Lt = `1 + · · ·+ `t, L0 ≡ 0)

=
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)
Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 10 / 16

Strongly convex losses

I A differentiable ` : Rd → R is µ-strongly convex on V with respect to ‖·‖ if
`(u) ≥ `(v) +∇`(v)>(u− v) + µ

2 ‖u− v‖2 u,v ∈ V

I If ` is twice differentiable, then µ-strong convexity is equivalent to requiring that smallest
eigenvalue of the Hessian matrix be at least µ

I The squared Euclidean norm 1
2 ‖·‖

2
2 is 1-strongly convex w.r.t. ‖·‖2

I The negative entropy
∑

i pi ln pi is 1-strongly convex w.r.t. ‖·‖1 over the probability
simplex

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 11 / 16

Strongly convex losses

I A differentiable ` : Rd → R is µ-strongly convex on V with respect to ‖·‖ if
`(u) ≥ `(v) +∇`(v)>(u− v) + µ

2 ‖u− v‖2 u,v ∈ V
I If ` is twice differentiable, then µ-strong convexity is equivalent to requiring that smallest

eigenvalue of the Hessian matrix be at least µ

I The squared Euclidean norm 1
2 ‖·‖

2
2 is 1-strongly convex w.r.t. ‖·‖2

I The negative entropy
∑

i pi ln pi is 1-strongly convex w.r.t. ‖·‖1 over the probability
simplex

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 11 / 16

Strongly convex losses

I A differentiable ` : Rd → R is µ-strongly convex on V with respect to ‖·‖ if
`(u) ≥ `(v) +∇`(v)>(u− v) + µ

2 ‖u− v‖2 u,v ∈ V
I If ` is twice differentiable, then µ-strong convexity is equivalent to requiring that smallest

eigenvalue of the Hessian matrix be at least µ
I The squared Euclidean norm 1

2 ‖·‖
2
2 is 1-strongly convex w.r.t. ‖·‖2

I The negative entropy
∑

i pi ln pi is 1-strongly convex w.r.t. ‖·‖1 over the probability
simplex

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 11 / 16

Strongly convex losses

I A differentiable ` : Rd → R is µ-strongly convex on V with respect to ‖·‖ if
`(u) ≥ `(v) +∇`(v)>(u− v) + µ

2 ‖u− v‖2 u,v ∈ V
I If ` is twice differentiable, then µ-strong convexity is equivalent to requiring that smallest

eigenvalue of the Hessian matrix be at least µ
I The squared Euclidean norm 1

2 ‖·‖
2
2 is 1-strongly convex w.r.t. ‖·‖2

I The negative entropy
∑

i pi ln pi is 1-strongly convex w.r.t. ‖·‖1 over the probability
simplex

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 11 / 16

First-order optimality for convex functions

Let f : V→ R be a differentiable convex function.

w∗ = argmin
w∈V

f(w) iff ∇f(w∗)>
(
w −w∗

)
≥ 0 w ∈ V

No descent direction inside V

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 12 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖

I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)

≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T

I FTL prediction: wt+1 = argmin
w∈V

Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)

≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)

≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)

≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)

≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)
≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)

≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)
≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)
≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

Stability of FTL with strongly convex losses
I For all t ≥ 1, `t is µ-strongly convex and G-Lipschitz with respect to ‖·‖
I Lt = `1 + · · ·+ `t is µt-strongly convex with respect to ‖·‖ for all t = 1, . . . , T
I FTL prediction: wt+1 = argmin

w∈V
Lt(w)

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µt

2 ‖wt −wt+1‖2 ≥
µt

2 ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) = Lt−1(wt)− Lt−1(wt+1) + `t(wt)− `t(wt+1)
≤ `t(wt)− `t(wt+1) (because wt minimizes Lt−1)
≤ G ‖wt −wt+1‖

I Then we have ‖wt −wt+1‖ ≤
2G
µt

I Implying Lt(wt)− Lt(wt+1) ≤ 2G2

µt
Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 13 / 16

FTL regret bound

RT =
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

≤
T∑

t=1

2G2

µt

≤ 2G2

µ

(
1 + lnT

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 14 / 16

FTL regret bound

RT =
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

≤
T∑

t=1

2G2

µt

≤ 2G2

µ

(
1 + lnT

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 14 / 16

FTL regret bound

RT =
T∑

t=1

(
Lt(wt)− Lt(wt+1)

)

≤
T∑

t=1

2G2

µt

≤ 2G2

µ

(
1 + lnT

)

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 14 / 16

A lower bound for FTL
I What happens if losses have no curvature?

I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]

I `1(w) = w
2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!

I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

A lower bound for FTL
I What happens if losses have no curvature?
I V = [−1, 1]
I `1(w) = w

2

I for t > 1, `t(w) =
{

w t is odd
−w otherwise

I
t∑

s=1
`s(w) =

{
w/2 t is odd
−w/2 otherwise

I FTL prediction at time t+ 1 is wt+1 = argmin
w∈[−1,1]

t∑
s=1

`s(w) =
{
−1 t is odd
1 otherwise

I `t+1(wt+1) = 1 for all t > 1, FTL regret grows linearly!
I Best prediction is w = 0, zero loss

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 15 / 16

Follow the Regularized Leader

I If losses lack curvature, FTL is unstable

I We can introduce curvature using a regularizer ψ : Rd → R

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: SVM objective function: argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How does the regularizer affect regret?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 16 / 16

Follow the Regularized Leader

I If losses lack curvature, FTL is unstable
I We can introduce curvature using a regularizer ψ : Rd → R

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: SVM objective function: argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How does the regularizer affect regret?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 16 / 16

Follow the Regularized Leader

I If losses lack curvature, FTL is unstable
I We can introduce curvature using a regularizer ψ : Rd → R

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: SVM objective function: argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How does the regularizer affect regret?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 16 / 16

Follow the Regularized Leader

I If losses lack curvature, FTL is unstable
I We can introduce curvature using a regularizer ψ : Rd → R

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: SVM objective function: argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How does the regularizer affect regret?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 16 / 16

Follow the Regularized Leader

I If losses lack curvature, FTL is unstable
I We can introduce curvature using a regularizer ψ : Rd → R

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: SVM objective function: argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How does the regularizer affect regret?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 16 / 16

Follow the Regularized Leader

I If losses lack curvature, FTL is unstable
I We can introduce curvature using a regularizer ψ : Rd → R

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: SVM objective function: argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How does the regularizer affect regret?

Nicolò Cesa-Bianchi Lecture 1 Mathematics of Machine Learning 16 / 16

