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Follow the Regularized Leader

» If losses lack curvature, FTL is unstable

> We can introduce curvature using a real-valued regularizer 1

> w;y = argminy(w) + Z ls(

weV

» Example: the SVM objective function is argmln = ||wH2 + — Zﬁt
mais

v

o . A
If ¢; are all convex, this is equivalent to FTL over A-strongly convex losses g 1115 + 2

v

How can we solve this constrained optimization problem?
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FTRL with linearized losses

T
» Linearized regret: Rp(u Z (Et wy) — l(u ) ZV& wt wt — u)
t=1
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FTRL with linearized losses

T
» Linearized regret: Rp(u Z (Et wy) — l(u ) ZV& wt wt — u)
t=1

» Pretend all losses are linear: £}(w) = w ' V{;(w;)
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FTRL with linearized losses

T
» Linearized regret: Rp(u Z (Et wy) — l(u ) ZV& wt wt — u)

t=1
» Pretend all losses are linear: £}(w) = w ' V{;(w;)
> FTRL with linearized losses:
w1 = argmin Y (w) + ZE' = argmin ¢ (w) + Z 'wTVE (wy)
weV weV s=1
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FTRL with linearized losses

T
» Linearized regret: Rp(u Z (Et wy) — l(u ) ZV& wt wt — u)

t=1
» Pretend all losses are linear: £}(w) = w ' V{;(w;)
> FTRL with linearized losses:
w1 = argmin Y (w) + Zﬁ' = argmin ¢ (w) + Z w! Vi (wy)
weV weV

> We still have a constrained opt|m|zat|on problem to solve
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Bregman divergences

> Assume v is convex
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Bregman divergences

> Assume v is convex
> Bregman divergence: By (u,w) = 1(u) — (w) — Vih(w) " (u — w)
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Bregman divergences
> Assume v is convex

> Bregman divergence: By (u,w) = 1(u) — (w) — Vih(w) " (u — w)
» Error in first-order Taylor expansion of v around w
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Bregman divergences

> Assume v is convex
> Bregman divergence: By (u,w) = 1(u) — (w) — Vih(w) " (u — w)
» Error in first-order Taylor expansion of v around w

» If 9 is p-strongly convex w.r.t. ||-||, then By (u, w) > % |u —w|?
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Bregman divergences

> Assume v is convex

> Bregman divergence: By (u,w) = 1(u) — (w) — Vih(w) " (u — w)
» Error in first-order Taylor expansion of v around w

| 2

If 1 is u-strongly convex w.r.t. |||

, then By (u,w) > % |u — wl?

1
» If ¢ is twice differentiable, then By (u,w) = §(u —w) ' V(&) (u — w)

for some £ on the line segment joining u and w
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Bregman divergences

vvyYyy

v

Assume 1) is convex
Bregman divergence: B (u, w) = 1(u) — (w) — Vih(w) " (u — w)
Error in first-order Taylor expansion of ¢ around w

If 1 is u-strongly convex w.r.t. |||

, then By (u,w) > % |u — wl?

1
If 1) is twice differentiable, then By (u, w) = §(u —w) ' V(&) (u — w)

for some £ on the line segment joining u and w

If =3 ||||§ then By (u,w) = 3 [lu — ng squared Euclidean distance
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Bregman divergences

vvyYyy

v

Assume 1) is convex
Bregman divergence: B (u, w) = 1(u) — (w) — Vih(w) " (u — w)
Error in first-order Taylor expansion of ¢ around w

If 1) is pi-strongly convex w.r.t. [|-||, then By (u,w) > % |u — wl?

1
If 1) is twice differentiable, then By (u, w) = §(u —w) ' V(&) (u — w)
for some £ on the line segment joining u and w
If =3 ||||§ then By (u,w) = 3 [lu — ng squared Euclidean distance

Ay is the d-dimensional probability simplex
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Bregman divergences

vvyYyy

v

Assume 1) is convex
Bregman divergence: B (u, w) = 1(u) — (w) — Vih(w) " (u — w)
Error in first-order Taylor expansion of ¢ around w

If i

1
If 1) is twice differentiable, then By (u, w) = §(u —w) ' V(&) (u — w)

for some £ on the line segment joining u and w

1% 2
(u,w) = & u—w]

If =3 ||2 then By (u,w) = 3 [lu — wH2 squared Euclidean distance

» A, is the d-dimensional probability simplex

> If pe Ay and (p) = >, p(i)Inp(i), then By(p,q) = >; p(i) ln% KL-divergence
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Bregman projections

Theorem

Let f : R? — R be strictly convex and differentiable in V.

Then argmin f(w) = argmin By(w, w’)

where w' = argmin f(w)
wevV weV w
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Bregman projections

Theorem

Let f : R? — R be strictly convex and differentiable in V.

Then argmin f(w) = argmin By(w, w') where w' = argmin f(w)
weV weV

w1 = argmin ¢ (w) + Z w! Vi (w,) = argminy(w) + w' Gy

f(w)
t
where Gy = Z Vi (ws)
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Bregman projections

Theorem

Let f : R? — R be strictly convex and differentiable in V.

Then argmin f(w) = argmin By(w, w') where w' = argmin f(w)
wevV weV w

w1 = argmin ¢ (w) + Z w! Vi (w,) = argminy(w) + w' Gy

f(w)
t
where G; = Z Vis(wy)

Fact: By = B, (because By, is invariant with respect to addition of linear functions)
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FTRL update in two steps:

L wi, = argmlnw )+ ZwTVE (ws)
s=1
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FTRL update in two steps:

L wi, = argmlnw )+ waTVE (ws)

s=1
2. wyy1 = argmin By (w, w;, ;) (Bregman projection)
wevV
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Convex duality

> Assume 1) is convex
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Convex duality

> Assume 1) is convex

> wi, = arglf]nin (1!1(117) + 'wTGt> = argmax (wTOtH - ¢(w)> for 0,11 = -G
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Convex duality

> Assume 1) is convex

> w;,, = argmin (d}(w) + 'wTGt) = argmax (wTOtH — ¢(w)> for 0,11 = —Gy
w w

» The convex function ¢* is the convex conjugate of 1

*(0) = max ('wTB — w('w))
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Convex duality

> Assume 1) is convex
> w;,, = argmin (1/}(11;) + 'wTGt) = argmax (wTOtH - ¢(w)> for 0,11 = -Gy
> The convexu;unction 1* is the convex c:;\jugate of ¥
P (0) = max ('wTB — w('w))
> If v is differentiable

i(ﬂf@ —(w)) =0 —¢'(w) =0 iff ¢'(w)=20
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Convex duality

\4

Assume 1 is convex

> wi, = argur}qin (d}(w) + 'wTGt) = argmax (wTOtH — ¢(w)> for 0,11 = —Gy

v

The convex function ¥* is the convex conjugate of ¥
* _ Tp
¥*(0) = max (w0 — v(w))
> If v is differentiable
;(we —Y(w)) =0 —¢' (w) =0 iff ¢'(w)=40
w

> w* = argmax (wf — P (w))
weR
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Convex duality

\4

Assume 1 is convex

> wi, = arglf]nin (d}(w) + 'wTGt) = argmax (wTOtH — ¢(w)> for 0,11 = —Gy

v

The convex function ¥* is the convex conjugate of ¥
* _ Tp
¥*(0) = max (w0 — v(w))
> If v is differentiable
;(we —Y(w)) =0 —¢' (w) =0 iff ¢'(w)=40
w

> w* = argmax (wf — P (w))
weR

> p(w") = w'f —¢*(0)
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Convex duality
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Strongly convex regularizers

> wi, = argglax (wTBtH — w(w)>
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Strongly convex regularizers

> wi, = argglax ('wTBtH — w(w)>

> )" (6¢11) = max (wT9t+1 - ¢(w)>
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Strongly convex regularizers

> wp = argax (’wTetH - w(w))
> ¥ (0p41) = max (wTHtH — w(w)>

Theorem
If ¢ is strongly convex, then 1* is differentiable and max ('wTH — 1/J(w)> is achieved at

w* = Vi (0)
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Strongly convex regularizers

> wp = argax (’wTetH - w(w))
> ¥ (0p41) = max (wTBtH - w(w)>

Theorem

If ¢ is strongly convex, then 1* is differentiable and max ('wTH — 1/J(w)> is achieved at
w* = Vy*(0)

This implies wj_; = V1/*(0,41) for 1 strongly convex
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FTRL update (for strongly convex regularizers)

1. 0441 = 6, — V{(w;) (gradient update)
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FTRL update (for strongly convex regularizers)

1. 0411 =6, — Vi (w;) (gradient update)
2. wi ;= V*(0441) (mirror mapping)
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FTRL update (for strongly convex regularizers)

1. 0411 =6, — Vi (w;) (gradient update)
2. wi ;= V*(0441) (mirror mapping)

3. w41 = argmin By, (w, w}, ;) (Bregman projection)
weV
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The Euclidean case: Lazy Online Gradient Descent

> = ﬁ 1113 strongly convex w.r.t. ||-|, (7 > 0 is a learning rate)
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The Euclidean case: Lazy Online Gradient Descent

> = ﬁ 1113 strongly convex w.r.t. ||-|, (7 > 0 is a learning rate)

2
> =1
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The Euclidean case: Lazy Online Gradient Descent

> = ﬁ 1113 strongly convex w.r.t. ||-|, (7 > 0 is a learning rate)
2

> =13

> Vy*(0) =nb
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The Euclidean case: Lazy Online Gradient Descent

> = ﬁ 1113 strongly convex w.r.t. ||-|, (7 > 0 is a learning rate)
2

> =13

> Vy*(0) =nb

FTRL update (Projected Lazy OGD):

t
L wp, = _UZVES("US)

s=1
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The Euclidean case: Lazy Online Gradient Descent

> = ﬁ 1113 strongly convex w.r.t. ||-|, (7 > 0 is a learning rate)
2

> =13

> Vy*(0) =nb

FTRL update (Projected Lazy OGD):
t
L wp, = _UZVES("US)

s=1

2. w1 = argmin |w — w}, ||, standard Euclidean projection onto V C R?
wevV
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The Entropic case: Exponentiated Gradient

> V =A, (probability simplex)
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The Entropic case: Exponentiated Gradient

> V=Ay (probability simplex)

Zp )In p(1) for p e Ay strongly convex w.r.t. [|-[|;
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The Entropic case: Exponentiated Gradient

> V=Ay (probability simplex)

Zp )Inp(i) for p e Ay
> *(0) = Irjrelzgz (p 0—Y(p ) - 1n (Z () )
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The Entropic case: Exponentiated Gradient

> V=Ay (probability simplex)

Zp )Inp(i) for p e Ay
* - n0(7)
>¢(0)—11;r€1%)2(p 0—Y(p ) ln(Ze >
. v enf(i)
VO = i
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The Entropic case: Exponentiated Gradient

> V=Ay (probability simplex)

ZP )Inp(i) for p € Ay
> ¢*(0)—Ir€1%x (p 0—Y(p ) fln (Ze”9(1>
PEAy
. v eno (@)
VO = =y

FTRL update (EG):
exp (—n kot Ve(p,):)

S exp (=0 i Ve(p,);)

Pit1(i) =
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Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous
iterate

wy41 = argmin By (w, w;) + n 'wTVEt('wt)
weV
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Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous
iterate

wy41 = argmin By (w, w;) + n 'wTVEt('wt)
weV

Projected update:

1. w;_H = argwmin B¢(w, wy) + M wTVEt(wt)
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Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous
iterate

wy41 = argmin By (w, w;) + n 'wTVEt('wt)
weV

Projected update:
1. w;_H = argmin By, (w, wy) + n¢ wTVEt(wt)
w

. /
2. wiypq = argmin By (w, wi )
weV
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OMD: computation of the update

Assume 1) is strongly convex
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OMD: computation of the update

Assume 1) is strongly convex

wyy = argefgin By(w,wy) + nw' g,
w
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OMD: computation of the update

Assume 1) is strongly convex

wj ;| = argmin By (w, w;) + nw' g,

(g¢ = Vi(wy))

weR?
= argmin g (w) — P(wy) — Vip(wy) " (w — wy) +nw’ g,
weR?
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OMD: computation of the update

Assume 1) is strongly convex

wj ;| = argmin By (w, w;) + nw' g,

(g¢ = Vi(wy))

weRd
= argmin ¢(w) — Y(w;) — Vip(w) " (w — wy) + pw ' g,
weR4
_ ; T
= argmin ¢ (w) + w (nt g, — V@Z)('wt))
weRd
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OMD: computation of the update

Assume 1) is strongly convex

wQH = argmin Bq/} (w, 'wt) + nthgt (gt = Vét('wt))
weR4
= argmin ¢/(w) — Y (w;) = Vi (wy) ' (w —w) + nw’ g,
weR
_ : T
= argmin ¢ (w) + w (nt g, — V@Z)('wt))
weRd

We use wj |, = argmin (W’w) +w' (77t 9 — Vi/’(‘“t))) = argmax (wT9t+1 - w(w)>
fOI’ 0t+1 = VT/J('LUt) — Nt gy
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OMD: computation of the update

Assume 1) is strongly convex

wQH = argmin Bq/} (w, 'wt) + nthgt (gt = Vét('wt))
weRd
= argmin ¢/(w) — Y (w;) = Vi (wy) ' (w —w) + nw’ g,
weR

= argmin ¢(w) + w ' (T}t g; — V?/)('wt))

weRd

We use w},; = argmin (Y (w) +w (n.g, — Vi(wy))) = argmax (w' 61 — Y(w))
for 0111 = Vip(wy) —ne gy
Wiy = V* (1) = Vi (Vo (w,) - e g,)
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Some differences between FTRL and OMD

¢
L wi,, =Vy* (— ng> Lo wi, = vzp*(w;(wt) — 1 gt)
s=1

2. w41 = argmin By (w, w, ;)

— : /
2. wiypq = argmin By (w, wi ) weV

weV
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Some differences between FTRL and OMD

t
L 'w2+1 = Vy* (‘ ZQg)
s=1

. /
2. wiypq = argmin By (w, wi )
weV

> V* maps gradients to iterates wy

Nicolo Cesa-Bianchi
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1L wy,, = vw*(wz(wt) — gt)

2. w41 = argmin By (w, w, ;)

weV
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Some differences between FTRL and OMD

t
L whyy = V' (— ng) L wiyy = Vi (Vib(wi) = megy)
2 in By (w,w, )
. . w = argmin w, w
2. wyy1 = argmin By (w, wy ) bl fev AT e

weV
> V* maps gradients to iterates wy

> V1 maps iterates to gradients
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Some differences between FTRL and OMD

¢
L whyy = V' (— ng) L wiyy = Vi (Vib(wi) = megy)
s=1
. 2. = in B /
2. wyy1 = argmin By (w, wy ) Wi+ arg;n;n v (W, wiy)

weV
> V* maps gradients to iterates wy

> V1 maps iterates to gradients
¢
» FTRL updates a state variable — ng and maps it to iterates when needed
s=1
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Some differences between FTRL and OMD

¢

L whyy = V' (— ng) L wiyy = Vi (Vib(wi) = megy)
s=1

2. wyy1 = argmin By (w, wy ) Wit1 arl%énvm (W, Wi q)

weV
> V* maps gradients to iterates wy

> V1 maps iterates to gradients
¢
» FTRL updates a state variable — ng and maps it to iterates when needed
s=1
» OMD maps iterates back to gradients before each update
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Some differences between FTRL and OMD

t
L whyy = V' (— ng) L wiyy = Vi (Vib(wi) = megy)
s=1

2. w41 = argmin By (w, w, ;)

. /
2. wiypq = argmin By (w, wi ) weV

weV
> V* maps gradients to iterates wy

> V1 maps iterates to gradients
¢
» FTRL updates a state variable — ng and maps it to iterates when needed
s=1
» OMD maps iterates back to gradients before each update

» OMD and FTRL have similar regret bounds in many cases
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Some differences between FTRL and OMD

t
L whyy = V' (— ng) L wiyy = Vi (Vib(wi) = megy)
s=1

2. wyq1 = argmin By (w, w}, ;)

. /
2. wiypq = argmin By (w, wi ) weV

weV
> V* maps gradients to iterates wy

> V1 maps iterates to gradients
t
» FTRL updates a state variable — ng and maps it to iterates when needed
s=1
» OMD maps iterates back to gradients before each update

» OMD and FTRL have similar regret bounds in many cases

» In certain cases, FTRL works better than OMD when using dynamic learning rates
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