Online Learning Lecture 5

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Exploiting curvature of the losses

Exploiting curvature of the losses

- Convex and G-Lipschitz losses: FTRL with $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$ achieves $R_{T}=\mathcal{O}(G D \sqrt{T})$

Exploiting curvature of the losses

- Convex and G-Lipschitz losses: FTRL with $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$ achieves $R_{T}=\mathcal{O}(G D \sqrt{T})$
- Strongly convex and G-Lipschitz losses: FTL achieves $R_{T}=\mathcal{O}\left(G^{2} \ln T\right)$

Exploiting curvature of the losses

- Convex and G-Lipschitz losses: FTRL with $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$ achieves $R_{T}=\mathcal{O}(G D \sqrt{T})$
- Strongly convex and G-Lipschitz losses: FTL achieves $R_{T}=\mathcal{O}\left(G^{2} \ln T\right)$

Strong convexity in the direction of the gradient (exp-concavity)

$$
\ell_{t}(\boldsymbol{u}) \geq \ell_{t}(\boldsymbol{w})+\boldsymbol{g}_{t}^{\top}(\boldsymbol{u}-\boldsymbol{w})+\frac{\lambda}{2}\|\boldsymbol{u}-\boldsymbol{w}\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} \quad \boldsymbol{u}, \boldsymbol{w} \in \mathbb{V}
$$

where $\boldsymbol{g}_{t}=\nabla \ell_{t}(\boldsymbol{w})$ and $\|\boldsymbol{w}\|_{M}^{2}=\boldsymbol{w}^{\top} M \boldsymbol{w}$

Exploiting curvature of the losses

- Convex and G-Lipschitz losses: FTRL with $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$ achieves $R_{T}=\mathcal{O}(G D \sqrt{T})$
- Strongly convex and G-Lipschitz losses: FTL achieves $R_{T}=\mathcal{O}\left(G^{2} \ln T\right)$

Strong convexity in the direction of the gradient (exp-concavity)

$$
\ell_{t}(\boldsymbol{u}) \geq \ell_{t}(\boldsymbol{w})+\boldsymbol{g}_{t}^{\top}(\boldsymbol{u}-\boldsymbol{w})+\frac{\lambda}{2}\|\boldsymbol{u}-\boldsymbol{w}\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} \quad \boldsymbol{u}, \boldsymbol{w} \in \mathbb{V}
$$

where $\boldsymbol{g}_{t}=\nabla \ell_{t}(\boldsymbol{w})$ and $\|\boldsymbol{w}\|_{M}^{2}=\boldsymbol{w}^{\top} M \boldsymbol{w}$
Some losses satisfying the condition (in a bounded domain)

- Square loss $\ell(\boldsymbol{w})=\frac{1}{2}\left(\boldsymbol{w}^{\top} \boldsymbol{x}-y\right)^{2}$

Exploiting curvature of the losses

- Convex and G-Lipschitz losses: FTRL with $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$ achieves $R_{T}=\mathcal{O}(G D \sqrt{T})$
- Strongly convex and G-Lipschitz losses: FTL achieves $R_{T}=\mathcal{O}\left(G^{2} \ln T\right)$

Strong convexity in the direction of the gradient (exp-concavity)

$$
\ell_{t}(\boldsymbol{u}) \geq \ell_{t}(\boldsymbol{w})+\boldsymbol{g}_{t}^{\top}(\boldsymbol{u}-\boldsymbol{w})+\frac{\lambda}{2}\|\boldsymbol{u}-\boldsymbol{w}\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} \quad \boldsymbol{u}, \boldsymbol{w} \in \mathbb{V}
$$

where $\boldsymbol{g}_{t}=\nabla \ell_{t}(\boldsymbol{w})$ and $\|\boldsymbol{w}\|_{M}^{2}=\boldsymbol{w}^{\top} M \boldsymbol{w}$
Some losses satisfying the condition (in a bounded domain)

- Square loss $\ell(\boldsymbol{w})=\frac{1}{2}\left(\boldsymbol{w}^{\top} \boldsymbol{x}-y\right)^{2}$
- Logistic loss $\ell(\boldsymbol{w})=\ln \left(1+\exp \left(-y \boldsymbol{w}^{\top} \boldsymbol{x}\right)\right)$

Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

$$
\begin{array}{ll}
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(\boldsymbol{w}) & \text { (FTL on a sur } \\
\widehat{\ell}_{t}(\boldsymbol{w})=\ell_{t}\left(\boldsymbol{w}_{t}\right)+\boldsymbol{g}_{t}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{t}\right)+\frac{\lambda}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t}\right\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} & \boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)
\end{array}
$$

Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

$$
\begin{array}{ll}
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(\boldsymbol{w}) & \text { (FTL on a sur } \\
\widehat{\ell}_{t}(\boldsymbol{w})=\ell_{t}\left(\boldsymbol{w}_{t}\right)+\boldsymbol{g}_{t}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{t}\right)+\frac{\lambda}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t}\right\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} & \boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)
\end{array}
$$

Properties:

Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

$$
\begin{array}{ll}
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(\boldsymbol{w}) & \text { (FTL on a sur } \\
\widehat{\ell}_{t}(\boldsymbol{w})=\ell_{t}\left(\boldsymbol{w}_{t}\right)+\boldsymbol{g}_{t}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{t}\right)+\frac{\lambda}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t}\right\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} & \boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)
\end{array}
$$

Properties:

- $\widehat{\ell}_{t}(\boldsymbol{u}) \leq \ell_{t}(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{V}$

Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

$$
\begin{array}{ll}
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(\boldsymbol{w}) & \text { (FTL on a su } \\
\widehat{\ell}_{t}(\boldsymbol{w})=\ell_{t}\left(\boldsymbol{w}_{t}\right)+\boldsymbol{g}_{t}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{t}\right)+\frac{\lambda}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t}\right\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} & \boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)
\end{array}
$$

Properties:

- $\widehat{\ell}_{t}(\boldsymbol{u}) \leq \ell_{t}(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{V}$
- $\widehat{\ell}_{t}\left(\boldsymbol{w}_{t}\right)=\ell_{t}\left(\boldsymbol{w}_{t}\right)$

Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

$$
\begin{aligned}
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(\boldsymbol{w}) & \text { (FTL on a sur } \\
\widehat{\ell}_{t}(\boldsymbol{w})=\ell_{t}\left(\boldsymbol{w}_{t}\right)+\boldsymbol{g}_{t}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{t}\right)+\frac{\lambda}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t}\right\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} & \boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)
\end{aligned}
$$

Properties:

- $\widehat{\ell}_{t}(\boldsymbol{u}) \leq \ell_{t}(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{V}$
- $\widehat{\ell}_{t}\left(\boldsymbol{w}_{t}\right)=\ell_{t}\left(\boldsymbol{w}_{t}\right)$

Regret bound: $\quad R_{T}(\boldsymbol{u}) \leq \sum_{t=1}^{T} \widehat{\ell}_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \widehat{\ell}_{t}(\boldsymbol{u})=\mathcal{O}(G D d \ln T)$

Online Newton Step for exp-concave losses

Choose the model minimizing a second-order approximation of the true loss:

$$
\begin{array}{ll}
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(\boldsymbol{w}) & \text { (FTL on a su } \\
\widehat{\ell}_{t}(\boldsymbol{w})=\ell_{t}\left(\boldsymbol{w}_{t}\right)+\boldsymbol{g}_{t}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}_{t}\right)+\frac{\lambda}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t}\right\|_{\boldsymbol{g}_{t} \boldsymbol{g}_{t}^{\top}}^{2} & \boldsymbol{g}_{t}=\nabla \ell_{t}\left(\boldsymbol{w}_{t}\right)
\end{array}
$$

Properties:

- $\widehat{\ell}_{t}(\boldsymbol{u}) \leq \ell_{t}(\boldsymbol{u})$ for all $\boldsymbol{u} \in \mathbb{V}$
- $\widehat{\ell}_{t}\left(\boldsymbol{w}_{t}\right)=\ell_{t}\left(\boldsymbol{w}_{t}\right)$

Regret bound: $\quad R_{T}(\boldsymbol{u}) \leq \sum_{t=1}^{T} \widehat{\ell}_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \widehat{\ell}_{t}(\boldsymbol{u})=\mathcal{O}(G D d \ln T)$

- This matches the $\mathcal{O}(\ln T)$ bound for strongly convex losses

Unconstrained online convex optimization

- Assume ℓ_{t} is 1 -Lipschitz for $t \geq 1$

Unconstrained online convex optimization

- Assume ℓ_{t} is 1 -Lipschitz for $t \geq 1$
- Run FTRL with Euclidean regularizer $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$, no projection, and learning rate $\eta=\alpha / \sqrt{T}$ for $\alpha>0$

Unconstrained online convex optimization

- Assume ℓ_{t} is 1 -Lipschitz for $t \geq 1$
- Run FTRL with Euclidean regularizer $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$, no projection, and learning rate $\eta=\alpha / \sqrt{T}$ for $\alpha>0$
- $R_{T}(\boldsymbol{u}) \leq \frac{\psi(\boldsymbol{u})-\psi\left(\boldsymbol{w}_{1}\right)}{\eta}+\eta T=\frac{1}{2}\left(\frac{\|\boldsymbol{u}\|_{2}^{2}}{\alpha}+\alpha\right) \sqrt{T} \quad \forall \boldsymbol{u} \in \mathbb{R}^{d}$

Unconstrained online convex optimization

- Assume ℓ_{t} is 1 -Lipschitz for $t \geq 1$
- Run FTRL with Euclidean regularizer $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$, no projection, and learning rate $\eta=\alpha / \sqrt{T}$ for $\alpha>0$
- $R_{T}(\boldsymbol{u}) \leq \frac{\psi(\boldsymbol{u})-\psi\left(\boldsymbol{w}_{1}\right)}{\eta}+\eta T=\frac{1}{2}\left(\frac{\|\boldsymbol{u}\|_{2}^{2}}{\alpha}+\alpha\right) \sqrt{T} \quad \forall \boldsymbol{u} \in \mathbb{R}^{d}$
- $R_{T}(\boldsymbol{u}) \leq\|\boldsymbol{u}\|_{2} \sqrt{T}$ for $\alpha=\|\boldsymbol{u}\|_{2}$

Unconstrained online convex optimization

- Assume ℓ_{t} is 1 -Lipschitz for $t \geq 1$
- Run FTRL with Euclidean regularizer $\psi=\frac{1}{2}\|\cdot\|_{2}^{2}$, no projection, and learning rate $\eta=\alpha / \sqrt{T}$ for $\alpha>0$
- $R_{T}(\boldsymbol{u}) \leq \frac{\psi(\boldsymbol{u})-\psi\left(\boldsymbol{w}_{1}\right)}{\eta}+\eta T=\frac{1}{2}\left(\frac{\|\boldsymbol{u}\|_{2}^{2}}{\alpha}+\alpha\right) \sqrt{T} \quad \forall \boldsymbol{u} \in \mathbb{R}^{d}$
- $R_{T}(\boldsymbol{u}) \leq\|\boldsymbol{u}\|_{2} \sqrt{T}$ for $\alpha=\|\boldsymbol{u}\|_{2}$
- This bound cannot be simultaneously achieved for all u !

Main idea

- Control $R_{T}(\boldsymbol{u})$ by learning length $w=\|\boldsymbol{u}\|_{2}$ and direction $\boldsymbol{v}=\boldsymbol{u} /\|\boldsymbol{u}\|_{2}$ separately

Main idea

- Control $R_{T}(\boldsymbol{u})$ by learning length $w=\|\boldsymbol{u}\|_{2}$ and direction $\boldsymbol{v}=\boldsymbol{u} /\|\boldsymbol{u}\|_{2}$ separately
- The direction can be learned using FTRL with projection onto the unit Euclidean ball

Main idea

- Control $R_{T}(\boldsymbol{u})$ by learning length $w=\|\boldsymbol{u}\|_{2}$ and direction $\boldsymbol{v}=\boldsymbol{u} /\|\boldsymbol{u}\|_{2}$ separately
- The direction can be learned using FTRL with projection onto the unit Euclidean ball
- The length is learned using a parameterless 1-dimensional online learning algorithm

Main idea

- Control $R_{T}(\boldsymbol{u})$ by learning length $w=\|\boldsymbol{u}\|_{2}$ and direction $\boldsymbol{v}=\boldsymbol{u} /\|\boldsymbol{u}\|_{2}$ separately
- The direction can be learned using FTRL with projection onto the unit Euclidean ball
- The length is learned using a parameterless 1-dimensional online learning algorithm
- We predict with $w \boldsymbol{v}$

Analysis

Analysis

$$
R_{T}(\boldsymbol{u})=\sum_{t=1}^{T} \ell_{t}\left(w_{t} \boldsymbol{v}_{t}\right)-\sum_{t=1}^{T} \ell_{t}(\boldsymbol{u})
$$

Analysis

$$
\begin{aligned}
R_{T}(\boldsymbol{u}) & =\sum_{t=1}^{T} \ell_{t}\left(w_{t} \boldsymbol{v}_{t}\right)-\sum_{t=1}^{T} \ell_{t}(\boldsymbol{u}) \\
& \leq \sum_{t=1}^{T} \boldsymbol{g}_{t}^{\top}\left(w_{t} \boldsymbol{v}_{t}-\boldsymbol{u}\right)
\end{aligned}
$$

(linearized regret)

Analysis

$$
\begin{aligned}
R_{T}(\boldsymbol{u}) & =\sum_{t=1}^{T} \ell_{t}\left(w_{t} \boldsymbol{v}_{t}\right)-\sum_{t=1}^{T} \ell_{t}(\boldsymbol{u}) \\
& \leq \sum_{t=1}^{T} \boldsymbol{g}_{t}^{\top}\left(w_{t} \boldsymbol{v}_{t}-\boldsymbol{u}\right) \\
& =\sum_{t=1}^{T}\left(w_{t} \boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\|\boldsymbol{u}\|_{2} \boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}\right)+\|\boldsymbol{u}\|_{2} \sum_{t=1}^{T}\left(\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\boldsymbol{g}_{t}^{\top} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}\right)
\end{aligned}
$$

Analysis

$$
\begin{aligned}
R_{T}(\boldsymbol{u}) & =\sum_{t=1}^{T} \ell_{t}\left(w_{t} \boldsymbol{v}_{t}\right)-\sum_{t=1}^{T} \ell_{t}(\boldsymbol{u}) \\
& \leq \sum_{t=1}^{T} \boldsymbol{g}_{t}^{\top}\left(w_{t} \boldsymbol{v}_{t}-\boldsymbol{u}\right) \\
& =\sum_{t=1}^{T} \underbrace{\left(w_{t} \ell_{t}^{\prime}\left(w_{t}\right)-\|\boldsymbol{u}\|_{2} \ell_{t}^{\prime}\left(w_{t}\right)\right)}_{\text {parameterless }}+\|\boldsymbol{u}\|_{2} \sum_{t=1}^{T} \underbrace{\left(\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\boldsymbol{g}_{t}^{\top} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}\right)}_{\text {(linear }}
\end{aligned}
$$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies The betting game

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$
2. The market reveals $x_{t} \in[-1,1]$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$
2. The market reveals $x_{t} \in[-1,1]$
3. The bettor's wealth is $C_{t}=\left(1+\alpha_{t} x_{t}\right) C_{t-1}$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$
2. The market reveals $x_{t} \in[-1,1]$
3. The bettor's wealth is $C_{t}=\left(1+\alpha_{t} x_{t}\right) C_{t-1}$

A reduction from prediction to investment

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$
2. The market reveals $x_{t} \in[-1,1]$
3. The bettor's wealth is $C_{t}=\left(1+\alpha_{t} x_{t}\right) C_{t-1}$

A reduction from prediction to investment

- Predict using $w_{t}=\alpha_{t} C_{t-1}$ implying $C_{t}=C_{t-1}+w_{t} x_{t}$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$
2. The market reveals $x_{t} \in[-1,1]$
3. The bettor's wealth is $C_{t}=\left(1+\alpha_{t} x_{t}\right) C_{t-1}$

A reduction from prediction to investment

- Predict using $w_{t}=\alpha_{t} C_{t-1}$ implying $C_{t}=C_{t-1}+w_{t} x_{t}$
- Provide feedback $x_{t}=-\ell_{t}^{\prime}\left(w_{t}\right)=-\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}$

Learning and investing

1-dimensional parameterless online algorithms extracted from investment strategies
The betting game

- The bettor starts out with an initial wealth of $C_{0}=1$
- In each round $t=1,2, \ldots$ of the game

1. The bettor bets $\alpha_{t} \in[-1,1]$
2. The market reveals $x_{t} \in[-1,1]$
3. The bettor's wealth is $C_{t}=\left(1+\alpha_{t} x_{t}\right) C_{t-1}$

A reduction from prediction to investment

- Predict using $w_{t}=\alpha_{t} C_{t-1}$ implying $C_{t}=C_{t-1}+w_{t} x_{t}$
- Provide feedback $x_{t}=-\ell_{t}^{\prime}\left(w_{t}\right)=-\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}$
- $C_{T}=\prod_{t=1}^{T}\left(1+\alpha_{t} x_{t}\right)=1+\sum_{t=1}^{T} w_{t} x_{t}=1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

$$
R_{T}(u) \leq \sum_{t=1}^{T}\left(w_{t}-u\right) \ell_{t}^{\prime}\left(w_{t}\right)
$$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

$$
\begin{aligned}
R_{T}(u) & \leq \sum_{t=1}^{T}\left(w_{t}-u\right) \ell_{t}^{\prime}\left(w_{t}\right) \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\left(1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1
\end{aligned}
$$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

$$
\begin{array}{rlr}
R_{T}(u) & \leq \sum_{t=1}^{T}\left(w_{t}-u\right) \ell_{t}^{\prime}\left(w_{t}\right) \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\left(1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1 \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-C_{T}+1 \quad \text { (any } u \in \mathbb{R} \text {) }
\end{array}
$$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

$$
\begin{aligned}
R_{T}(u) & \leq \sum_{t=1}^{T}\left(w_{t}-u\right) \ell_{t}^{\prime}\left(w_{t}\right) \quad \quad \text { any } u \in \mathbb{R} \text {) } \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\left(1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1 \\
& \left.=-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-C_{T}+1 \quad \quad \text { (using } C_{T}=1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right) \\
& \leq-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1
\end{aligned}
$$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

$$
\begin{array}{rlr}
R_{T}(u) & \leq \sum_{t=1}^{T}\left(w_{t}-u\right) \ell_{t}^{\prime}\left(w_{t}\right) \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\left(1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1 \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-C_{T}+1 \quad \quad \quad \quad \text { any } u \in \mathbb{R} \text {) } \\
& \leq-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1 \\
& \leq \sup _{\theta \in \mathbb{R}} u \theta-\phi(\theta)+1 \quad\left(\theta=-\ell_{T}^{\prime}\left(w_{1}\right)-\cdots-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right)
\end{array}
$$

Connecting wealth and regret

For a convex ϕ assume a betting strategy achieves $C_{T} \geq \phi\left(\sum_{t=1}^{T} x_{t}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

$$
\begin{aligned}
R_{T}(u) & \leq \sum_{t=1}^{T}\left(w_{t}-u\right) \ell_{t}^{\prime}\left(w_{t}\right) \quad \quad \text { (any } u \in \mathbb{R} \text {) } \\
& =-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\left(1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1 \\
& \left.=-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-C_{T}+1 \quad \quad \text { using } C_{T}=1-\sum_{t=1}^{T} w_{t} \ell_{t}^{\prime}\left(w_{t}\right)\right) \\
& \leq-u \sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)-\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)+1 \\
& \leq \sup _{\theta \in \mathbb{R}} u \theta-\phi(\theta)+1 \quad\left(\theta=-\ell_{1}^{\prime}\left(w_{1}\right)-\cdots-\ell_{T}\left(w_{T}\right)\right) \\
& =\phi^{*}(\theta)+1
\end{aligned}
$$

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)
- Achieved wealth: $C_{T} \geq \frac{1}{\sqrt{T}} \exp \left(\frac{1}{2 T}\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)
- Achieved wealth: $C_{T} \geq \frac{1}{\sqrt{T}} \exp \left(\frac{1}{2 T}\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$
- Resulting regret: $R_{T}(u)=\phi^{*}\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)=\mathcal{O}\left(|u| \sqrt{T \ln \left(u^{2} T+1\right)}+1\right)$ for any $u \in \mathbb{R}$

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)
- Achieved wealth: $C_{T} \geq \frac{1}{\sqrt{T}} \exp \left(\frac{1}{2 T}\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$
- Resulting regret: $R_{T}(u)=\phi^{*}\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)=\mathcal{O}\left(|u| \sqrt{T \ln \left(u^{2} T+1\right)}+1\right)$ for any

$$
R_{T}(\boldsymbol{u}) \leq \sum_{t=1}^{T}\left(w_{t} \ell_{t}^{\prime}\left(w_{t}\right)-\|\boldsymbol{u}\|_{2} \ell_{t}^{\prime}\left(w_{t}\right)\right)+\|\boldsymbol{u}\|_{2} \sum_{t=1}^{T}\left(\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\boldsymbol{g}_{t}^{\top} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}\right) \quad\left(\text { for any } \boldsymbol{u} \in \mathbb{R}^{d}\right)
$$

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)
- Achieved wealth: $C_{T} \geq \frac{1}{\sqrt{T}} \exp \left(\frac{1}{2 T}\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$
- Resulting regret: $R_{T}(u)=\phi^{*}\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)=\mathcal{O}\left(|u| \sqrt{T \ln \left(u^{2} T+1\right)}+1\right)$ for any

$$
\begin{aligned}
R_{T}(\boldsymbol{u}) & \leq \sum_{t=1}^{T}\left(w_{t} \ell_{t}^{\prime}\left(w_{t}\right)-\|\boldsymbol{u}\|_{2} \ell_{t}^{\prime}\left(w_{t}\right)\right)+\|\boldsymbol{u}\|_{2} \sum_{t=1}^{T}\left(\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\boldsymbol{g}_{t}^{\top} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}\right) \quad\left(\text { for any } \boldsymbol{u} \in \mathbb{R}^{d}\right) \\
& =\mathcal{O}\left(\|\boldsymbol{u}\|_{2} \sqrt{T \ln \left(\|\boldsymbol{u}\|_{2}^{2} T+1\right)}+1\right)+\mathcal{O}\left(\|\boldsymbol{u}\|_{2} \sqrt{T}\right)
\end{aligned}
$$

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)
- Achieved wealth: $C_{T} \geq \frac{1}{\sqrt{T}} \exp \left(\frac{1}{2 T}\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$
- Resulting regret: $R_{T}(u)=\phi^{*}\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)=\mathcal{O}\left(|u| \sqrt{T \ln \left(u^{2} T+1\right)}+1\right)$ for any

$$
\begin{aligned}
u \in \mathbb{R} & R_{T}(\boldsymbol{u})
\end{aligned} \sum_{t=1}^{T}\left(w_{t} \ell_{t}^{\prime}\left(w_{t}\right)-\|\boldsymbol{u}\|_{2} \ell_{t}^{\prime}\left(w_{t}\right)\right)+\|\boldsymbol{u}\|_{2} \sum_{t=1}^{T}\left(\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\boldsymbol{g}_{t}^{\top} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}\right) \quad\left(\text { for any } \boldsymbol{u} \in \mathbb{R}^{d}\right)
$$

Regret bound

- Betting strategy: $\alpha_{1}=0$ and $\alpha_{t}=\left(x_{1}+\cdots+x_{t-1}\right) / t$ for $t \geq 1 \quad$ (Krichevsky-Trofimov estimator)
- Achieved wealth: $C_{T} \geq \frac{1}{\sqrt{T}} \exp \left(\frac{1}{2 T}\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right)=\phi\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)$
- Resulting regret: $R_{T}(u)=\phi^{*}\left(-\sum_{t=1}^{T} \ell_{t}^{\prime}\left(w_{t}\right)\right)=\mathcal{O}\left(|u| \sqrt{T \ln \left(u^{2} T+1\right)}+1\right)$ for any

$$
\begin{aligned}
u \in \mathbb{R} & R_{T}(\boldsymbol{u})
\end{aligned} \sum_{t=1}^{T}\left(w_{t} \ell_{t}^{\prime}\left(w_{t}\right)-\|\boldsymbol{u}\|_{2} \ell_{t}^{\prime}\left(w_{t}\right)\right)+\|\boldsymbol{u}\|_{2} \sum_{t=1}^{T}\left(\boldsymbol{g}_{t}^{\top} \boldsymbol{v}_{t}-\boldsymbol{g}_{t}^{\top} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}\right) \quad\left(\text { for any } \boldsymbol{u} \in \mathbb{R}^{d}\right)
$$

Other notions of regret

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence
- In this case, the regret should be replaced by more robust measures

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence
- In this case, the regret should be replaced by more robust measures

Dynamic regret $\quad R_{T}^{\text {dyn }}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T}\right)=\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{u}_{t}\right) \quad$ where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T} \in \mathbb{V}$

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence
- In this case, the regret should be replaced by more robust measures

Dynamic regret $\quad R_{T}^{\text {dyn }}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T}\right)=\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{u}_{t}\right) \quad$ where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T} \in \mathbb{V}$

- Complexity parameter: $\Pi_{T}=\sum_{t=1}^{T-1}\left\|\boldsymbol{u}_{t+1}-\boldsymbol{u}_{t}\right\|$

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence
- In this case, the regret should be replaced by more robust measures

Dynamic regret $\quad R_{T}^{\text {dyn }}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T}\right)=\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{u}_{t}\right) \quad$ where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T} \in \mathbb{V}$

- Complexity parameter: $\Pi_{T}=\sum_{t=1}^{T-1}\left\|\boldsymbol{u}_{t+1}-\boldsymbol{u}_{t}\right\|$
- Lower bound: $\Omega\left(G \sqrt{\left(D+\Pi_{T}\right) D T}\right)$

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence
- In this case, the regret should be replaced by more robust measures

Dynamic regret $\quad R_{T}^{\text {dyn }}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T}\right)=\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{u}_{t}\right) \quad$ where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T} \in \mathbb{V}$

- Complexity parameter: $\Pi_{T}=\sum_{t=1}^{T-1}\left\|\boldsymbol{u}_{t+1}-\boldsymbol{u}_{t}\right\|$
- Lower bound: $\Omega\left(G \sqrt{\left(D+\Pi_{T}\right) D T}\right)$
- When $\Pi_{T}=0$ this reduces to the standard lower bound $\Omega(G D \sqrt{T})$

Other notions of regret

- If the loss sequence $\ell_{1}, \ell_{2}, \ldots$ is such that no $\boldsymbol{u} \in \mathbb{V}$ achieves a small cumulative loss $\ell_{1}(\boldsymbol{u})+\ell_{2}(\boldsymbol{u})+\cdots$, then regret bounds are meaningless
- Lack of a single good minimizer in \mathbb{V} caused by a highly nonstationary data sequence
- In this case, the regret should be replaced by more robust measures
- Dynamic regret $\quad R_{T}^{\text {dyn }}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T}\right)=\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{u}_{t}\right) \quad$ where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{T} \in \mathbb{V}$
- Complexity parameter: $\Pi_{T}=\sum_{t=1}^{T-1}\left\|\boldsymbol{u}_{t+1}-\boldsymbol{u}_{t}\right\|$
- Lower bound: $\Omega\left(G \sqrt{\left(D+\Pi_{T}\right) D T}\right)$
- When $\Pi_{T}=0$ this reduces to the standard lower bound $\Omega(G D \sqrt{T})$
- Matching upper bound obtained by using Hedge to aggregate $\mathcal{O}(\ln T)$ instances of FTRL each tuned to a different value of Π_{T}

Adaptive regret

Adaptive regret

- Evaluate the performance of the online algorithm against that of the best fixed comparator in any interval of time

Adaptive regret

- Evaluate the performance of the online algorithm against that of the best fixed comparator in any interval of time
- $R_{\tau, T}^{\text {ada }}=\max _{s=1, \ldots, T-\tau+1}\left(\sum_{t=s}^{s+\tau-1} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\min _{\boldsymbol{u} \in \mathbb{V}} \sum_{t=s}^{s+\tau-1} \ell_{t}(\boldsymbol{u})\right)$ where $\tau \in\{1, \ldots, T\}$

Adaptive regret

- Evaluate the performance of the online algorithm against that of the best fixed comparator in any interval of time
- $R_{\tau, T}^{\text {ada }}=\max _{s=1, \ldots, T-\tau+1}\left(\sum_{t=s}^{s+\tau-1} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\min _{u \in \mathbb{V}} \sum_{t=s}^{s+\tau-1} \ell_{t}(\boldsymbol{u})\right) \quad$ where $\tau \in\{1, \ldots, T\}$
- Best known upper bound: $R_{\tau, T}^{\text {ada }}(\boldsymbol{u})=\mathcal{O}(D G \sqrt{\tau}+\sqrt{(\ln T) \tau})$

Adaptive regret

- Evaluate the performance of the online algorithm against that of the best fixed comparator in any interval of time
- $R_{\tau, T}^{\text {ada }}=\max _{s=1, \ldots, T-\tau+1}\left(\sum_{t=s}^{s+\tau-1} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\min _{\boldsymbol{u} \in \mathbb{V}} \sum_{t=s}^{s+\tau-1} \ell_{t}(\boldsymbol{u})\right) \quad$ where $\tau \in\{1, \ldots, T\}$
- Best known upper bound: $R_{\tau, T}^{\text {ada }}(\boldsymbol{u})=\mathcal{O}(D G \sqrt{\tau}+\sqrt{(\ln T) \tau})$
- Obtained by combining several instances of a standard online algorithm each run in a specific interval of time

Adaptive regret

- Evaluate the performance of the online algorithm against that of the best fixed comparator in any interval of time
- $R_{\tau, T}^{\text {ada }}=\max _{s=1, \ldots, T-\tau+1}\left(\sum_{t=s}^{s+\tau-1} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\min _{\boldsymbol{u} \in \mathbb{V}} \sum_{t=s}^{s+\tau-1} \ell_{t}(\boldsymbol{u})\right) \quad$ where $\tau \in\{1, \ldots, T\}$
- Best known upper bound: $R_{\tau, T}^{\text {ada }}(\boldsymbol{u})=\mathcal{O}(D G \sqrt{\tau}+\sqrt{(\ln T) \tau})$
- Obtained by combining several instances of a standard online algorithm each run in a specific interval of time
- The set of intervals is carefully designed so that the overall number of instances to be run is $\mathcal{O}(\ln T)$

From sequential to statistical learning

- Statistical risk for a convex and bounded loss $\ell_{\mathcal{D}}(\boldsymbol{w})=\mathbb{E}\left[\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}, Y\right)\right]$

From sequential to statistical learning

- Statistical risk for a convex and bounded loss $\ell_{\mathcal{D}}(\boldsymbol{w})=\mathbb{E}\left[\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}, Y\right)\right]$
- Let $\overline{\boldsymbol{w}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$ where $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$ are generated by an online algorithm over $\left(\boldsymbol{X}_{1}, Y_{1}\right),\left(\boldsymbol{X}_{2}, Y_{2}\right), \ldots$ drawn i.i.d. from an unknown distribution \mathcal{D}

From sequential to statistical learning

- Statistical risk for a convex and bounded loss $\ell_{\mathcal{D}}(\boldsymbol{w})=\mathbb{E}\left[\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}, Y\right)\right]$
- Let $\overline{\boldsymbol{w}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$ where $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$ are generated by an online algorithm over $\left(\boldsymbol{X}_{1}, Y_{1}\right),\left(\boldsymbol{X}_{2}, Y_{2}\right), \ldots$ drawn i.i.d. from an unknown distribution \mathcal{D}
- By Jensen's inequality

$$
\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})=\mathbb{E}\left[\ell\left(\overline{\boldsymbol{w}}^{\top} \boldsymbol{X}, Y\right)\right] \leq \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \ell\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)\right]=\frac{1}{T} \sum_{t=1}^{T} \ell_{\mathcal{D}}\left(\boldsymbol{w}_{t}\right)
$$

From sequential to statistical learning

- Statistical risk for a convex and bounded loss $\ell_{\mathcal{D}}(\boldsymbol{w})=\mathbb{E}\left[\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}, Y\right)\right]$
- Let $\overline{\boldsymbol{w}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$ where $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$ are generated by an online algorithm over $\left(\boldsymbol{X}_{1}, Y_{1}\right),\left(\boldsymbol{X}_{2}, Y_{2}\right), \ldots$ drawn i.i.d. from an unknown distribution \mathcal{D}
- By Jensen's inequality

$$
\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})=\mathbb{E}\left[\ell\left(\overline{\boldsymbol{w}}^{\top} \boldsymbol{X}, Y\right)\right] \leq \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \ell\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)\right]=\frac{1}{T} \sum_{t=1}^{T} \ell_{\mathcal{D}}\left(\boldsymbol{w}_{t}\right)
$$

- Note also that $\mathbb{E}\left[\ell_{\mathcal{D}}\left(\boldsymbol{w}_{t}\right)-\ell\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{X}_{t}, Y_{t}\right) \mid\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{t-1}, Y_{t-1}\right)\right]=0$

From sequential to statistical learning

- Statistical risk for a convex and bounded loss $\ell_{\mathcal{D}}(\boldsymbol{w})=\mathbb{E}\left[\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}, Y\right)\right]$
- Let $\overline{\boldsymbol{w}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$ where $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$ are generated by an online algorithm over $\left(\boldsymbol{X}_{1}, Y_{1}\right),\left(\boldsymbol{X}_{2}, Y_{2}\right), \ldots$ drawn i.i.d. from an unknown distribution \mathcal{D}
- By Jensen's inequality

$$
\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})=\mathbb{E}\left[\ell\left(\overline{\boldsymbol{w}}^{\top} \boldsymbol{X}, Y\right)\right] \leq \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \ell\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)\right]=\frac{1}{T} \sum_{t=1}^{T} \ell_{\mathcal{D}}\left(\boldsymbol{w}_{t}\right)
$$

- Note also that $\mathbb{E}\left[\ell_{\mathcal{D}}\left(\boldsymbol{w}_{t}\right)-\ell\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{X}_{t}, Y_{t}\right) \mid\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{t-1}, Y_{t-1}\right)\right]=0$
- Using concentration inequalities for martingales (e.g., Hoeffding-Azuma inequality),

$$
\frac{1}{T} \sum_{t=1}^{T} \ell_{\mathcal{D}}\left(\boldsymbol{w}_{t}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \ell\left(\boldsymbol{w}_{t}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad \text { w.h.p. }
$$

Statistical risk bounds from regret bounds

Letting $\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)=\ell_{t}(\boldsymbol{w})$ we have $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad$ w.h.p.

Statistical risk bounds from regret bounds

Letting $\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)=\ell_{t}(\boldsymbol{w})$ we have $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad$ w.h.p.
Let $\boldsymbol{u}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \ell_{\mathcal{D}}(\boldsymbol{w})$ and bound the estimation error $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})-\ell_{\mathcal{D}}(\boldsymbol{u})$ w.h.p.

Statistical risk bounds from regret bounds

Letting $\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)=\ell_{t}(\boldsymbol{w})$ we have $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad$ w.h.p.
Let $\boldsymbol{u}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \ell_{\mathcal{D}}(\boldsymbol{w})$ and bound the estimation error $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})-\ell_{\mathcal{D}}(\boldsymbol{u})$ w.h.p.

$$
\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right) \leq \frac{1}{T} \inf _{w \in \mathbb{V}} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{w})+\frac{2 G D}{\sqrt{T}}
$$

Statistical risk bounds from regret bounds

Letting $\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)=\ell_{t}(\boldsymbol{w})$ we have $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad$ w.h.p.
Let $\boldsymbol{u}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \ell_{\mathcal{D}}(\boldsymbol{w})$ and bound the estimation error $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})-\ell_{\mathcal{D}}(\boldsymbol{u})$ w.h.p. $\boldsymbol{w} \in \mathbb{V}$

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right) & \leq \frac{1}{T} \inf _{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{w})+\frac{2 G D}{\sqrt{T}} \\
& \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{u})+\frac{2 G D}{\sqrt{T}}
\end{aligned}
$$

Statistical risk bounds from regret bounds

Letting $\ell\left(\boldsymbol{w}^{\top} \boldsymbol{X}_{t}, Y_{t}\right)=\ell_{t}(\boldsymbol{w})$ we have $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad$ w.h.p.
Let $\boldsymbol{u}=\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \ell_{\mathcal{D}}(\boldsymbol{w})$ and bound the estimation error $\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})-\ell_{\mathcal{D}}(\boldsymbol{u})$ w.h.p. $\boldsymbol{w} \in \mathbb{V}$

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right) & \leq \frac{1}{T} \inf _{\boldsymbol{w} \in \mathbb{V}} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{w})+\frac{2 G D}{\sqrt{T}} \\
& \leq \frac{1}{T} \sum_{t=1}^{T} \ell_{t}(\boldsymbol{u})+\frac{2 G D}{\sqrt{T}} \\
& \leq \ell_{\mathcal{D}}(\boldsymbol{u})+\frac{2 G D}{\sqrt{T}}+\mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \quad \text { w.h.p. }
\end{aligned}
$$

using concentration of $\ell_{t}(\boldsymbol{u})$ around $\ell_{\mathcal{D}}(\boldsymbol{u})$

Final bound

If $\overline{\boldsymbol{w}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$ where $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$ are generated by an online algorithm over $\left(\boldsymbol{X}_{1}, Y_{1}\right),\left(\boldsymbol{X}_{2}, Y_{2}\right), \ldots$ drawn i.i.d. from an unknown distribution \mathcal{D}, then

$$
\ell_{\mathcal{D}}(\overline{\boldsymbol{w}})-\inf _{\boldsymbol{w} \in \mathbb{V}} \ell_{\mathcal{D}}(\boldsymbol{w}) \leq \frac{2 G D}{\sqrt{T}} \quad \text { w.h.p. }
$$

