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Exploiting curvature of the losses

I Convex and G-Lipschitz losses: FTRL with ψ = 1
2 ‖·‖

2
2 achieves RT = O(GD

√
T )

I Strongly convex and G-Lipschitz losses: FTL achieves RT = O(G2 lnT )

Strong convexity in the direction of the gradient (exp-concavity)

`t(u) ≥ `t(w) + g>t (u−w) + λ

2 ‖u−w‖2gtg>
t

u,w ∈ V

where gt = ∇`t(w) and ‖w‖2M = w>Mw

Some losses satisfying the condition (in a bounded domain)

I Square loss `(w) = 1
2
(
w>x− y

)2
I Logistic loss `(w) = ln

(
1 + exp(−yw>x)

)
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Online Newton Step for exp-concave losses
Choose the model minimizing a second-order approximation of the true loss:

wt+1 = argmin
w∈V

t∑
s=1

̂̀
s(w) (FTL on a surrogate loss)

̂̀
t(w) = `t(wt) + g>t (w −wt) + λ

2 ‖w −wt‖2gtg>
t

gt = ∇`t(wt)

Properties:

I ̂̀
t(u) ≤ `t(u) for all u ∈ V

I ̂̀
t(wt) = `t(wt)

I Regret bound: RT (u) ≤
T∑
t=1

̂̀
t(wt)−

T∑
t=1

̂̀
t(u) = O(GDd lnT )

I This matches the O(lnT ) bound for strongly convex losses
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Unconstrained online convex optimization

I Assume `t is 1-Lipschitz for t ≥ 1

I Run FTRL with Euclidean regularizer ψ = 1
2 ‖·‖

2
2, no projection, and learning rate

η = α/
√
T for α > 0

I RT (u) ≤ ψ(u)− ψ(w1)
η

+ ηT = 1
2

(
‖u‖22
α

+ α

)
√
T ∀u ∈ Rd

I RT (u) ≤ ‖u‖2
√
T for α = ‖u‖2

I This bound cannot be simultaneously achieved for all u!
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Main idea

I Control RT (u) by learning length w = ‖u‖2 and direction v = u/ ‖u‖2 separately

I The direction can be learned using FTRL with projection onto the unit Euclidean ball
I The length is learned using a parameterless 1-dimensional online learning algorithm
I We predict with wv
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Analysis

RT (u) =
T∑
t=1

`t(wtvt)−
T∑
t=1

`t(u)

≤
T∑
t=1

g>t (wtvt − u) (linearized regret)

=
T∑
t=1

(
wt `

′
t(wt)− ‖u‖2 `

′
t(wt)

)︸ ︷︷ ︸
parameterless

+ ‖u‖2
T∑
t=1

(
g>t vt − g>t

u

‖u‖2

)
︸ ︷︷ ︸

FTRL
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Learning and investing
1-dimensional parameterless online algorithms extracted from investment strategies

The betting game

I The bettor starts out with an initial wealth of C0 = 1
I In each round t = 1, 2, . . . of the game

1. The bettor bets αt ∈ [−1, 1]
2. The market reveals xt ∈ [−1, 1]
3. The bettor’s wealth is Ct = (1 + αtxt)Ct−1

A reduction from prediction to investment

I Predict using wt = αtCt−1 implying Ct = Ct−1 + wtxt

I Provide feedback xt = −`′t(wt) = −g>t vt

I CT =
∏T
t=1(1 + αtxt) = 1 +

∑T
t=1wtxt = 1−

∑T
t=1wt `

′
t(wt)
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I In each round t = 1, 2, . . . of the game

1. The bettor bets αt ∈ [−1, 1]
2. The market reveals xt ∈ [−1, 1]
3. The bettor’s wealth is Ct = (1 + αtxt)Ct−1

A reduction from prediction to investment
I Predict using wt = αtCt−1 implying Ct = Ct−1 + wtxt

I Provide feedback xt = −`′t(wt) = −g>t vt
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Connecting wealth and regret
For a convex φ assume a betting strategy achieves CT ≥ φ

(
T∑
t=1

xt

)
=φ

(
−

T∑
t=1

`′t(wt)
)

RT (u) ≤
T∑
t=1

(
wt − u

)
`′t(wt) (any u ∈ R)

= −u
T∑
t=1

`′t(wt)−
(

1−
T∑
t=1

wt`
′
t(wt)

)
+ 1

= −u
T∑
t=1

`′t(wt)− CT + 1 (using CT = 1−
∑T
t=1wt `

′
t(wt))

≤ −u
T∑
t=1

`′t(wt)− φ
(
−

T∑
t=1

`′t(wt)
)

+ 1

≤ sup
θ∈R

uθ − φ(θ) + 1 (θ = −`′1(w1)− · · · − `T (wT ))

= φ∗(θ) + 1
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Nicolò Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 7 / 13



Connecting wealth and regret
For a convex φ assume a betting strategy achieves CT ≥ φ

(
T∑
t=1

xt

)
=φ

(
−

T∑
t=1

`′t(wt)
)

RT (u) ≤
T∑
t=1

(
wt − u

)
`′t(wt) (any u ∈ R)

= −u
T∑
t=1

`′t(wt)−
(

1−
T∑
t=1

wt`
′
t(wt)

)
+ 1

= −u
T∑
t=1

`′t(wt)− CT + 1 (using CT = 1−
∑T
t=1wt `

′
t(wt))

≤ −u
T∑
t=1

`′t(wt)− φ
(
−

T∑
t=1

`′t(wt)
)

+ 1

≤ sup
θ∈R

uθ − φ(θ) + 1 (θ = −`′1(w1)− · · · − `T (wT ))

= φ∗(θ) + 1
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Regret bound
I Betting strategy: α1 = 0 and αt =

(
x1 + · · ·+ xt−1

)
/t for t ≥ 1 (Krichevsky-Trofimov

estimator)

I Achieved wealth: CT ≥
1√
T

exp

 1
2T

(
T∑
t=1

xt

)2 = φ

(
−

T∑
t=1

`′t(wt)
)

I Resulting regret: RT (u) = φ∗
(
−

T∑
t=1

`′t(wt)
)

= O
(
|u|
√
T ln(u2T + 1) + 1

)
for any

u ∈ R
RT (u) ≤

T∑
t=1

(
wt `

′
t(wt)− ‖u‖2 `

′
t(wt)

)
+ ‖u‖2

T∑
t=1

(
g>t vt − g>t

u

‖u‖2

)
(for any u ∈ Rd)

= O
(
‖u‖2

√
T ln

(
‖u‖22 T + 1

)
+ 1

)
+O

(
‖u‖2

√
T
)

= O
(
‖u‖2

√
T ln

(
‖u‖22 T + 1

)
+ 1

)
Result matches the ‖u‖2

√
T bound up to log factors that are unavoidable if ‖u‖2 is unknown
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Nicolò Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 8 / 13



Regret bound
I Betting strategy: α1 = 0 and αt =

(
x1 + · · ·+ xt−1

)
/t for t ≥ 1 (Krichevsky-Trofimov

estimator)

I Achieved wealth: CT ≥
1√
T

exp

 1
2T

(
T∑
t=1

xt

)2 = φ

(
−

T∑
t=1

`′t(wt)
)

I Resulting regret: RT (u) = φ∗
(
−

T∑
t=1

`′t(wt)
)

= O
(
|u|
√
T ln(u2T + 1) + 1

)
for any

u ∈ R

RT (u) ≤
T∑
t=1

(
wt `

′
t(wt)− ‖u‖2 `

′
t(wt)

)
+ ‖u‖2

T∑
t=1

(
g>t vt − g>t

u

‖u‖2

)
(for any u ∈ Rd)

= O
(
‖u‖2

√
T ln

(
‖u‖22 T + 1

)
+ 1

)
+O

(
‖u‖2

√
T
)

= O
(
‖u‖2

√
T ln

(
‖u‖22 T + 1

)
+ 1

)
Result matches the ‖u‖2

√
T bound up to log factors that are unavoidable if ‖u‖2 is unknown
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Other notions of regret

I If the loss sequence `1, `2, . . . is such that no u ∈ V achieves a small cumulative loss
`1(u) + `2(u) + · · · , then regret bounds are meaningless

I Lack of a single good minimizer in V caused by a highly nonstationary data sequence
I In this case, the regret should be replaced by more robust measures

I Dynamic regret Rdyn
T (u1, . . . ,uT ) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(ut) where u1, . . . ,uT ∈ V

I Complexity parameter: ΠT =
T−1∑
t=1
‖ut+1 − ut‖

I Lower bound: Ω
(
G
√

(D + ΠT )DT
)

I When ΠT = 0 this reduces to the standard lower bound Ω
(
GD
√
T
)

I Matching upper bound obtained by using Hedge to aggregate O(lnT ) instances of FTRL
each tuned to a different value of ΠT
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Nicolò Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 9 / 13



Other notions of regret
I If the loss sequence `1, `2, . . . is such that no u ∈ V achieves a small cumulative loss
`1(u) + `2(u) + · · · , then regret bounds are meaningless

I Lack of a single good minimizer in V caused by a highly nonstationary data sequence
I In this case, the regret should be replaced by more robust measures

I Dynamic regret Rdyn
T (u1, . . . ,uT ) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(ut) where u1, . . . ,uT ∈ V

I Complexity parameter: ΠT =
T−1∑
t=1
‖ut+1 − ut‖

I Lower bound: Ω
(
G
√

(D + ΠT )DT
)

I When ΠT = 0 this reduces to the standard lower bound Ω
(
GD
√
T
)

I Matching upper bound obtained by using Hedge to aggregate O(lnT ) instances of FTRL
each tuned to a different value of ΠT
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Adaptive regret

I Evaluate the performance of the online algorithm against that of the best fixed
comparator in any interval of time

I Rada
τ,T = max

s=1,...,T−τ+1

(
s+τ−1∑
t=s

`t(wt)−min
u∈V

s+τ−1∑
t=s

`t(u)
)

where τ ∈ {1, . . . , T}

I Best known upper bound: Rada
τ,T (u) = O

(
DG
√
τ +

√
(lnT )τ

)
I Obtained by combining several instances of a standard online algorithm each run in a

specific interval of time
I The set of intervals is carefully designed so that the overall number of instances to be run

is O(lnT )
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Nicolò Cesa-Bianchi Lecture 5 Mathematics of Machine Learning 10 / 13



Adaptive regret

I Evaluate the performance of the online algorithm against that of the best fixed
comparator in any interval of time

I Rada
τ,T = max

s=1,...,T−τ+1

(
s+τ−1∑
t=s

`t(wt)−min
u∈V

s+τ−1∑
t=s

`t(u)
)

where τ ∈ {1, . . . , T}

I Best known upper bound: Rada
τ,T (u) = O

(
DG
√
τ +

√
(lnT )τ

)
I Obtained by combining several instances of a standard online algorithm each run in a

specific interval of time
I The set of intervals is carefully designed so that the overall number of instances to be run

is O(lnT )
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From sequential to statistical learning
I Statistical risk for a convex and bounded loss `D(w) = E

[
`
(
w>X, Y

)]

I Let w = 1
T

T∑
t=1

wt where w1, . . . ,wT are generated by an online algorithm over

(X1, Y1), (X2, Y2), . . . drawn i.i.d. from an unknown distribution D
I By Jensen’s inequality

`D(w) = E
[
`
(
w>X, Y

)]
≤ E

[
1
T

T∑
t=1

`
(
w>t Xt, Yt

)]
= 1
T

T∑
t=1

`D(wt)

I Note also that E
[
`D(wt)− `

(
w>t Xt, Yt

) ∣∣∣ (X1, Y1), . . . , (Xt−1, Yt−1)
]

= 0
I Using concentration inequalities for martingales (e.g., Hoeffding-Azuma inequality),

1
T

T∑
t=1

`D(wt) ≤
1
T

T∑
t=1

`
(
w>t Xt, Yt

)
+O

( 1√
T

)
w.h.p.
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Statistical risk bounds from regret bounds

Letting `
(
w>Xt, Yt

)
= `t(w) we have `D(w) ≤ 1

T

T∑
t=1

`t(wt) +O
( 1√

T

)
w.h.p.

Let u = argmin
w∈V

`D(w) and bound the estimation error `D(w)− `D(u) w.h.p.

1
T

T∑
t=1

`t(wt) ≤
1
T

inf
w∈V

T∑
t=1

`t(w) + 2GD√
T

(regret bound)

≤ 1
T

T∑
t=1

`t(u) + 2GD√
T

≤ `D(u) + 2GD√
T

+O
( 1√

T

)
w.h.p.

using concentration of `t(u) around `D(u)
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Final bound

If w = 1
T

T∑
t=1

wt where w1, . . . ,wT are generated by an online algorithm over

(X1, Y1), (X2, Y2), . . . drawn i.i.d. from an unknown distribution D, then

`D(w)− inf
w∈V

`D(w) ≤ 2GD√
T

w.h.p.
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