Online Learning Lecture 1

Nicolò Cesa-Bianchi Università degli Studi di Milano

1. Online learning, online convex optimization, Follow-the-Leader (FTL)

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG
- 4. Experts, bandits, and feedback graphs

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG
- 4. Experts, bandits, and feedback graphs
- 5. Additional topics (parameter-free algorithms, dynamic regret, ...)

- 1. Online learning, online convex optimization, Follow-the-Leader (FTL)
- 2. Follow-the-Regularized-Leader (FTRL), Euclidean (OGD) and entropic (EG) regularization
- 3. FRTL analysis, regret bounds for OGD and EG
- 4. Experts, bandits, and feedback graphs
- 5. Additional topics (parameter-free algorithms, dynamic regret, ...)
- We do some (short) proofs

Data streams are ubiquitous: sensors, markets, user interactions

2/16

- Data streams are ubiquitous: sensors, markets, user interactions
- New data is being generated all the time

- Data streams are ubiquitous: sensors, markets, user interactions
- New data is being generated all the time
- > The train-test model of statistical learning is not well suited for learning on data streams

- Data streams are ubiquitous: sensors, markets, user interactions
- New data is being generated all the time
- The train-test model of statistical learning is not well suited for learning on data streams
- Online learning algorithms incrementally adjust their models after observing each new data point

Some history

 Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)

Some history

- Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)
- Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)

Some history

- Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)
- Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)
- Similar ideas also independently emerged in game theory and information theory:
 - Tom Cover
 - Adrew Barron
 - Rakesh Vohra and Dean Foster
 - Sergiu Hart and Andreu Mas-Colell

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For t = 1, 2, ...

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For t = 1, 2, ...

1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For t = 1, 2, ...

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For t = 1, 2, ...

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (\boldsymbol{x}_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For t = 1, 2, ...

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point $(m{x}_t, y_t)$ in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)
- Computation of h_{t+1} relies on local information

Mathematics of Machine Learning

4/16

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For t = 1, 2, ...

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point $(m{x}_t, y_t)$ in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)
- Computation of h_{t+1} relies on local information
- No stochastic assumptions on the generation of the data stream!

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner A generating models h_1, h_2, \ldots is

$$\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))$$

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner A generating models h_1, h_2, \ldots is

$$\sum_{t=1}^T \ell(y_t, h_t(oldsymbol{x}_t))$$

Regret:
$$R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))$$

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner A generating models h_1, h_2, \ldots is

$$\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))$$

Regret:
$$R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))$$

A sequential counterpart to the estimation error in statistical learning

 $\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h)$ where $\ell_{\mathcal{D}}(h) = \mathbb{E}\Big[\ell(Y, h(X))\Big]$ is the statistical risk of h

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of an online learner A generating models h_1, h_2, \ldots is

$$\sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t))$$

$$\mathsf{Regret:} \quad R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))$$

A sequential counterpart to the estimation error in statistical learning

 $\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h)$ where $\ell_{\mathcal{D}}(h) = \mathbb{E}\Big[\ell(Y, h(X))\Big]$ is the statistical risk of h

• Can we ensure $\frac{R_T}{T} \to 0$ as $T \to \infty$ for all streams?

Nicolò Cesa-Bianchi

Online learning as a repeated game

Learning to play a game (1956)

Theory of repeated games pioneered by James Hannan and David Blackwell

Nicolò Cesa-Bianchi

Mathematics of Machine Learning

6/16

Online learning as a repeated game

Learning to play a game (1956)

- Theory of repeated games pioneered by James Hannan and David Blackwell
- Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)

6/16

$N\times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round $t = 1, 2, \ldots$

Player chooses action i_t and opponent chooses action y_t

$N\times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round $t = 1, 2, \ldots$

Player chooses action i_t and opponent chooses action y_t

• The player suffers loss $\ell(i_t, y_t)$

$N\times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

(= gain of opponent) Mathematics of Machine Learning 7/16

For each game round $t = 1, 2, \ldots$

Player chooses action i_t and opponent chooses action y_t

- The player suffers loss $\ell(i_t, y_t)$
- ▶ Player can learn from opponent's history of past choices y_1, \ldots, y_{t-1}

$N\times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

(= gain of opponent)

For each game round $t = 1, 2, \ldots$

Player chooses action i_t and opponent chooses action y_t

- The player suffers loss $\ell(i_t, y_t)$
- ▶ Player can learn from opponent's history of past choices y_1, \ldots, y_{t-1}
- ▶ Replace opponent choices with sequence of loss functions, e.g., $\ell_t = \ell(y_t, \cdot)$

$N\times M$ known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

(= gain of opponent)

7/16

Model space $\mathbb{V}\subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $h_t \in \mathcal{H}$ is tested on the next data point $(oldsymbol{x}_t, y_t)$ in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V}\subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $oldsymbol{w}_t \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V}\subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $oldsymbol{w}_t \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$

Nicolò Cesa-Bianchi

3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $w_t \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and feedback information (e.g., $\nabla \ell_t(w_t)$, first-order oracle)

Mathematics of Machine Learning

8/16

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $w_t \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and feedback information (e.g., $\nabla \ell_t(w_t)$, first-order oracle)

Regret

$$R_T(oldsymbol{u}) = \sum_{t=1}^T \ell_t(oldsymbol{w}_t) - \sum_{t=1}^T \ell_t(oldsymbol{u})$$

Nicolò Cesa-Bianchi

 $oldsymbol{u} \in \mathbb{V}$
Online convex optimization

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $w_t \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and feedback information (e.g., $\nabla \ell_t(w_t)$, first-order oracle)

Regret

$$R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{u} \in \mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{u})$$

Online convex optimization can be used to minimize the training error

 $\inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{i=1}^m \ell\big(\boldsymbol{w}, (\boldsymbol{x}_i, y_i)\big)$

Online convex optimization can be used to minimize the training error

 $\inf_{oldsymbol{w}\in\mathbb{V}}\sum_{i=1}^m\ellig(oldsymbol{w},(oldsymbol{x}_i,y_i)ig)$

 $\ell(m{w},(m{x}_i,y_i))$ measures the (convex) loss of $m{w}$ on the training example $(m{x}_i,y_i)$

 \blacktriangleright When m is large we cannot afford to spend more than constant time on each data point

Online convex optimization can be used to minimize the training error

 $\inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{i=1}^m \ell\big(\boldsymbol{w}, (\boldsymbol{x}_i, y_i)\big)$

- \blacktriangleright When m is large we cannot afford to spend more than constant time on each data point
- Stochastic optimization:

Online convex optimization can be used to minimize the training error

 $\inf_{oldsymbol{w}\in\mathbb{V}}\sum_{i=1}^m\ellig(oldsymbol{w},(oldsymbol{x}_i,y_i)ig)$

- \blacktriangleright When m is large we cannot afford to spend more than constant time on each data point
- Stochastic optimization:
 - 1. Draw $(X_1, Y_1), (X_2, Y_2) \dots$ uniformly i.i.d. from the training set

Online convex optimization can be used to minimize the training error

 $\inf_{oldsymbol{w}\in\mathbb{V}}\sum_{i=1}^m\ellig(oldsymbol{w},(oldsymbol{x}_i,y_i)ig)$

- \blacktriangleright When m is large we cannot afford to spend more than constant time on each data point
- Stochastic optimization:
 - 1. Draw $(X_1, Y_1), (X_2, Y_2) \dots$ uniformly i.i.d. from the training set
 - 2. Run online algorithm on the sequence of loss functions $\ell_t = \ell(\cdot, (X_t, Y_t))$

Predict using the best model on previous data:

- Predict using the best model on previous data:
- An online version of empirical risk minimization

$$oldsymbol{w}_{t+1} = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{V}} \sum_{s=1}^t \ell_s(oldsymbol{w})$$

- Predict using the best model on previous data:
- ► An online version of empirical risk minimization FTL Lemma

$$R_T = \sum_{t=1}^T \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^T \ell_t(\boldsymbol{w})$$

$$oldsymbol{w}_{t+1} = rgmin_{oldsymbol{w}\in\mathbb{V}}\sum_{s=1}^t \ell_s(oldsymbol{w})$$

- Predict using the best model on previous data:
- ► An online version of empirical risk minimization FTL Lemma

$$egin{aligned} R_T &= \sum_{t=1}^T \ell_t(oldsymbol{w}_t) - \inf_{oldsymbol{w} \in \mathbb{V}} \sum_{t=1}^T \ell_t(oldsymbol{w}) \ &= \sum_{t=1}^T \left(\ell_t(oldsymbol{w}_t) - \ell_t(oldsymbol{w}_{T+1})
ight) \end{aligned}$$

$$oldsymbol{w}_{t+1} = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{V}} \sum_{s=1}^t \ell_s(oldsymbol{w})$$

- Predict using the best model on previous data:
- An online version of empirical risk minimization
 FTL Lemma

-

$$egin{aligned} &R_T = \sum_{t=1}^T \ell_t(oldsymbol{w}_t) - \inf_{oldsymbol{w} \in \mathbb{V}} \sum_{t=1}^T \ell_t(oldsymbol{w}) \ &= \sum_{t=1}^T \left(\ell_t(oldsymbol{w}_t) - \ell_t(oldsymbol{w}_{T+1})
ight) \ &= \sum_{t=1}^T \left(L_t(oldsymbol{w}_t) - L_{t-1}(oldsymbol{w}_t)
ight) - L_T(oldsymbol{w}_{T+1}) \end{aligned}$$

-

$$oldsymbol{w}_{t+1} = rgmin_{oldsymbol{w}\in\mathbb{V}}\sum_{s=1}^t \ell_s(oldsymbol{w})$$

- Predict using the best model on previous data:
- An online version of empirical risk minimization
 FTL Lemma

$$R_{T} = \sum_{t=1}^{T} \ell_{t}(\boldsymbol{w}_{t}) - \inf_{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{w})$$

= $\sum_{t=1}^{T} \left(\ell_{t}(\boldsymbol{w}_{t}) - \ell_{t}(\boldsymbol{w}_{T+1}) \right)$
= $\sum_{t=1}^{T} \left(L_{t}(\boldsymbol{w}_{t}) - L_{t-1}(\boldsymbol{w}_{t}) \right) - L_{T}(\boldsymbol{w}_{T+1})$
= $\sum_{t=1}^{T} \left(L_{t}(\boldsymbol{w}_{t}) - L_{t}(\boldsymbol{w}_{t+1}) \right)$

$$oldsymbol{w}_{t+1} = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{V}} \sum_{s=1}^t \ell_s(oldsymbol{w})$$

Nicolò Cesa-Bianchi

► A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if $\ell(\boldsymbol{u}) \ge \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^\top (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2 \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$

- ▶ A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if $\ell(\boldsymbol{u}) \ge \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^\top (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2 \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$
- ▶ If ℓ is twice differentiable, then μ -strong convexity is equivalent to requiring that smallest eigenvalue of the Hessian matrix be at least μ

- ► A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if $\ell(\boldsymbol{u}) \ge \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^\top (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2 \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$
- ► If ℓ is twice differentiable, then μ -strong convexity is equivalent to requiring that smallest eigenvalue of the Hessian matrix be at least μ
- ▶ The squared Euclidean norm $\frac{1}{2} \|\cdot\|_2^2$ is 1-strongly convex w.r.t. $\|\cdot\|_2$

- ► A differentiable $\ell : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if $\ell(\boldsymbol{u}) \ge \ell(\boldsymbol{v}) + \nabla \ell(\boldsymbol{v})^\top (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2 \qquad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$
- ▶ If ℓ is twice differentiable, then μ -strong convexity is equivalent to requiring that smallest eigenvalue of the Hessian matrix be at least μ
- ► The squared Euclidean norm $\frac{1}{2} \|\cdot\|_2^2$ is 1-strongly convex w.r.t. $\|\cdot\|_2$
- ► The negative entropy $\sum_i p_i \ln p_i$ is 1-strongly convex w.r.t. $\|\cdot\|_1$ over the probability simplex

First-order optimality for convex functions

Let $f : \mathbb{V} \to \mathbb{R}$ be a differentiable convex function.

 $\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} f(\boldsymbol{w}) \quad \text{iff} \quad \nabla f(\boldsymbol{w}^*)^\top (\boldsymbol{w} - \boldsymbol{w}^*) \ge 0 \qquad \boldsymbol{w} \in \mathbb{V}$

No descent direction inside $\mathbb V$

For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- $L_t = \ell_1 + \dots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- $L_t = \ell_1 + \dots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- ▶ $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \ge \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2 \ge \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2$$

- ▶ For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- ▶ $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \ge \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2 \ge \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2$$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) = L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1})$$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- ▶ $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \ge
abla L_t(\boldsymbol{w}_{t+1})^{ op} (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + rac{\mu t}{2} \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \|^2 \ge rac{\mu t}{2} \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \|^2$$

$$\begin{split} L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) &= L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) \\ &\leq \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) & \text{(because } \boldsymbol{w}_t \text{ minimizes } L_{t-1}) \end{split}$$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- ▶ $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \ge \nabla L_t(\boldsymbol{w}_{t+1})^\top (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2 \ge \frac{\mu t}{2} \|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\|^2$$

$$egin{aligned} &L_t(oldsymbol{w}_t) - L_t(oldsymbol{w}_{t+1}) &= L_{t-1}(oldsymbol{w}_t) - L_{t-1}(oldsymbol{w}_{t+1}) + \ell_t(oldsymbol{w}_t) - \ell_t(oldsymbol{w}_{t+1}) & (ext{because }oldsymbol{w}_t ext{ minimizes } L_{t-1}) \ &\leq G \, \|oldsymbol{w}_t - oldsymbol{w}_{t+1}\| \end{aligned}$$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- ▶ $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \ge \nabla L_t(\boldsymbol{w}_{t+1})^{\top} (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + rac{\mu t}{2} \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \|^2 \ge rac{\mu t}{2} \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \|^2$$

$$\begin{split} L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) &= L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) \\ &\leq \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) \qquad (\text{because } \boldsymbol{w}_t \text{ minimizes } L_{t-1}) \\ &\leq G \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \| \end{split}$$

• Then we have
$$\|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\| \leq \frac{2G}{\mu t}$$

- For all $t \ge 1$, ℓ_t is μ -strongly convex and G-Lipschitz with respect to $\|\cdot\|$
- ▶ $L_t = \ell_1 + \cdots + \ell_t$ is μt -strongly convex with respect to $\|\cdot\|$ for all $t = 1, \dots, T$
- FTL prediction: $w_{t+1} = \underset{w \in \mathbb{V}}{\operatorname{argmin}} L_t(w)$

$$L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \ge \nabla L_t(\boldsymbol{w}_{t+1})^{\top} (\boldsymbol{w}_t - \boldsymbol{w}_{t+1}) + rac{\mu t}{2} \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \|^2 \ge rac{\mu t}{2} \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \|^2$$

$$\begin{split} L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) &= L_{t-1}(\boldsymbol{w}_t) - L_{t-1}(\boldsymbol{w}_{t+1}) + \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) \\ &\leq \ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{w}_{t+1}) \qquad (\text{because } \boldsymbol{w}_t \text{ minimizes } L_{t-1}) \\ &\leq G \| \boldsymbol{w}_t - \boldsymbol{w}_{t+1} \| \end{split}$$

► Then we have
$$\|\boldsymbol{w}_t - \boldsymbol{w}_{t+1}\| \le \frac{2G}{\mu t}$$

► Implying $L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \le \frac{2G^2}{\mu t}$

FTL regret bound

$$R_T = \sum_{t=1}^T \left(L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \right)$$

FTL regret bound

$$egin{aligned} R_T &= \sum_{t=1}^T \left(L_t(oldsymbol{w}_t) - L_t(oldsymbol{w}_{t+1})
ight) \ &\leq \sum_{t=1}^T rac{2G^2}{\mu t} \end{aligned}$$

14/16

Nicolò Cesa-Bianchi

Lecture 1

FTL regret bound

$$R_T = \sum_{t=1}^T \left(L_t(\boldsymbol{w}_t) - L_t(\boldsymbol{w}_{t+1}) \right)$$
$$\leq \sum_{t=1}^T \frac{2G^2}{\mu t}$$
$$\leq \frac{2G^2}{\mu} (1 + \ln T)$$

Mathematics of Machine Learning 14/16

Nicolò Cesa-Bianchi

▶ What happens if losses have no curvature?

- ▶ What happens if losses have no curvature?
- $\blacktriangleright \ \mathbb{V} = [-1, 1]$

- What happens if losses have no curvature?
- $\blacktriangleright \ \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ \ell_1(w) = \frac{w}{2}$

- What happens if losses have no curvature?
- $\blacktriangleright \ \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ \ell_1(w) = \frac{w}{2}$

▶ for
$$t > 1$$
, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ -w & \text{otherwise} \end{cases}$

A lower bound for FTL

- What happens if losses have no curvature?
- $\blacktriangleright \ \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ \ell_1(w) = \frac{w}{2}$

A lower bound for FTL

- What happens if losses have no curvature?
- \blacktriangleright $\mathbb{V} = [-1, 1]$
- \blacktriangleright $\ell_1(w) = \frac{w}{2}$
- ▶ for t > 1, $\ell_t(w) = \begin{cases} w & t \text{ is odd} \\ -w & \text{otherwise} \end{cases}$ $\blacktriangleright \sum_{i=1}^{t} \ell_s(w) = \begin{cases} w/2 & t \text{ is odd} \\ -w/2 & \text{otherwise} \end{cases}$
- FTL prediction at time t + 1 is $w_{t+1} = \underset{w \in [-1,1]}{\operatorname{argmin}} \sum_{s=1}^{t} \ell_s(w) = \begin{cases} -1 & t \text{ is odd} \\ 1 & \text{otherwise} \end{cases}$

A lower bound for FTL

- What happens if losses have no curvature?
- $\blacktriangleright \ \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ \ell_1(w) = \frac{w}{2}$
- FTL prediction at time t + 1 is $w_{t+1} = \underset{w \in [-1,1]}{\operatorname{argmin}} \sum_{s=1}^{t} \ell_s(w) = \begin{cases} -1 & t \text{ is odd} \\ 1 & \text{otherwise} \end{cases}$
- ▶ $l_{t+1}(w_{t+1}) = 1$ for all t > 1, FTL regret grows linearly!
A lower bound for FTL

- What happens if losses have no curvature?
- $\blacktriangleright \ \mathbb{V} = [-1, 1]$
- $\blacktriangleright \ \ell_1(w) = \frac{w}{2}$
- FTL prediction at time t + 1 is $w_{t+1} = \underset{w \in [-1,1]}{\operatorname{argmin}} \sum_{s=1}^{t} \ell_s(w) = \begin{cases} -1 & t \text{ is odd} \\ 1 & \text{otherwise} \end{cases}$
- ▶ $l_{t+1}(w_{t+1}) = 1$ for all t > 1, FTL regret grows linearly!
- Best prediction is w = 0, zero loss

► If losses lack curvature, FTL is unstable

- ▶ If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi:\mathbb{R}^d\to\mathbb{R}$

If losses lack curvature, FTL is unstable

 \blacktriangleright We can introduce curvature using a regularizer $\psi:\mathbb{R}^d\to\mathbb{R}$

 $\blacktriangleright \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{s} \ell_s(\boldsymbol{w})$

- If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi:\mathbb{R}^d\to\mathbb{R}$
- $\blacktriangleright \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{l} \ell_s(\boldsymbol{w})$
- Example: SVM objective function: $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|_{2}^{2} + \frac{1}{m} \sum_{t=1}^{m} \ell_{t}(\boldsymbol{w})$

- If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}$
- $\blacktriangleright \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{\circ} \ell_s(\boldsymbol{w})$
- Example: SVM objective function: $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|_{2}^{2} + \frac{1}{m} \sum_{t=1}^{m} \ell_{t}(\boldsymbol{w})$
- If ℓ_t are all convex, this is equivalent to FTL over λ -strongly convex losses $\frac{\lambda}{2} \|\cdot\|_2^2 + \ell_t$

- ► If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a regularizer $\psi: \mathbb{R}^d \to \mathbb{R}$
- $\blacktriangleright \ \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{s} \ell_s(\boldsymbol{w})$
- Example: SVM objective function: $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|_{2}^{2} + \frac{1}{m} \sum_{t=1}^{m} \ell_{t}(\boldsymbol{w})$
- If ℓ_t are all convex, this is equivalent to FTL over λ -strongly convex losses $\frac{\lambda}{2} \|\cdot\|_2^2 + \ell_t$
- How does the regularizer affect regret?