# Online Learning Lecture 2

Nicolò Cesa-Bianchi Università degli Studi di Milano

#### Follow the Regularized Leader

- ▶ If losses lack curvature, FTL is unstable
- $\blacktriangleright$  We can introduce curvature using a real-valued regularizer  $\psi$
- $\mathbf{v}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{V}} \psi(\mathbf{w}) + \sum_{s=1}^{t} \ell_s(\mathbf{w})$
- Example: the SVM objective function is  $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{m} \sum_{t=1}^m \ell_t(\boldsymbol{w})$
- ▶ If  $\ell_t$  are all convex, this is equivalent to FTL over  $\lambda$ -strongly convex losses  $\frac{\lambda}{2} \|\cdot\|_2^2 + \ell_t$
- ▶ How can we solve this constrained optimization problem?

▶ Linearized regret: 
$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t - \boldsymbol{u})$$



Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

▶ Linearized regret: 
$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t - \boldsymbol{u})$$

 $lackbox{P}$  Pretend all losses are linear:  $\ell_t'(oldsymbol{w}) = oldsymbol{w}^ op 
abla \ell_t(oldsymbol{w}_t)$ 



▶ Linearized regret: 
$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t - \boldsymbol{u})$$

- ▶ Pretend all losses are linear:  $\ell_t'(\mathbf{w}) = \mathbf{w}^\top \nabla \ell_t(\mathbf{w}_t)$
- FTRL with linearized losses:

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \ell_s'(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

Lecture 2 Mathematics of Machine Learning

- ▶ Linearized regret:  $R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) \ell_t(\boldsymbol{u})\right) \leq \sum_{t=1}^T \nabla \ell_t(\boldsymbol{w}_t)^\top (\boldsymbol{w}_t \boldsymbol{u})$
- ▶ Pretend all losses are linear:  $\ell_t'(\boldsymbol{w}) = \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$
- FTRL with linearized losses:

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \ell_s'(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

▶ We still have a constrained optimization problem to solve

ightharpoonup Assume  $\psi$  is convex



- Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$



- ightharpoonup Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- $\triangleright$  Error in first-order Taylor expansion of  $\psi$  around w



- ightharpoonup Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- $\blacktriangleright$  Error in first-order Taylor expansion of  $\psi$  around w
- ▶ If  $\psi$  is  $\mu$ -strongly convex w.r.t.  $\|\cdot\|$ , then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$



- ightharpoonup Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- $\triangleright$  Error in first-order Taylor expansion of  $\psi$  around w
- ▶ If  $\psi$  is  $\mu$ -strongly convex w.r.t.  $\|\cdot\|$ , then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- If  $\psi$  is twice differentiable, then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^{2} \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$  for some  $\boldsymbol{\xi}$  on the line segment joining  $\boldsymbol{u}$  and  $\boldsymbol{w}$

- ightharpoonup Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- $\triangleright$  Error in first-order Taylor expansion of  $\psi$  around w
- ▶ If  $\psi$  is  $\mu$ -strongly convex w.r.t.  $\|\cdot\|$ , then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- If  $\psi$  is twice differentiable, then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^{2} \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$  for some  $\boldsymbol{\xi}$  on the line segment joining  $\boldsymbol{u}$  and  $\boldsymbol{w}$
- ▶ If  $\psi = \frac{1}{2} \| \cdot \|_2^2$ , then  $B_{\psi}(u, w) = \frac{1}{2} \| u w \|_2^2$

squared Euclidean distance

- ightharpoonup Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- $\triangleright$  Error in first-order Taylor expansion of  $\psi$  around w
- ▶ If  $\psi$  is  $\mu$ -strongly convex w.r.t.  $\|\cdot\|$ , then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- ▶ If  $\psi$  is twice differentiable, then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^2 \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$ for some  $\xi$  on the line segment joining u and w
- ► If  $\psi = \frac{1}{2} \| \cdot \|_2^2$ , then  $B_{\psi}(u, w) = \frac{1}{2} \| u w \|_2^2$
- $ightharpoonup \Delta_d$  is the d-dimensional probability simplex

squared Euclidean distance

Lecture 2 Mathematics of Machine Learning

- ightharpoonup Assume  $\psi$  is convex
- ► Bregman divergence:  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- $\triangleright$  Error in first-order Taylor expansion of  $\psi$  around w
- ▶ If  $\psi$  is  $\mu$ -strongly convex w.r.t.  $\|\cdot\|$ , then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) \geq \frac{\mu}{2} \|\boldsymbol{u} \boldsymbol{w}\|^2$
- ▶ If  $\psi$  is twice differentiable, then  $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2}(\boldsymbol{u} \boldsymbol{w})^{\top} \nabla^2 \psi(\boldsymbol{\xi})(\boldsymbol{u} \boldsymbol{w})$ for some  $\xi$  on the line segment joining u and w
- ► If  $\psi = \frac{1}{2} \| \cdot \|_2^2$ , then  $B_{\psi}(u, w) = \frac{1}{2} \| u w \|_2^2$

squared Euclidean distance

- $ightharpoonup \Delta_d$  is the d-dimensional probability simplex
- ▶ If  $p \in \Delta_d$  and  $\psi(p) = \sum_i p(i) \ln p(i)$ , then  $B_{\psi}(p,q) = \sum_i p(i) \ln \frac{p(i)}{q(i)}$

KL-divergence

#### Bregman projections

#### Theorem

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be strictly convex and differentiable in  $\mathbb{V}$ .

Then 
$$\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} f(\boldsymbol{w}) = \underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} B_f(\boldsymbol{w}, \boldsymbol{w}')$$
 where  $\boldsymbol{w}' = \underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})$ 



#### Bregman projections

#### Theorem

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be strictly convex and differentiable in  $\mathbb{V}$ .

Then  $\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} f(\boldsymbol{w}) = \underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} B_f(\boldsymbol{w}, \boldsymbol{w}') \text{ where } \boldsymbol{w}' = \underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})$ 

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_{s}(\boldsymbol{w}_{s}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \underbrace{\psi(\boldsymbol{w}) + \boldsymbol{w}^{\top} \boldsymbol{G}_{t}}_{f(\boldsymbol{w})}$$

where 
$$oldsymbol{G}_t = \sum_{s=1}^t 
abla \ell_s(oldsymbol{w}_s)$$

#### Bregman projections

#### Theorem

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be strictly convex and differentiable in  $\mathbb{V}$ .

Then 
$$\underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} f(\boldsymbol{w}) = \underset{\boldsymbol{w} \in \mathbb{V}}{\operatorname{argmin}} B_f(\boldsymbol{w}, \boldsymbol{w}') \text{ where } \boldsymbol{w}' = \underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})$$

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_{s}(\boldsymbol{w}_{s}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \underbrace{\psi(\boldsymbol{w}) + \boldsymbol{w}^{\top} \boldsymbol{G}_{t}}_{f(\boldsymbol{w})}$$

where 
$$oldsymbol{G}_t = \sum_{s=1}^t 
abla \ell_s(oldsymbol{w}_s)$$

Fact:  $B_f \equiv B_{\psi}$  (because  $B_{\psi}$  is invariant with respect to addition of linear functions)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

#### FTRL update in two steps:

1. 
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$



#### FTRL update in two steps:

1. 
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} \psi(\boldsymbol{w}) + \sum_{s=1}^{t} \boldsymbol{w}^{\top} \nabla \ell_s(\boldsymbol{w}_s)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_{t+1}')$$
 (Bregman projection)



ightharpoonup Assume  $\psi$  is convex



6/14

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

- ightharpoonup Assume  $\psi$  is convex



- ightharpoonup Assume  $\psi$  is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left( \psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left( \mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function  $\psi^*$  is the convex conjugate of  $\psi$

$$\psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left( \boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$





- ightharpoonup Assume  $\psi$  is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left( \psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left( \mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function  $\psi^*$  is the convex conjugate of  $\psi$

$$\psi^*(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left( \boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

ightharpoonup If  $\psi$  is differentiable

$$\frac{\partial}{\partial w}(w\theta - \psi(w)) = \theta - \psi'(w) = 0$$
 iff  $\psi'(w) = \theta$ 



- ightharpoonup Assume  $\psi$  is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left( \psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left( \mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function  $\psi^*$  is the convex conjugate of  $\psi$

$$\psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left( \boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

 $\triangleright$  If  $\psi$  is differentiable

$$\frac{\partial}{\partial w}(w\theta - \psi(w)) = \theta - \psi'(w) = 0$$
 iff  $\psi'(w) = \theta$ 

Nicolò Cesa-Bianchi

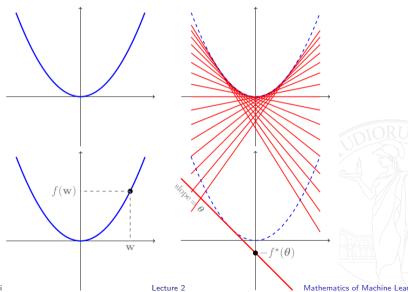
- ightharpoonup Assume  $\psi$  is convex
- $\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left( \psi(\mathbf{w}) + \mathbf{w}^{\top} \mathbf{G}_{t} \right) = \operatorname*{argmax}_{\mathbf{w}} \left( \mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} \psi(\mathbf{w}) \right) \text{ for } \boldsymbol{\theta}_{t+1} = -\mathbf{G}_{t}$
- ▶ The convex function  $\psi^*$  is the convex conjugate of  $\psi$

$$\psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{w}} \left( \boldsymbol{w}^{\top} \boldsymbol{\theta} - \psi(\boldsymbol{w}) \right)$$

 $\blacktriangleright$  If  $\psi$  is differentiable

$$\frac{\partial}{\partial w}(w\theta - \psi(w)) = \theta - \psi'(w) = 0$$
 iff  $\psi'(w) = \theta$ 

- $\mathbf{v}^* = \operatorname{argmax} (w\theta \psi(w))$



Nicolò Cesa-Bianchi

Mathematics of Machine Learning

7/14



$$\blacktriangleright \psi^{\star}(\boldsymbol{\theta}_{t+1}) = \max_{\boldsymbol{w}} \left( \boldsymbol{w}^{\top} \boldsymbol{\theta}_{t+1} - \psi(\boldsymbol{w}) \right)$$



Lecture 2

#### Theorem

If  $\psi$  is strongly convex, then  $\psi^{\star}$  is differentiable and  $\max_{m{w}} \left( m{w}^{\top} m{\theta} - \psi(m{w}) \right)$  is achieved at

$$\boldsymbol{w}^* = \nabla \psi^*(\boldsymbol{\theta})$$

$$\qquad \qquad \psi^{\star}(\boldsymbol{\theta}_{t+1}) = \max_{\boldsymbol{w}} \left( \boldsymbol{w}^{\top} \boldsymbol{\theta}_{t+1} - \psi(\boldsymbol{w}) \right)$$

#### Theorem

If  $\psi$  is strongly convex, then  $\psi^\star$  is differentiable and  $\max_{m{w}} \left( m{w}^ op m{\theta} - \psi(m{w}) \right)$  is achieved at

$$\boldsymbol{w}^* = \nabla \psi^*(\boldsymbol{\theta})$$

This implies  $\mathbf{w}'_{t+1} = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1})$  for  $\psi$  strongly convex

# FTRL update (for strongly convex regularizers)

1. 
$$\theta_{t+1} = \theta_t - \nabla \ell_t(\boldsymbol{w}_t)$$
 (gradient update)



# FTRL update (for strongly convex regularizers)

- 1.  $\theta_{t+1} = \theta_t \nabla \ell_t(\boldsymbol{w}_t)$  (gradient update)
- 2.  $\mathbf{w}_{t+1}' = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1})$  (mirror mapping)



# FTRL update (for strongly convex regularizers)

- 1.  $\theta_{t+1} = \theta_t \nabla \ell_t(\boldsymbol{w}_t)$  (gradient update)
- 2.  $\mathbf{w}'_{t+1} = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1})$  (mirror mapping)
- 3.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_{t+1}')$  (Bregman projection)



Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

## The Euclidean case: Lazy Online Gradient Descent

$$\blacktriangleright \psi = \frac{1}{2\eta} \|\cdot\|_2^2$$

strongly convex w.r.t.  $\left\|\cdot\right\|_2$  ( $\eta>0$  is a learning rate)



## The Euclidean case: Lazy Online Gradient Descent

- $\psi = \frac{1}{2\eta} \| \cdot \|_2^2$   $\psi^* = \frac{\eta}{2} \| \cdot \|_2^2$

strongly convex w.r.t.  $\|\cdot\|_2$  ( $\eta > 0$  is a learning rate)



## The Euclidean case: Lazy Online Gradient Descent

- $\blacktriangleright \psi = \frac{1}{2\eta} \|\cdot\|_2^2$
- $\blacktriangleright \psi^{\star} = \frac{\eta}{2} \left\| \cdot \right\|_2^2$

strongly convex w.r.t.  $\|\cdot\|_2$  ( $\eta > 0$  is a learning rate)



# The Euclidean case: Lazy Online Gradient Descent

- $\psi = \frac{1}{2n} \|\cdot\|_2^2$
- $\blacktriangleright \psi^{\star} = \frac{\eta}{2} \| \cdot \|_2^2$

FTRL update (Projected Lazy OGD):

1. 
$$\boldsymbol{w}'_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{w}_s)$$

strongly convex w.r.t.  $\left\|\cdot\right\|_2$  ( $\eta>0$  is a learning rate)



10 / 14

# The Euclidean case: Lazy Online Gradient Descent

 $\blacktriangleright \psi = \frac{1}{2n} \| \cdot \|_2^2$ 

strongly convex w.r.t.  $\|\cdot\|_2$  ( $\eta > 0$  is a learning rate)

- $\psi^* = \frac{\eta}{2} \| \cdot \|_2^2$

### FTRL update (Projected Lazy OGD):

- 1.  $\boldsymbol{w}'_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{w}_s)$
- 2.  $w_{t+1} = \operatorname*{argmin}_{w \in \mathbb{V}} \|w w'_{t+1}\|_2$  standard Euclidean projection onto  $\mathbb{V} \subset \mathbb{R}^d$

Nicolò Cesa-Bianchi

 $ightharpoonup \mathbb{V} = \Delta_d$  (probability simplex)



- $\mathbb{V} = \Delta_d$  (probability simplex)
- $lackbox{lackbox{\psi}} \ \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i) \qquad \qquad ext{for } oldsymbol{p} \in \Delta_d$

strongly convex w.r.t.  $\left\| \cdot \right\|_1$ 



- $\mathbb{V} = \Delta_d$  (probability simplex)
- $lackbox{lackbox{\psi}} \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i)$  for  $oldsymbol{p} \in \Delta_d$
- $\blacktriangleright \ \psi^{\star}(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta_d} \left( \boldsymbol{p}^{\top} \boldsymbol{\theta} \psi(\boldsymbol{p}) \right) = \frac{1}{\eta} \ln \left( \sum_i e^{\eta \theta(i)} \right)$

strongly convex w.r.t.  $\left\| \cdot \right\|_1$ 

we solve the constrained problem  $% \left\{ 1,2,...,n\right\}$ 



- $\mathbb{V} = \Delta_d$  (probability simplex)
- $lackbox{lackbox{\psi}} \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i)$  for  $oldsymbol{p} \in \Delta_d$

strongly convex w.r.t.  $\left\| \cdot \right\|_1$ 

we solve the constrained problem



- $ightharpoonup 
  V = \Delta_d$  (probability simplex)
- $lacksquare \psi(oldsymbol{p}) = rac{1}{\eta} \sum_i p(i) \ln p(i)$  for  $oldsymbol{p} \in \Delta_d$

FTRL update (EG):

$$p_{t+1}(i) = \frac{\exp\left(-\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{p}_s)_i\right)}{\sum_{j=1}^{d} \exp\left(-\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{p}_s)_j\right)}$$

strongly convex w.r.t.  $\left\| \cdot \right\|_1$ 

we solve the constrained problem

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

#### Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous iterate

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^{\top} \nabla \ell_t(\boldsymbol{w}_t)$$



#### Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous iterate

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\boldsymbol{\psi}}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$$

### Projected update:

1. 
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^{\top} \nabla \ell_t(\boldsymbol{w}_t)$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning



### Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous iterate

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{V}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \nabla \ell_t(\mathbf{w}_t)$$

### Projected update:

1. 
$$\boldsymbol{w}_{t+1}' = \operatorname*{argmin}_{\boldsymbol{w}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \eta_t \, \boldsymbol{w}^{\top} \nabla \ell_t(\boldsymbol{w}_t)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$





Assume  $\psi$  is strongly convex



Assume  $\psi$  is strongly convex

$$m{w}_{t+1}' = \operatorname*{argmin}_{m{w} \in \mathbb{R}^d} B_{\psi}(m{w}, m{w}_t) + \eta_t m{w}^{\top} m{g}_t$$
  $(m{g}_t = \nabla \ell_t(m{w}_t))$ 



Assume  $\psi$  is strongly convex

$$\mathbf{w}'_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13/14

Assume  $\psi$  is strongly convex

$$\mathbf{w}'_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) + \mathbf{w}^{\top} (\eta_t \mathbf{g}_t - \nabla \psi(\mathbf{w}_t))$$

 $= \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \psi(\boldsymbol{w}) + \boldsymbol{w}^{\top} \Big( \eta_t \, \boldsymbol{g}_t - \nabla \psi(\boldsymbol{w}_t) \Big)$ 

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14

Assume  $\psi$  is strongly convex

$$\mathbf{w}'_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) + \mathbf{w}^{\top} (\eta_t \mathbf{g}_t - \nabla \psi(\mathbf{w}_t))$$

We use 
$$w'_{t+1} = \underset{w}{\operatorname{argmin}} \left( \psi(w) + w^{\top} \left( \eta_t \, g_t - \nabla \psi(w_t) \right) \right) = \underset{w}{\operatorname{argmax}} \left( w^{\top} \theta_{t+1} - \psi(w) \right)$$
 for  $\theta_{t+1} = \nabla \psi(w_t) - \eta_t \, g_t$ 

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13/14

 $w \in \mathbb{R}^d$ 

Assume  $\psi$  is strongly convex

$$\mathbf{w}'_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} B_{\psi}(\mathbf{w}, \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t \qquad (\mathbf{g}_t = \nabla \ell_t(\mathbf{w}_t))$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) - \psi(\mathbf{w}_t) - \nabla \psi(\mathbf{w}_t)^{\top} (\mathbf{w} - \mathbf{w}_t) + \eta_t \mathbf{w}^{\top} \mathbf{g}_t$$

$$= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \psi(\mathbf{w}) + \mathbf{w}^{\top} (\eta_t \mathbf{g}_t - \nabla \psi(\mathbf{w}_t))$$

13 / 14

We use 
$$\mathbf{w}_{t+1}' = \underset{\mathbf{w}}{\operatorname{argmin}} \left( \psi(\mathbf{w}) + \mathbf{w}^{\top} \left( \eta_t \, \mathbf{g}_t - \nabla \psi(\mathbf{w}_t) \right) \right) = \underset{\mathbf{w}}{\operatorname{argmax}} \left( \mathbf{w}^{\top} \boldsymbol{\theta}_{t+1} - \psi(\mathbf{w}) \right)$$
 for  $\boldsymbol{\theta}_{t+1} = \nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t$  
$$\mathbf{w}_{t+1}' = \nabla \psi^{\star}(\boldsymbol{\theta}_{t+1}) = \nabla \psi^{\star} \left( \nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t \right)$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left( -\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

1. 
$$\mathbf{w}'_{t+1} = \nabla \psi^* \Big( \nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t \Big)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$



1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left( -\sum_{s=1}^t \boldsymbol{g}_s \right)$$

- 2.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$
- $ightharpoonup 
  abla \psi^\star$  maps gradients to iterates  $oldsymbol{w}_t$

- 1.  $\boldsymbol{w}'_{t+1} = \nabla \psi^* \Big( \nabla \psi(\boldsymbol{w}_t) \eta_t \, \boldsymbol{g}_t \Big)$
- 2.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$



1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left( -\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $ightharpoonup 
  abla \psi^{\star}$  maps gradients to iterates  $oldsymbol{w}_t$
- $\triangleright \nabla \psi$  maps iterates to gradients

- 1.  $\mathbf{w}'_{t+1} = \nabla \psi^* \Big( \nabla \psi(\mathbf{w}_t) \eta_t \, \mathbf{g}_t \Big)$
- 2.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_{t+1}')$



1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^{\star} \left( -\sum_{s=1}^{t} \boldsymbol{g}_{s} \right)$$

- 2.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$
- $\triangleright \nabla \psi^*$  maps gradients to iterates  $w_t$
- $\nabla \psi$  maps iterates to gradients
- lacktriangle FTRL updates a state variable  $-\sum g_s$  and maps it to iterates when needed

1. 
$$\mathbf{w}'_{t+1} = \nabla \psi^* \Big( \nabla \psi(\mathbf{w}_t) - \eta_t \, \mathbf{g}_t \Big)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning

1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left( -\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $\triangleright \nabla \psi^*$  maps gradients to iterates  $w_t$
- $\nabla \psi$  maps iterates to gradients
- lacktriangle FTRL updates a state variable  $-\sum oldsymbol{g}_s$  and maps it to iterates when needed
- OMD maps iterates back to gradients before each update

- 1.  $\mathbf{w}'_{t+1} = \nabla \psi^* \Big( \nabla \psi(\mathbf{w}_t) \eta_t \, \mathbf{g}_t \Big)$
- 2.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$

Nicolò Cesa-Bianchi Lecture 2

1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left( -\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $\triangleright \nabla \psi^*$  maps gradients to iterates  $w_t$
- $\triangleright \nabla \psi$  maps iterates to gradients
- lacktriangle FTRL updates a state variable  $-\sum oldsymbol{g}_s$  and maps it to iterates when needed
- OMD maps iterates back to gradients before each update
- OMD and FTRL have similar regret bounds in many cases

- 1.  $\boldsymbol{w}_{t+1}' = \nabla \psi^* \Big( \nabla \psi(\boldsymbol{w}_t) \eta_t \, \boldsymbol{g}_t \Big)$
- 2.  $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$

1. 
$$\boldsymbol{w}_{t+1}' = \nabla \psi^* \left( -\sum_{s=1}^t \boldsymbol{g}_s \right)$$

2. 
$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}'_{t+1})$$

- $\triangleright \nabla \psi^*$  maps gradients to iterates  $w_t$
- $\triangleright \nabla \psi$  maps iterates to gradients
- lacktriangle FTRL updates a state variable  $-\sum oldsymbol{g}_s$  and maps it to iterates when needed
- OMD maps iterates back to gradients before each update
- OMD and FTRL have similar regret bounds in many cases
- In certain cases, FTRL works better than OMD when using dynamic learning rates

1.  $\mathbf{w}'_{t+1} = \nabla \psi^* \Big( \nabla \psi(\mathbf{w}_t) - \eta_t \mathbf{g}_t \Big)$ 2.  $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{V}} B_{\psi}(\mathbf{w}, \mathbf{w}'_{t+1})$