Online Learning Lecture 1

Nicolò Cesa-Bianchi Università degli Studi di Milano

1. Online learning, online convex optimization, Follow-the-Leader (FTL)

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG
- 4. Experts, bandits, and feedback graphs

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG
- 4. Experts, bandits, and feedback graphs
- 5. Additional topics (parameter-free algorithms, dynamic regret, . . .)

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG
- 4. Experts, bandits, and feedback graphs
- 5. Additional topics (parameter-free algorithms, dynamic regret, . . .)
- \triangleright We do some (short) proofs

 \triangleright Data streams are ubiquitous: sensors, markets, user interactions

- \triangleright Data streams are ubiquitous: sensors, markets, user interactions
- \blacktriangleright New data is being generated all the time

- \triangleright Data streams are ubiquitous: sensors, markets, user interactions
- \blacktriangleright New data is being generated all the time
- In The train-test model of statistical learning is not well suited for learning on data streams

- \triangleright Data streams are ubiquitous: sensors, markets, user interactions
- I New data is being generated all the time
- The train-test model of statistical learning is not well suited for learning on data streams
- Online learning algorithms incrementally adjust their models after observing each new data point

Some history

• Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)

Some history

- ▶ Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)
- ▶ Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)

Some history

- ▶ Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)
- I Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)
- \triangleright Similar ideas also independently emerged in game theory and information theory:
	- \blacktriangleright Tom Cover
	- Adrew Barron
	- ▶ Rakesh Vohra and Dean Foster
	- **In Sergiu Hart and Andreu Mas-Colell**

The algorithm starts with a default model $h_1 \in \mathcal{H}$

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For $t = 1, 2, ...$

 $1.$ The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- $1.$ The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- $1.$ The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- $1.$ The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)
- \triangleright Computation of h_{t+1} relies on local information

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- $1.$ The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)
- \triangleright Computation of h_{t+1} relies on local information
- \triangleright No stochastic assumptions on the generation of the data stream!

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner *A* generating models h_1, h_2, \ldots is

$$
\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))
$$

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner *A* generating models h_1, h_2, \ldots is

$$
\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))
$$

$$
\text{Regret:} \qquad R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))
$$

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner *A* generating models h_1, h_2, \ldots is

$$
\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))
$$

$$
\text{Regret:} \quad R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))
$$

 \triangleright A sequential counterpart to the estimation error in statistical learning

 $\ell_{\cal D}(h_S) - \inf_{h\in\mathcal{H}}\ell_{\cal D}(h)$ where $\ell_{\cal D}(h) = \mathbb{E}\Big[\ell(Y,h(X))\Big]$ is the statistical risk of h

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner *A* generating models h_1, h_2, \ldots is

$$
\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))
$$

$$
\text{Regret:} \qquad R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))
$$

 \triangleright A sequential counterpart to the estimation error in statistical learning

 $\ell_{\cal D}(h_S) - \inf_{h\in\mathcal{H}}\ell_{\cal D}(h)$ where $\ell_{\cal D}(h) = \mathbb{E}\Big[\ell(Y,h(X))\Big]$ is the statistical risk of h

 \blacktriangleright Can we ensure $\displaystyle{\frac{R_T}{T} \to 0}$ as $T \to \infty$ for all streams?

Online learning as a repeated game

Learning to play a game (1956)

▶ Theory of repeated games pioneered by James Hannan and David Blackwell

Nicolò Cesa-Bianchi **Mathematics of Machine Learning** 6/16

Online learning as a repeated game

Learning to play a game (1956)

- ▶ Theory of repeated games pioneered by James Hannan and David Blackwell
- \triangleright Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)

$N \times M$ known loss matrix

- \triangleright Row player (player) has *N* actions
- ▶ Column player (opponent) has *M* actions

For each game round $t = 1, 2, \ldots$

$N \times M$ known loss matrix

- \blacktriangleright Row player (player) has *N* actions
- ▶ Column player (opponent) has *M* actions
- \blacktriangleright Player chooses action i_t and opponent chooses action y_t

For each game round $t = 1, 2, \ldots$

$N \times M$ known loss matrix

- \blacktriangleright Row player (player) has *N* actions
- **In Column player (opponent)** has *M* actions
- \blacktriangleright Player chooses action i_t and opponent chooses action y_t
- \blacktriangleright The player suffers loss $\ell(i_t, y_t)$

For each game round $t = 1, 2, \ldots$

- $N \times M$ known loss matrix
	- \blacktriangleright Row player (player) has *N* actions
	- ▶ Column player (opponent) has *M* actions
- \blacktriangleright Player chooses action i_t and opponent chooses action y_t
- \blacktriangleright The player suffers loss $\ell(i_t, y_t)$
- I Player can learn from opponent's history of past choices *y*1*, . . . , yt*−¹

 $($ = gain of opponent)

For each game round $t = 1, 2, \ldots$

$N \times M$ known loss matrix

- \blacktriangleright Row player (player) has *N* actions
- ▶ Column player (opponent) has *M* actions
- \blacktriangleright Player chooses action i_t and opponent chooses action y_t
- \blacktriangleright The player suffers loss $\ell(i_t, y_t)$
- I Player can learn from opponent's history of past choices *y*1*, . . . , yt*−¹
- \blacktriangleright Replace opponent choices with sequence of loss functions, e.g., $\boxed{\ell_t = \ell(y_t, \cdot)}$

 $($ = gain of opponent)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

- $1.$ The current $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

- 1. The current $w_t \in V$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

- 1. The current $w_t \in V$ is tested on the next convex loss function ℓ_t in the stream
- 2. *A* is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

- 1. The current $\boldsymbol{w}_t \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. *A* is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and feedback information (e.g., $\nabla \ell_t(\boldsymbol{w}_t)$, first-order oracle)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For $t = 1, 2, ...$

- 1. The current $w_t \in V$ is tested on the next convex loss function ℓ_t in the stream
- 2. *A* is charged loss $\ell_t(\mathbf{w}_t)$
- 3. w_{t+1} is computed based on w_t and feedback information $(e.g., \nabla \ell_t(\boldsymbol{w}_t))$, first-order oracle)

Regret

$$
R_T(\boldsymbol{u}) = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \sum_{t=1}^T \ell_t(\boldsymbol{u})
$$

 $\bm{u} \in \mathbb{V}$
Online convex optimization

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For $t = 1, 2, ...$

- 1. The current $w_t \in V$ is tested on the next convex loss function ℓ_t in the stream
- 2. *A* is charged loss $\ell_t(\mathbf{w}_t)$
- 3. w_{t+1} is computed based on w_t and feedback information $(e.g., \nabla \ell_t(\boldsymbol{w}_t))$, first-order oracle)

Regret

$$
R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{u} \in \mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{u})
$$

Online convex optimization can be used to minimize the training error

inf *w*∈V X*m i*=1 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$

Online convex optimization can be used to minimize the training error

inf *w*∈V X*m i*=1 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$

 $\ell(\bm{w},(\bm{x}_i,y_i))$ measures the (convex) loss of \bm{w} on the training example (\bm{x}_i,y_i)

 \triangleright When m is large we cannot afford to spend more than constant time on each data point

Online convex optimization can be used to minimize the training error

inf *w*∈V X*m i*=1 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$

- \triangleright When m is large we cannot afford to spend more than constant time on each data point
- Stochastic optimization:

Online convex optimization can be used to minimize the training error

inf *w*∈V X*m i*=1 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$

- I When *m* is large we cannot afford to spend more than constant time on each data point
- \blacktriangleright Stochastic optimization:
	- 1. Draw $(X_1, Y_1), (X_2, Y_2) \ldots$ uniformly i.i.d. from the training set

Online convex optimization can be used to minimize the training error

inf *w*∈V X*m i*=1 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$

- When *m* is large we cannot afford to spend more than constant time on each data point
- \blacktriangleright Stochastic optimization:
	- 1. Draw $(X_1, Y_1), (X_2, Y_2) \ldots$ uniformly i.i.d. from the training set
	- 2. Run online algorithm on the sequence of loss functions $\ell_t = \ell(\cdot, (\mathbf{X}_t, Y_t))$

Pedict using the best model on previous data:

- **Pedict using the best model on previous data:**
- \triangleright An online version of empirical risk minimization

$$
\boldsymbol{w}_{t+1} = \operatornamewithlimits{argmin}_{\boldsymbol{w} \in \mathbb{V}} \sum_{s=1}^{t} \ell_s(\boldsymbol{w})
$$

- **Pedict using the best model on previous data:**
- \triangleright An online version of empirical risk minimization FTL Lemma

$$
R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{w}\in\mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{w})
$$

$$
\boldsymbol{w}_{t+1} = \operatornamewithlimits{argmin}_{\boldsymbol{w} \in \mathbb{V}} \sum_{s=1}^{t} \ell_s(\boldsymbol{w})
$$

- **Pedict using the best model on previous data:**
- \triangleright An online version of empirical risk minimization FTL Lemma

$$
R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{w})
$$

=
$$
\sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{T+1}) \right)
$$

$$
\boldsymbol{w}_{t+1} = \operatornamewithlimits{argmin}_{\boldsymbol{w} \in \mathbb{V}} \sum_{s=1}^{t} \ell_s(\boldsymbol{w})
$$

- **Pedict using the best model on previous data:**
- \triangleright An online version of empirical risk minimization FTL Lemma

T

$$
R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{w})
$$

=
$$
\sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{T+1}) \right)
$$

=
$$
\sum_{t=1}^T \left(L_t(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_t) \right) - L_T(\boldsymbol{w}_{T+1})
$$

T

$$
\boldsymbol{w}_{t+1} = \operatornamewithlimits{argmin}_{\boldsymbol{w} \in \mathbb{V}} \sum_{s=1}^{t} \ell_s(\boldsymbol{w})
$$

- **Pedict using the best model on previous data:**
- \triangleright An online version of empirical risk minimization FTL Lemma

$$
R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{w})
$$

=
$$
\sum_{t=1}^T (\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{T+1}))
$$

=
$$
\sum_{t=1}^T (L_t(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_t)) - L_T(\boldsymbol{w}_{T+1})
$$

=
$$
\sum_{t=1}^T (L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}))
$$

$$
\boldsymbol{w}_{t+1} = \operatornamewithlimits{argmin}_{\boldsymbol{w} \in \mathbb{V}} \sum_{s=1}^{t} \ell_s(\boldsymbol{w})
$$

A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on $\mathbb {V}$ with respect to $\| \cdot \|$ if $\ell(\boldsymbol{u}) \geq \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^{\top}(\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \left\| \boldsymbol{u} - \boldsymbol{v} \right\|^2 \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$

- A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on $\mathbb {V}$ with respect to $\| \cdot \|$ if $\ell(\boldsymbol{u}) \geq \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^{\top} (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2}\left\| \boldsymbol{u} - \boldsymbol{v} \right\|^2$ $u,v\in\mathbb{V}$
- If ℓ is twice differentiable, then μ -strong convexity is equivalent to requiring that smallest eigenvalue of the Hessian matrix be at least *µ*

- A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on $\mathbb {V}$ with respect to $\| \cdot \|$ if $\ell(\boldsymbol{u}) \geq \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^{\top} (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2}\left\| \boldsymbol{u} - \boldsymbol{v} \right\|^2$ $u,v \in \mathbb{V}$
- If ℓ is twice differentiable, then μ -strong convexity is equivalent to requiring that smallest eigenvalue of the Hessian matrix be at least *µ*
- \blacktriangleright The squared Euclidean norm $\frac{1}{2}\left\|\cdot\right\|_2^2$ is 1-strongly convex w.r.t. $\left\|\cdot\right\|_2$

- A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on $\mathbb {V}$ with respect to $\| \cdot \|$ if $\ell(\boldsymbol{u}) \geq \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^{\top} (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2}\left\| \boldsymbol{u} - \boldsymbol{v} \right\|^2$ $u,v \in \mathbb{V}$
- If ℓ is twice differentiable, then μ -strong convexity is equivalent to requiring that smallest eigenvalue of the Hessian matrix be at least *µ*
- \blacktriangleright The squared Euclidean norm $\frac{1}{2}\left\|\cdot\right\|_2^2$ is 1-strongly convex w.r.t. $\left\|\cdot\right\|_2$
- The negative entropy $\sum_i p_i \ln p_i$ is 1-strongly convex w.r.t. $\left\| \cdot \right\|_1$ over the probability simplex

First-order optimality for convex functions

Let $f: \mathbb{V} \to \mathbb{R}$ be a differentiable convex function.

 $\mathbf{w}^* = \operatorname{argmin} f(\mathbf{w})$ iff $\nabla f(\mathbf{w}^*)^{\top}(\mathbf{w} - \mathbf{w}^*)$ *w*∈V $\boldsymbol{w}\in\mathbb{V}$

No descent direction inside V

► For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \geq \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2 \geq \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2
$$

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \geq \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2 \geq \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2
$$

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) = L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \geq \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2 \geq \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2
$$

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) = L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$

 $\leq \ell_t(\mathbf{w}_t) - \ell_t(\mathbf{w}_{t+1})$ (because \mathbf{w}_t minimizes L_{t-1})

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \geq \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2 \geq \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2
$$

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) = L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$

$$
\leq \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$
 (because \boldsymbol{w}_t minimizes L_{t-1})

$$
\leq G ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||
$$

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \geq \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2 \geq \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2
$$

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) = L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$

$$
\leq \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) \qquad \text{(because } \boldsymbol{w}_t \text{ minimizes } L_{t-1})
$$

$$
\leq G \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|
$$

$$
\blacktriangleright \text{ Then we have } \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\| \leq \frac{2G}{\mu t}
$$

- **►** For all $t \geq 1$, ℓ_t is μ -strongly convex and G -Lipschitz with respect to $\|\cdot\|$
- \blacktriangleright $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\lVert \cdot \rVert$ for all $t = 1, \ldots, T$
- FTL prediction: $w_{t+1} = \operatorname{argmin} L_t(w)$ *w*∈V

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \geq \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2 \geq \frac{\mu t}{2} ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||^2
$$

$$
L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) = L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$

$$
\leq \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})
$$
 (because \boldsymbol{w}_t minimizes L_{t-1})

$$
\leq G ||\boldsymbol{w}_t - \boldsymbol{w}_{t+1}||
$$

► Then we have
$$
||\mathbf{w}_t - \mathbf{w}_{t+1}|| \le \frac{2G}{\mu t}
$$

▶ Implying $L_t(\mathbf{w}_t) - L_t(\mathbf{w}_{t+1}) \le \frac{2G^2}{\mu t}$

FTL regret bound

$$
R_T = \sum_{t=1}^T \left(L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \right)
$$

FTL regret bound

$$
R_T = \sum_{t=1}^T \left(L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \right)
$$

$$
\leq \sum_{t=1}^T \frac{2G^2}{\mu t}
$$

FTL regret bound

$$
R_T = \sum_{t=1}^T \left(L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \right)
$$

$$
\leq \sum_{t=1}^T \frac{2G^2}{\mu t}
$$

$$
\leq \frac{2G^2}{\mu} (1 + \ln T)
$$

Nicolò Cesa-Bianchi **Mathematics of Machine Learning** 14/16

 \blacktriangleright What happens if losses have no curvature?

- \blacktriangleright What happens if losses have no curvature?
- $\triangleright \mathbb{V} = [-1, 1]$

- \triangleright What happens if losses have no curvature?
- $\triangleright \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ell_1(w) = \frac{w}{2}$

- \triangleright What happens if losses have no curvature?
- $\triangleright \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ell_1(w) = \frac{w}{2}$

• for
$$
t > 1
$$
, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ -w & \text{otherwise} \end{cases}$

- \triangleright What happens if losses have no curvature?
- $\triangleright \triangleright \triangleright (1,1)$
- $\blacktriangleright \ell_1(w) = \frac{w}{2}$
- \triangleright for $t > 1$, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ w & \text{otherwise} \end{cases}$ −*w* otherwise \blacktriangleright *t s*=1 $\ell_s(w) = \begin{cases} w/2 & t \text{ is odd} \\ w/2 & \text{otherwise} \end{cases}$ −*w/*2 otherwise

- \triangleright What happens if losses have no curvature?
- $\triangleright \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ell_1(w) = \frac{w}{2}$
- \triangleright for $t > 1$, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ w & \text{otherwise} \end{cases}$ −*w* otherwise \blacktriangleright *t s*=1 $\ell_s(w) = \begin{cases} w/2 & t \text{ is odd} \\ w/2 & \text{otherwise} \end{cases}$ −*w/*2 otherwise
- **FTL** prediction at time $t + 1$ is $w_{t+1} = \text{argmin}$ *w*∈[−1*,*1] \sum *t s*=1

 $\ell_s(w) = \begin{cases} -1 \\ 1 \end{cases}$ t is odd 1 otherwise

- \triangleright What happens if losses have no curvature?
- $\triangleright \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ell_1(w) = \frac{w}{2}$
- \triangleright for $t > 1$, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ w & \text{otherwise} \end{cases}$ −*w* otherwise \blacktriangleright *t s*=1 $\ell_s(w) = \begin{cases} w/2 & t \text{ is odd} \\ w/2 & \text{otherwise} \end{cases}$ −*w/*2 otherwise
- **FTL** prediction at time $t + 1$ is $w_{t+1} = \text{argmin}$ *w*∈[−1*,*1] \sum *t s*=1 $\ell_s(w) = \begin{cases} -1 \\ 1 \end{cases}$ t is odd
- $\blacktriangleright \ell_{t+1}(w_{t+1}) = 1$ for all $t > 1$, FTL regret grows linearly!

 1 otherwise
A lower bound for FTL

- \triangleright What happens if losses have no curvature?
- $\triangleright \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ell_1(w) = \frac{w}{2}$
- \triangleright for $t > 1$, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ w & \text{otherwise} \end{cases}$ −*w* otherwise \blacktriangleright *t s*=1 $\ell_s(w) = \begin{cases} w/2 & t \text{ is odd} \\ w/2 & \text{otherwise} \end{cases}$ −*w/*2 otherwise
- **FTL** prediction at time $t + 1$ is $w_{t+1} = \text{argmin}$ *w*∈[−1*,*1] \sum *t s*=1 $\ell_s(w) = \begin{cases} -1 \\ 1 \end{cases}$ t is odd
- $\blacktriangleright \ell_{t+1}(w_{t+1}) = 1$ for all $t > 1$, FTL regret grows linearly!
- Best prediction is $w = 0$, zero loss

 1 otherwise

 \blacktriangleright If losses lack curvature, FTL is unstable

- \blacktriangleright If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}^d$

 \blacktriangleright If losses lack curvature, FTL is unstable

 \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}^d$

▶ $w_{t+1} = \operatorname*{argmin}_{w \in \mathbb{V}}$ $\psi(w) + \sum$ *t s*=1 $\ell_{s}(\boldsymbol{w})$

- \blacktriangleright If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}^d$
- ▶ $w_{t+1} = \operatorname*{argmin}_{w \in \mathbb{V}}$ $\psi(w) + \sum$ *t s*=1 $\ell_{s}(\boldsymbol{w})$
- Example: SVM objective function: $\mathop{\rm argmin}$ *w*∈V *λ* $\frac{\lambda}{2}\left\|\boldsymbol{w}\right\|_{2}^{2}+\frac{1}{m}$ *m* X*m t*=1 $\ell_t(\boldsymbol{w})$

- \blacktriangleright If losses lack curvature. FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}^d$
- ▶ $w_{t+1} = \operatorname*{argmin}_{w \in \mathbb{V}}$ $\psi(w) + \sum$ *t s*=1 $\ell_{s}(\boldsymbol{w})$
- Example: SVM objective function: $\mathop{\rm argmin}$ *w*∈V *λ* $\frac{\lambda}{2}\left\|\boldsymbol{w}\right\|_{2}^{2}+\frac{1}{m}$ *m* X*m t*=1 $\ell_t(\boldsymbol{w})$
- If ℓ_t are all convex, this is equivalent to FTL over *λ*-strongly convex losses $\frac{\lambda}{2} \|\cdot\|_2^2 + \ell_t$

- \blacktriangleright If losses lack curvature. FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}^d$
- ▶ $w_{t+1} = \operatorname*{argmin}_{w \in \mathbb{V}}$ $\psi(w) + \sum$ *t s*=1 $\ell_{s}(\boldsymbol{w})$
- Example: SVM objective function: $\mathop{\rm argmin}$ *w*∈V *λ* $\frac{\lambda}{2}\left\|\boldsymbol{w}\right\|_{2}^{2}+\frac{1}{m}$ *m* X*m t*=1 $\ell_t(\boldsymbol{w})$
- If ℓ_t are all convex, this is equivalent to FTL over *λ*-strongly convex losses $\frac{\lambda}{2} \|\cdot\|_2^2 + \ell_t$
- \blacktriangleright How does the regularizer affect regret?