Online Learning Lecture 2

Nicolò Cesa-Bianchi Università degli Studi di Milano

Follow the Regularized Leader

- ▶ If losses lack curvature, FTL is unstable
- \blacktriangleright We can introduce curvature using a real-valued regularizer ψ
- $\mathbf{v}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{V}} \psi(\mathbf{w}) + \sum_{s=1}^{t} \ell_s(\mathbf{w})$
- Example: the SVM objective function is $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{m} \sum_{t=1}^m \ell_t(\boldsymbol{w})$
- ▶ If ℓ_t are all convex, this is equivalent to FTL over λ -strongly convex losses $\frac{\lambda}{2} \|\cdot\|_2^2 + \ell_t$
- ▶ How can we solve this constrained optimization problem?

▶ Linearized regret:
$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t - \boldsymbol{u})$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

▶ Linearized regret:
$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t - \boldsymbol{u})$$

 $lackbox{P}$ Pretend all losses are linear: $\ell_t'(oldsymbol{w}) = oldsymbol{w}^ op
abla \ell_t(oldsymbol{w}_t)$

▶ Linearized regret:
$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t - \boldsymbol{u})$$

- ▶ Pretend all losses are linear: $\ell_t'(\mathbf{w}) = \mathbf{w}^\top \nabla \ell_t(\mathbf{w}_t)$
- FTRL with linearized losses:

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \ell_s'(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

Lecture 2 Mathematics of Machine Learning

- ▶ Linearized regret: $R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t \boldsymbol{u})$
- ▶ Pretend all losses are linear: $\ell_t'(\boldsymbol{w}) = \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$
- FTRL with linearized losses:

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \ell_s'(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

▶ We still have a constrained optimization problem to solve

ightharpoonup Assume ψ is convex

- Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$

- ightharpoonup Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- \triangleright Error in first-order Taylor expansion of ψ around w

- ightharpoonup Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- \blacktriangleright Error in first-order Taylor expansion of ψ around w
- ▶ If ψ is μ -strongly convex w.r.t. $\|\cdot\|$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$

- ightharpoonup Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- \triangleright Error in first-order Taylor expansion of ψ around w
- ▶ If ψ is μ -strongly convex w.r.t. $\|\cdot\|$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- If ψ is twice differentiable, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^{2} \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$ for some $\boldsymbol{\xi}$ on the line segment joining \boldsymbol{u} and \boldsymbol{w}

- ightharpoonup Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- \triangleright Error in first-order Taylor expansion of ψ around w
- ▶ If ψ is μ -strongly convex w.r.t. $\|\cdot\|$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- If ψ is twice differentiable, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^{2} \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$ for some $\boldsymbol{\xi}$ on the line segment joining \boldsymbol{u} and \boldsymbol{w}
- ▶ If $\psi = \frac{1}{2} \| \cdot \|_2^2$, then $B_{\psi}(u, w) = \frac{1}{2} \| u w \|_2^2$

squared Euclidean distance

- ightharpoonup Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- \triangleright Error in first-order Taylor expansion of ψ around w
- ▶ If ψ is μ -strongly convex w.r.t. $\|\cdot\|$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- ▶ If ψ is twice differentiable, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^2 \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$ for some ξ on the line segment joining u and w
- ► If $\psi = \frac{1}{2} \| \cdot \|_2^2$, then $B_{\psi}(u, w) = \frac{1}{2} \| u w \|_2^2$
- $ightharpoonup \Delta_d$ is the d-dimensional probability simplex

squared Euclidean distance

Lecture 2 Mathematics of Machine Learning

- ightharpoonup Assume ψ is convex
- ► Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- \triangleright Error in first-order Taylor expansion of ψ around w
- ▶ If ψ is μ -strongly convex w.r.t. $\|\cdot\|$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- ▶ If ψ is twice differentiable, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^2 \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$ for some ξ on the line segment joining u and w
- ► If $\psi = \frac{1}{2} \| \cdot \|_2^2$, then $B_{\psi}(u, w) = \frac{1}{2} \| u w \|_2^2$

squared Euclidean distance

- $ightharpoonup \Delta_d$ is the d-dimensional probability simplex
- ▶ If $p \in \Delta_d$ and $\psi(p) = \sum_i p(i) \ln p(i)$, then $B_{\psi}(p,q) = \sum_i p(i) \ln \frac{p(i)}{q(i)}$

KL-divergence

Bregman projections

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be strictly convex and differentiable in \mathbb{V} .

Then
$$\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} f(\boldsymbol{w}) = \underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} B_f(\boldsymbol{w}, \boldsymbol{w}')$$
 where $\boldsymbol{w}' = \underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})$

Bregman projections

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be strictly convex and differentiable in \mathbb{V} .

Then $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} f(\boldsymbol{w}) = \underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} B_f(\boldsymbol{w}, \boldsymbol{w}') \text{ where } \boldsymbol{w}' = \underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})$

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_{s}(\boldsymbol{w}_{s}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \underbrace{\psi(\boldsymbol{w}) + \boldsymbol{w}^{\top} \boldsymbol{G}_{t}}_{f(\boldsymbol{w})}$$

where
$$oldsymbol{G}_t = \sum_{s=1}^t
abla \ell_s(oldsymbol{w}_s)$$

Bregman projections

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be strictly convex and differentiable in \mathbb{V} .

Then
$$\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} f(\boldsymbol{w}) = \underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} B_f(\boldsymbol{w}, \boldsymbol{w}') \text{ where } \boldsymbol{w}' = \underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})$$

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_{s}(\boldsymbol{w}_{s}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \underbrace{\psi(\boldsymbol{w}) + \boldsymbol{w}^{\top} \boldsymbol{G}_{t}}_{f(\boldsymbol{w})}$$

where
$$oldsymbol{G}_t = \sum_{s=1}^t
abla \ell_s(oldsymbol{w}_s)$$

Fact: $B_f \equiv B_{\psi}$ (because B_{ψ} is invariant with respect to addition of linear functions)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

FTRL update in two steps:

1.
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

FTRL update in two steps:

1.
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_{t+1}')$$
 (Bregman projection)

ightharpoonup Assume ψ is convex

6/14

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

- ightharpoonup Assume ψ is convex

- ightharpoonup Assume ψ is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left(\mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function ψ^* is the convex conjugate of ψ

$$\psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

- ightharpoonup Assume ψ is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left(\mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function ψ^* is the convex conjugate of ψ

$$\psi^*(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

ightharpoonup If ψ is differentiable

$$\frac{\partial}{\partial w}(w\theta - \psi(w)) = \theta - \psi'(w) = 0$$
 iff $\psi'(w) = \theta$

- ightharpoonup Assume ψ is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left(\mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function ψ^* is the convex conjugate of ψ

$$\psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

 \triangleright If ψ is differentiable

$$\frac{\partial}{\partial w}(w\theta - \psi(w)) = \theta - \psi'(w) = 0$$
 iff $\psi'(w) = \theta$

Nicolò Cesa-Bianchi

- ightharpoonup Assume ψ is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left(\mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function ψ^* is the convex conjugate of ψ

$$\psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

 \blacktriangleright If ψ is differentiable

$$\frac{\partial}{\partial w}(w\theta - \psi(w)) = \theta - \psi'(w) = 0$$
 iff $\psi'(w) = \theta$

- $\mathbf{v}^* = \operatorname{argmax} (w\theta \psi(w))$

Nicolò Cesa-Bianchi

Mathematics of Machine Learning

7/14

$$\blacktriangleright \psi^{\star}(\boldsymbol{\theta}_{t+1}) = \max_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{\theta}_{t+1} - \psi(\boldsymbol{w}) \right)$$

Lecture 2

Theorem

If ψ is strongly convex, then ψ^{\star} is differentiable and $\max_{m{w}} \left(m{w}^{\top} m{\theta} - \psi(m{w}) \right)$ is achieved at

$$\boldsymbol{w}^* = \nabla \psi^*(\boldsymbol{\theta})$$

$$\qquad \qquad \psi^{\star}(\boldsymbol{\theta}_{t+1}) = \max_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{\theta}_{t+1} - \psi(\boldsymbol{w}) \right)$$

Theorem

If ψ is strongly convex, then ψ^\star is differentiable and $\max_{m{w}} \left(m{w}^ op m{\theta} - \psi(m{w}) \right)$ is achieved at

$$\boldsymbol{w}^* = \nabla \psi^*(\boldsymbol{\theta})$$

This implies $\mathbf{w}'_{t+1} = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1})$ for ψ strongly convex

FTRL update (for strongly convex regularizers)

1.
$$\theta_{t+1} = \theta_t - \nabla \ell_t(\boldsymbol{w}_t)$$
 (gradient update)

FTRL update (for strongly convex regularizers)

- 1. $\theta_{t+1} = \theta_t \nabla \ell_t(\boldsymbol{w}_t)$ (gradient update)
- 2. $\mathbf{w}_{t+1}' = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1})$ (mirror mapping)

FTRL update (for strongly convex regularizers)

- 1. $\theta_{t+1} = \theta_t \nabla \ell_t(\boldsymbol{w}_t)$ (gradient update)
- 2. $\mathbf{w}'_{t+1} = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1})$ (mirror mapping)
- 3. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_{t+1}')$ (Bregman projection)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

The Euclidean case: Lazy Online Gradient Descent

$$\blacktriangleright \psi = \frac{1}{2\eta} \|\cdot\|_2^2$$

strongly convex w.r.t. $\left\|\cdot\right\|_2$ ($\eta>0$ is a learning rate)

The Euclidean case: Lazy Online Gradient Descent

- $\psi = \frac{1}{2\eta} \| \cdot \|_2^2$ $\psi^* = \frac{\eta}{2} \| \cdot \|_2^2$

strongly convex w.r.t. $\|\cdot\|_2$ ($\eta > 0$ is a learning rate)

The Euclidean case: Lazy Online Gradient Descent

- $\blacktriangleright \psi = \frac{1}{2\eta} \|\cdot\|_2^2$
- $\blacktriangleright \psi^{\star} = \frac{\eta}{2} \left\| \cdot \right\|_2^2$

strongly convex w.r.t. $\|\cdot\|_2$ ($\eta > 0$ is a learning rate)

The Euclidean case: Lazy Online Gradient Descent

- $\psi = \frac{1}{2n} \|\cdot\|_2^2$
- $\blacktriangleright \psi^{\star} = \frac{\eta}{2} \| \cdot \|_2^2$

FTRL update (Projected Lazy OGD):

1.
$$\boldsymbol{w}'_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{w}_s)$$

strongly convex w.r.t. $\left\|\cdot\right\|_2$ ($\eta>0$ is a learning rate)

10 / 14

The Euclidean case: Lazy Online Gradient Descent

 $\blacktriangleright \psi = \frac{1}{2n} \| \cdot \|_2^2$

strongly convex w.r.t. $\|\cdot\|_2$ ($\eta > 0$ is a learning rate)

- $\psi^* = \frac{\eta}{2} \| \cdot \|_2^2$

FTRL update (Projected Lazy OGD):

- 1. $\boldsymbol{w}'_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{w}_s)$
- 2. $w_{t+1} = \operatorname*{argmin}_{w \in \mathbb{V}} \|w w'_{t+1}\|_2$ standard Euclidean projection onto $\mathbb{V} \subset \mathbb{R}^d$

Nicolò Cesa-Bianchi

 $ightharpoonup \mathbb{V} = \Delta_d$ (probability simplex)

- $\mathbb{V} = \Delta_d$ (probability simplex)
- $lackbox{lackbox{\psi}} \ \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i) \qquad \qquad ext{for } oldsymbol{p} \in \Delta_d$

strongly convex w.r.t. $\left\| \cdot \right\|_1$

- $\mathbb{V} = \Delta_d$ (probability simplex)
- $lackbox{lackbox{\psi}} \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i)$ for $oldsymbol{p} \in \Delta_d$
- $\blacktriangleright \ \psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta_d} \left(\boldsymbol{p}^{\top} \boldsymbol{\theta} \psi(\boldsymbol{p}) \right) = \frac{1}{\eta} \ln \left(\sum_i e^{\eta \theta(i)} \right)$

strongly convex w.r.t. $\left\| \cdot \right\|_1$

we solve the constrained problem $% \left\{ 1,2,...,n\right\}$

- $\mathbb{V} = \Delta_d$ (probability simplex)
- $lackbox{lackbox{\psi}} \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i)$ for $oldsymbol{p} \in \Delta_d$

strongly convex w.r.t. $\left\| \cdot \right\|_1$

we solve the constrained problem

- $ightharpoonup
 V = \Delta_d$ (probability simplex)
- $lacksquare \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i)$ for $oldsymbol{p} \in \Delta_d$

FTRL update (EG):

$$p_{t+1}(i) = \frac{\exp\left(-\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{p}_s)_i\right)}{\sum_{j=1}^{d} \exp\left(-\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{p}_s)_j\right)}$$

strongly convex w.r.t. $\left\| \cdot \right\|_1$

we solve the constrained problem

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous iterate

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^{\top} \nabla \ell_t(\boldsymbol{w}_t)$$

Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous iterate

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\boldsymbol{\psi}}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$$

Projected update:

1.
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^{\top} \nabla \ell_t(\boldsymbol{w}_t)$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous iterate

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{V}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \nabla \ell_t(\mathbf{w}_t)$$

Projected update:

1.
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^{\top} \nabla \ell_t(\boldsymbol{w}_t)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

Assume ψ is strongly convex

Assume ψ is strongly convex

$$m{w}_{t+1}' = \operatorname*{argmin}_{m{w} \in \mathbb{R}^d} B_{\psi}(m{w}, m{w}_t) + \eta_t m{w}^{\top} m{g}_t$$
 $(m{g}_t = \nabla \ell_t(m{w}_t))$

Assume ψ is strongly convex

$$\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13/14

Assume ψ is strongly convex

$$\mathbf{w}'_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) + \mathbf{w}^{\top} (\eta_t \mathbf{g}_t - \nabla \psi(\mathbf{w}_t))$$

 $= \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \psi(\boldsymbol{w}) + \boldsymbol{w}^{\top} \Big(\eta_t \, \boldsymbol{g}_t - \nabla \psi(\boldsymbol{w}_t) \Big)$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14

Assume ψ is strongly convex

$$\mathbf{w}'_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) + \mathbf{w}^{\top} (\eta_t \mathbf{g}_t - \nabla \psi(\mathbf{w}_t))$$

We use
$$w'_{t+1} = \underset{w}{\operatorname{argmin}} \left(\psi(w) + w^{\top} \left(\eta_t \, g_t - \nabla \psi(w_t) \right) \right) = \underset{w}{\operatorname{argmax}} \left(w^{\top} \theta_{t+1} - \psi(w) \right)$$
 for $\theta_{t+1} = \nabla \psi(w_t) - \eta_t \, g_t$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13/14

 $w \in \mathbb{R}^d$

Assume ψ is strongly convex

$$\mathbf{w}'_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) + \mathbf{w}^{\top} (\eta_t \mathbf{g}_t - \nabla \psi(\mathbf{w}_t))$$

13 / 14

We use
$$\mathbf{w}_{t+1}' = \underset{\mathbf{w}}{\operatorname{argmin}} \left(\psi(\mathbf{w}) + \mathbf{w}^{\top} \left(\eta_t \, \mathbf{g}_t - \nabla \psi(\mathbf{w}_t) \right) \right) = \underset{\mathbf{w}}{\operatorname{argmax}} \left(\mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} - \psi(\mathbf{w}) \right)$$
 for $\boldsymbol{\theta}_{t+1} = \nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t$
$$\mathbf{w}_{t+1}' = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1}) = \nabla \psi^{\star} \left(\nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t \right)$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left(-\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

1.
$$\mathbf{w}'_{t+1} = \nabla \psi^* \Big(\nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t \Big)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left(-\sum_{s=1}^t \boldsymbol{g}_s \right)$$

- 2. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$
- $ightharpoonup
 abla \psi^\star$ maps gradients to iterates $oldsymbol{w}_t$

- 1. $\boldsymbol{w}'_{t+1} = \nabla \psi^* \Big(\nabla \psi(\boldsymbol{w}_t) \eta_t \, \boldsymbol{g}_t \Big)$
- 2. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left(-\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $ightharpoonup
 abla \psi^{\star}$ maps gradients to iterates $oldsymbol{w}_t$
- $\triangleright \nabla \psi$ maps iterates to gradients

- 1. $\mathbf{w}'_{t+1} = \nabla \psi^* \Big(\nabla \psi(\mathbf{w}_t) \eta_t \, \mathbf{g}_t \Big)$
- 2. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_{t+1}')$

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^{\star} \left(-\sum_{s=1}^{t} \boldsymbol{g}_{s} \right)$$

- 2. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$
- $\triangleright \nabla \psi^*$ maps gradients to iterates w_t
- $\nabla \psi$ maps iterates to gradients
- lacktriangle FTRL updates a state variable $-\sum g_s$ and maps it to iterates when needed

1.
$$\mathbf{w}'_{t+1} = \nabla \psi^* \Big(\nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t \Big)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left(-\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $\triangleright \nabla \psi^*$ maps gradients to iterates w_t
- $\nabla \psi$ maps iterates to gradients
- lacktriangle FTRL updates a state variable $-\sum oldsymbol{g}_s$ and maps it to iterates when needed
- OMD maps iterates back to gradients before each update

- 1. $\mathbf{w}'_{t+1} = \nabla \psi^* \Big(\nabla \psi(\mathbf{w}_t) \eta_t \, \mathbf{g}_t \Big)$
- 2. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$

Nicolò Cesa-Bianchi Lecture 2

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left(-\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $\triangleright \nabla \psi^*$ maps gradients to iterates w_t
- $\triangleright \nabla \psi$ maps iterates to gradients
- lacktriangle FTRL updates a state variable $-\sum oldsymbol{g}_s$ and maps it to iterates when needed
- OMD maps iterates back to gradients before each update
- OMD and FTRL have similar regret bounds in many cases

- 1. $\boldsymbol{w}_{t+1}' = \nabla \psi^* \Big(\nabla \psi(\boldsymbol{w}_t) \eta_t \, \boldsymbol{g}_t \Big)$
- 2. $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$

1.
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left(-\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2.
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $\triangleright \nabla \psi^*$ maps gradients to iterates w_t
- $\triangleright \nabla \psi$ maps iterates to gradients
- lacktriangle FTRL updates a state variable $-\sum oldsymbol{g}_s$ and maps it to iterates when needed
- OMD maps iterates back to gradients before each update
- OMD and FTRL have similar regret bounds in many cases
- In certain cases, FTRL works better than OMD when using dynamic learning rates

1. $\mathbf{w}'_{t+1} = \nabla \psi^* \Big(\nabla \psi(\mathbf{w}_t) - \eta_t \mathbf{g}_t \Big)$ 2. $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{V}} B_{\psi}(\mathbf{w}, \mathbf{w}'_{t+1})$