Online Learning
Lecture 5

Nicold Cesa-Bianchi

Universita degli Studi di Milano



Exploiting curvature of the losses

Nicolo Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 1/13



Exploiting curvature of the losses

> Convex and G-Lipschitz losses: FTRL with ¢ = 1 ||-||5 achieves Ry = O(GDV/T)

Nicolo Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 1/13



Exploiting curvature of the losses

> Convex and G-Lipschitz losses: FTRL with ¢ = 1 ||-||5 achieves Ry = O(GDV/T)
» Strongly convex and G-Lipschitz losses: FTL achieves Ry = O(G%InT)

Nicolo Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 1/13



Exploiting curvature of the losses

> Convex and G-Lipschitz losses: FTRL with ¢ = 1 ||-||5 achieves Ry = O(GDV/T)
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Strong convexity in the direction of the gradient (exp-concavity)
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Some losses satisfying the condition (in a bounded domain)

1 T

> Square loss {(w) = 5 (w 'z — y)2
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Exploiting curvature of the losses

> Convex and G-Lipschitz losses: FTRL with ¢ = 1 ||-||5 achieves Ry = O(GDV/T)
» Strongly convex and G-Lipschitz losses: FTL achieves Ry = O(G?InT)

Strong convexity in the direction of the gradient (exp-concavity)

A
() > Gw) + 9] (w—w) + 5 Ju—wll s wwev
where g, = V/{;(w) and w3, = w Mw

Some losses satisfying the condition (in a bounded domain)

=lw'z—y)*

> Logistic loss £(w) = In (1 + exp(—yw "x))

» Square loss /(w)
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Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

t
Wil = argminZZS(w) (FTL on a surrogate loss)
weV s=1

o~

A
Et(w) = Kt(wlf) + g:(w — wt) + 5 ||'LU — ’U)tuztg;r g; = vgt(’UJt)
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Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

t
Wil = argminZZS(w) (FTL on a surrogate loss)

weV s=1

o~

A
Et(w) = Kt(wlf) + g:(w — wt) + 5 ||'LU — ’U)tuztg;r g; = vgt(’UJt)

Properties:
> E(u) < l(u) for all w € V
> Oy(wy) = b (wy)

T T
» Regret bound: Rp(u) < Z Uy(wy) — ZAt(u) =O(GDdInT)
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Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

Wiy = argmmZé (FTL on a surrogate loss)
weV s=1

o~

A
Et(’lﬂ) = Kt(wlf) + g:(w — wt) + 5 ||'lU — ’UJtH;tg;r g; = Vﬁt(wt)

Properties:

> E(u) < l(u) for all w € V
> Zt('wt) =l (wy)

T
> Regret bound: ) < ZZ (wy) Zﬁt O(GDdInT)

» This matches the O(InT) bound for strongly convex losses
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Unconstrained online convex optimization

» Assume /; is 1-Lipschitz for t > 1
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2
>RT(u)§W+nT:;<”Q;”2+a>\/T Vu € R?

Nicolo Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 3/13



Unconstrained online convex optimization

» Assume /; is 1-Lipschitz for t > 1

> Run FTRL with Euclidean regularizer ¢ = % H||§ no projection, and learning rate
n=a/VT fora>0

2
>RT(u)§W+nT:;<”Q;”2+a>\/T Vu € R?
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Unconstrained online convex optimization

v

Assume /; is 1-Lipschitz for ¢t > 1

v

Run FTRL with Euclidean regularizer ¢ = % H||§ no projection, and learning rate
n=a/VT fora>0

2
>RT(U)§W+7]T:;<”Q;”2+(J>\/T Vu € R?

Rr(u) < [lully VT for a = [|ull,
This bound cannot be simultaneously achieved for all !

vy
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Main idea

» Control Ry (u) by learning length w = ||u||, and direction v = u/ ||u||, separately
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Main idea

» Control Ry (u) by learning length w = ||u||, and direction v = u/ ||u||, separately
» The direction can be learned using FTRL with projection onto the unit Euclidean ball
» The length is learned using a parameterless 1-dimensional online learning algorithm

» We predict with wov
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Analysis
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t=1 t=1
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Analysis

T T
RT(U) == th(wtvt) — th(u)
t=1 t=1
T
<> g/ (ww; —u)
t=1
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Analysis

Ry (u)

T T
Z Et(wtvt) — Z Et (’U,)
t=1

o~
Il
—

IA
(]~
«Q
-

(wpvy — u) (linearized regret)

i
I\

I
M=

T
T T T ENY
(wt g¢ Ut — H’U,||2 g vt) + ||’LLH2 Z (gt UVt — G HUH )
t=1 2

“
I
—
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Analysis

T
th wyvy) th(u)
t=1

g/ (wv; — u) (linearized regret)

IA
Mﬂ:

o~
Il
—

(wi Gy (wr) — [[ully £ (we)) + [l Z( gi vt — gtTHu )

o

1
M=

i
I

parameterless
FTRL
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Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
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Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game
» The bettor starts out with an initial wealth of Cy = 1

» In each round t =1,2,... of the game

1. The bettor bets oy € [—1,1]
2. The market reveals z; € [—1,1]
3. The bettor's wealth is C; = (1 + ayz)Cy—q

A reduction from prediction to investment

» Predict using w; = oy Cy_1 implying C; = Cy_1 + wixy
» Provide feedback x; = —¢}(w;) = —g, vy
> Or =TI (U4 awe) = 1+ 21wy = 1= X[ wi £ (wy)
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Connecting wealth and regret
T T

For a convex ¢ assume a betting strategy achieves C'1 > ¢ (Z act) =0 (— ZE;@@)
t=1

t=1
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Connecting wealth and regret
T T

For a convex ¢ assume a betting strategy achieves C'1 > ¢ (Z act) =0 (— ZE;@@)
t=1

t=1
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Regret bound
> Betting strategy: ay =0 and o = (@1 + -+ +24-1)/t for t > 1  (Krichevsky-Trofimov
estimator)
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> Achieved wealth: Cp > \% exp (21T (Z xt) ) =¢ (— ;E;(w))
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T T
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T 2 T
> Achieved wealth: Cp > \% exp (21T (Z xt) ) =¢ (— ;E;(w))
» Resulting regret: Rr(u ( Zﬁt (we ) =0 <\u|\/Tln(u2T+ 1)+ 1) for any

ueR

T T
u
)<Y (wie mmﬂu&)ﬂmMEIQﬂw—gﬁmH> (for any u € RY)
t=1 2

t=1

OHuMVTm!mMT+U +1) +O(|lull, VT)
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Regret bound
> Betting strategy: ay =0 and o = (@1 + -+ +24-1)/t for t > 1  (Krichevsky-Trofimov
estimator)

T 2 T
» Achieved wealth: Cp > \% exp (2:’; (Z act) ) =¢ (— ;E;(wt)>
» Resulting regret: Rr(u ( Zﬁt (we ) =0 <\u|\/Tln(u2T+ 1)+ 1) for any

ueR
RT(U) S

™=

T
u
(w%@ﬁ—h%&@@)ﬂ@%}j@%&—ﬂwm) (for any u € RY)
t=1 2

t

O Jully /T ([ul3T +1) +1) + O(|full, VT)

||
Il
/\/—\'—'

O(Jlully /T (Jul3T +1) +1)
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Regret bound
> Betting strategy: ay =0 and o = (@1 + -+ +24-1)/t for t > 1  (Krichevsky-Trofimov
estimator)

T 2 T
> Achieved wealth: Cp > \% exp (21T (Z xt> ) =¢ (— ;@;(mﬁ)
» Resulting regret: Rr(u ( Zﬁt (wy) ) =0 <\u|\/Tln(u2T+ 1)+ 1) for any

ueR
RT(U) S

™=

H || ) (for any u € RY)
2

(wr €1 (wr) = Ilully € (w)) + ]l Z (gt vt —

t

O Jully /T ([ul3T +1) +1) + O(|full, VT)

||
Il
/\/—\'—'

O(Jlully /T (Jul3T +1) +1)

Result matches the [|u||, v/T bound up to log factors that are unavoidable if ||u |, is unknowr/1
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Other notions of regret
> If the loss sequence ¢1, /o, ... is such that no u € V achieves a small cumulative loss
l1(w) + la(u) + - - -, then regret bounds are meaningless
» Lack of a single good minimizer in V caused by a highly nonstationary data sequence

P In this case, the regret should be replaced by more robust measures

T T
» Dynamic regret  RY™(uq,...,ur) = L(we) — > 6 (u where uq,...,ur €V
y T
t=1 t=1

T—1
» Complexity parameter: Il = Z lwer1 — wel|
t=1

Lower bound: Q(G+/(D + II7)DT)

When II7 = 0 this reduces to the standard lower bound Q(GD\/T)
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Other notions of regret
> If the loss sequence ¢1, /o, ... is such that no u € V achieves a small cumulative loss
l1(w) + la(u) + - - -, then regret bounds are meaningless
» Lack of a single good minimizer in V caused by a highly nonstationary data sequence

P In this case, the regret should be replaced by more robust measures

T T
» Dynamic regret RdTyn(ul, cour) = th(wt) - th(ut) where uq,...,ur €V
=1 =1

T—1
» Complexity parameter: Il = Z lwer1 — wel|
t=1

» Lower bound: Q(G+/(D + IIy)DT)
When II7 = 0 this reduces to the standard lower bound Q(GD\/T)

» Matching upper bound obtained by using Hedge to aggregate O(InT') instances of FTRL
each tuned to a different value of I

\4
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Adaptive regret

» Evaluate the performance of the online algorithm against that of the best fixed
comparator in any interval of time

J s+7—1 s+7—1
> ada — o . o
Rr s:L{I}%)ETH ( ; Cy(wy) min ; Et(u)> where 7 € {1,...,T}
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Adaptive regret

» Evaluate the performance of the online algorithm against that of the best fixed

comparator in any interval of time
s+7—1 s+7—1
> Rada — max L (w mln O (
A R e | Z (W) Z t

> Best known upper bound: R2%(u) = (DG\f—i— V(InT)7)

where 7 € {1,...,T}
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Adaptive regret

v

Evaluate the performance of the online algorithm against that of the best fixed
comparator in any interval of time

s+17—1 s+17—1
Ri%:s: maXT+1< Z Cy(wy) mln Z U (uw ) where 7 € {1,...,T}

Best known upper bound: Rada( ) = (DGf—i— V(InT)T)

Obtained by combining several instances of a standard online algorithm each run in a
specific interval of time
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Adaptive regret

v

Evaluate the performance of the online algorithm against that of the best fixed
comparator in any interval of time

s+17—1 s+17—1
ada __
RC7 i maXTH( Z £y (wy) mln Z l(u ) where 7 € {1,...,T}

Best known upper bound: Rada( ) = (DGf—i— V(InT)T)

Obtained by combining several instances of a standard online algorithm each run in a
specific interval of time

The set of intervals is carefully designed so that the overall number of instances to be run

is O(InT)

Nicold Cesa-Bianchi Lecture 5 Mathematics of Machine Learning
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From sequential to statistical learning

> Statistical risk for a convex and bounded loss {p(w) = E[K(wTX,Y)}
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From sequential to statistical learning

> Statistical risk for a convex and bounded loss {p(w) = E[K(wTX,Y)}

T
1
> letw == Z'wt where w1, ..., wy are generated by an online algorithm over
=1
(X1,Y1),(X2,Y2),... drawn i.i.d. from an unknown distribution D
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From sequential to statistical learning

> Statistical risk for a convex and bounded loss {p(w) = E[K(wTX,Y)}

> letw == Z'wt where w1, ..., wy are generated by an online algorithm over
=1
(X1,Y1),(X2,Y2),... drawn i.i.d. from an unknown distribution D

» By Jensen's inequality
T

fz wy Xt,Yt ] = ZED wy)

(p(®) =E[((@' X,Y)| <E
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From sequential to statistical learning

> Statistical risk for a convex and bounded loss {p(w) = E[K(wTX,Y)}

> letw == Z'wt where w1, ..., wy are generated by an online algorithm over
=1
(X1,Y1),(X2,Y2),... drawn i.i.d. from an unknown distribution D

» By Jensen's inequality
T

Z thtaYt]_ Zfb’wt

(p(®) =E[((@' X,Y)| <E

» Note also that E[fp(wt) - K(wt XY ‘ (X1,Y7),..., (Xt,l,Yt,l)] =0
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From sequential to statistical learning

> Statistical risk for a convex and bounded loss {p(w) = E{E('wTX,Y)}

> letw == Z'wt where w1, ..., wy are generated by an online algorithm over
=1
(X1,Y1),(X2,Y2),... drawn i.i.d. from an unknown distribution D

» By Jensen's inequality

(p(®) =E[((@' X,Y)| <E

ZE Xt,Yt] = pr wy)

» Note also that E[fp(wt) - K(wt XY ‘ (X1,Y7),..., (Xt,l,Yt,l)] =0

» Using concentration inequalities for martingales (e.g., Hoeffding-Azuma inequality),
T
1
=N/ )< =) lw, X4,Y;)+ O .h.p.
ZDwt_T;wt tat+<ﬁ> w.h.p
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Statistical risk bounds from regret bounds

1 & 1
Letting £(w ' X;,Y;) = ¢ have Ip(w) < = ¢ +0() h.p.
etting /(w ' X, Y}) +(w) we have /p(w) < T; ¢(wy) T w.h.p
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Statistical risk bounds from regret bounds

1
Letting £(w ' X;,Y;) = ¢ we have ¢ Oy (w () w.h.p.
g ( t t) t(w) (W Z ¢(wy) JT P
Let u = argmin /p(w) and bound the estimation error Ep( ) — {p(u) w.h.p.
weV
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Statistical risk bounds from regret bounds

1
Letting £(w ' X;,Y;) = ¢ we have ¢ Oy (w () w.h.p.
g ( t t) t(w) (W Z ¢(wy) JT P
Let u = argmin /p(w) and bound the estimation error Ep( ) — {p(u) w.h.p.
weV
1 & 1. & 2GD
T ;ft(’wt) < T ;ré%;&('w) + T (regret bound)
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Statistical risk bounds from regret bounds

1
Letting £(w ' X;,Y;) = ¢ we have ¢ Oy (w () w.h.p.
g ( t t) t(w) (W Z ¢(wy) JT P
Let u = argmin /p(w) and bound the estimation error Ep( ) — {p(u) w.h.p.
weV
lif(w)< L fZE(w)+2GD (regret bound)
— t t) S — 1 t — u
= T wev = T
1 2GD
<= l(u)+ —
=T tz::I t( ) \/T
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Statistical risk bounds from regret bounds

1
Letting £(w ' X;,Y;) = ¢ we have ¢ Oy (w <) w.h.p.
g ( t t) t(w) (W Z ¢(wy) JT P
Let u = argmin /p(w) and bound the estimation error Ep( ) — {p(u) w.h.p.
weV
lif(w)< L fZE(w)+2GD (regret bound)
— t t) S — 1 t — u
= T wev = T
1 2GD
<= l(u)+ —
= th::I t( ) \/T
2GD 1
<t + 2 +0(z)  wh
D( ) \/T \/T P

using concentration of /;(u) around (p(w)
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Final bound

T
1 : .
If w=— § w; where wy, ..., wy are generated by an online algorithm over

t=1

(X1,Y1),(X2,Y3),... drawn i.i.d. from an unknown distribution D, then

Nicolo Cesa-Bianchi

2G'D
{p(w) — inf ¢ < —— .h.p.
p(W) Inf p(w) < Wi w.h.p
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