
Online Learning
Lecture 2

Nicolò Cesa-Bianchi
Università degli Studi di Milano



Follow the Regularized Leader

I If losses lack curvature, FTL is unstable
I We can introduce curvature using a real-valued regularizer ψ

I wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(w)

I Example: the SVM objective function is argmin
w∈V

λ

2 ‖w‖
2
2 + 1

m

m∑
t=1

`t(w)

I If `t are all convex, this is equivalent to FTL over λ-strongly convex losses λ2 ‖·‖
2
2 + `t

I How can we solve this constrained optimization problem?

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 1 / 14



FTRL with linearized losses

I Linearized regret: RT (u) =
T∑
t=1

(
`t(wt)− `t(u)

)
≤

T∑
t=1
∇`t(wt)>

(
wt − u

)

I Pretend all losses are linear: `′t(w) = w>∇`t(wt)
I FTRL with linearized losses:

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`′s(w) = argmin

w∈V
ψ(w) +

t∑
s=1

w>∇`s(ws)

I We still have a constrained optimization problem to solve

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 2 / 14



FTRL with linearized losses

I Linearized regret: RT (u) =
T∑
t=1

(
`t(wt)− `t(u)

)
≤

T∑
t=1
∇`t(wt)>

(
wt − u

)
I Pretend all losses are linear: `′t(w) = w>∇`t(wt)

I FTRL with linearized losses:

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`′s(w) = argmin

w∈V
ψ(w) +

t∑
s=1

w>∇`s(ws)

I We still have a constrained optimization problem to solve

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 2 / 14



FTRL with linearized losses

I Linearized regret: RT (u) =
T∑
t=1

(
`t(wt)− `t(u)

)
≤

T∑
t=1
∇`t(wt)>

(
wt − u

)
I Pretend all losses are linear: `′t(w) = w>∇`t(wt)
I FTRL with linearized losses:

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`′s(w) = argmin

w∈V
ψ(w) +

t∑
s=1

w>∇`s(ws)

I We still have a constrained optimization problem to solve

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 2 / 14



FTRL with linearized losses

I Linearized regret: RT (u) =
T∑
t=1

(
`t(wt)− `t(u)

)
≤

T∑
t=1
∇`t(wt)>

(
wt − u

)
I Pretend all losses are linear: `′t(w) = w>∇`t(wt)
I FTRL with linearized losses:

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`′s(w) = argmin

w∈V
ψ(w) +

t∑
s=1

w>∇`s(ws)

I We still have a constrained optimization problem to solve

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 2 / 14



Bregman divergences

I Assume ψ is convex

I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)

I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w

I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w

I If ψ = 1
2 ‖·‖

2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman divergences

I Assume ψ is convex
I Bregman divergence: Bψ(u,w) = ψ(u)− ψ(w)−∇ψ(w)>(u−w)
I Error in first-order Taylor expansion of ψ around w
I If ψ is µ-strongly convex w.r.t. ‖·‖, then Bψ(u,w) ≥ µ

2 ‖u−w‖
2

I If ψ is twice differentiable, then Bψ(u,w) = 1
2(u−w)>∇2ψ(ξ)(u−w)

for some ξ on the line segment joining u and w
I If ψ = 1

2 ‖·‖
2
2, then Bψ(u,w) = 1

2 ‖u−w‖
2
2 squared Euclidean distance

I ∆d is the d-dimensional probability simplex

I If p ∈ ∆d and ψ(p) =
∑
i p(i) ln p(i), then Bψ(p, q) =

∑
i p(i) ln p(i)

q(i) KL-divergence

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 3 / 14



Bregman projections

Theorem
Let f : Rd → R be strictly convex and differentiable in V.
Then argmin

w∈V
f(w) = argmin

w∈V
Bf (w,w′) where w′ = argmin

w
f(w)

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
w>∇`s(ws) = argmin

w∈V
ψ(w) +w>Gt︸ ︷︷ ︸

f(w)

where Gt =
t∑

s=1
∇`s(ws)

Fact: Bf ≡ Bψ (because Bψ is invariant with respect to addition of linear functions)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 4 / 14



Bregman projections

Theorem
Let f : Rd → R be strictly convex and differentiable in V.
Then argmin

w∈V
f(w) = argmin

w∈V
Bf (w,w′) where w′ = argmin

w
f(w)

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
w>∇`s(ws) = argmin

w∈V
ψ(w) +w>Gt︸ ︷︷ ︸

f(w)

where Gt =
t∑

s=1
∇`s(ws)

Fact: Bf ≡ Bψ (because Bψ is invariant with respect to addition of linear functions)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 4 / 14



Bregman projections

Theorem
Let f : Rd → R be strictly convex and differentiable in V.
Then argmin

w∈V
f(w) = argmin

w∈V
Bf (w,w′) where w′ = argmin

w
f(w)

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
w>∇`s(ws) = argmin

w∈V
ψ(w) +w>Gt︸ ︷︷ ︸

f(w)

where Gt =
t∑

s=1
∇`s(ws)

Fact: Bf ≡ Bψ (because Bψ is invariant with respect to addition of linear functions)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 4 / 14



FTRL update in two steps:

1. w′t+1 = argmin
w

ψ(w) +
t∑

s=1
w>∇`s(ws)

2. wt+1 = argmin
w∈V

Bψ(w,w′t+1) (Bregman projection)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 5 / 14



FTRL update in two steps:

1. w′t+1 = argmin
w

ψ(w) +
t∑

s=1
w>∇`s(ws)

2. wt+1 = argmin
w∈V

Bψ(w,w′t+1) (Bregman projection)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 5 / 14



Convex duality

I Assume ψ is convex

I w′t+1 = argmin
w

(
ψ(w) +w>Gt

)
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = −Gt

I The convex function ψ? is the convex conjugate of ψ
ψ?(θ) = max

w

(
w>θ − ψ(w)

)
I If ψ is differentiable

∂

∂w

(
wθ − ψ(w)

)
= θ − ψ′(w) = 0 iff ψ′(w) = θ

I w∗ = argmax
w∈R

(
wθ − ψ(w)

)
I ψ(w∗) = w∗θ − ψ?(θ)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 6 / 14



Convex duality

I Assume ψ is convex
I w′t+1 = argmin

w

(
ψ(w) +w>Gt

)
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = −Gt

I The convex function ψ? is the convex conjugate of ψ
ψ?(θ) = max

w

(
w>θ − ψ(w)

)
I If ψ is differentiable

∂

∂w

(
wθ − ψ(w)

)
= θ − ψ′(w) = 0 iff ψ′(w) = θ

I w∗ = argmax
w∈R

(
wθ − ψ(w)

)
I ψ(w∗) = w∗θ − ψ?(θ)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 6 / 14



Convex duality

I Assume ψ is convex
I w′t+1 = argmin

w

(
ψ(w) +w>Gt

)
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = −Gt

I The convex function ψ? is the convex conjugate of ψ
ψ?(θ) = max

w

(
w>θ − ψ(w)

)

I If ψ is differentiable
∂

∂w

(
wθ − ψ(w)

)
= θ − ψ′(w) = 0 iff ψ′(w) = θ

I w∗ = argmax
w∈R

(
wθ − ψ(w)

)
I ψ(w∗) = w∗θ − ψ?(θ)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 6 / 14



Convex duality

I Assume ψ is convex
I w′t+1 = argmin

w

(
ψ(w) +w>Gt

)
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = −Gt

I The convex function ψ? is the convex conjugate of ψ
ψ?(θ) = max

w

(
w>θ − ψ(w)

)
I If ψ is differentiable

∂

∂w

(
wθ − ψ(w)

)
= θ − ψ′(w) = 0 iff ψ′(w) = θ

I w∗ = argmax
w∈R

(
wθ − ψ(w)

)
I ψ(w∗) = w∗θ − ψ?(θ)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 6 / 14



Convex duality

I Assume ψ is convex
I w′t+1 = argmin

w

(
ψ(w) +w>Gt

)
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = −Gt

I The convex function ψ? is the convex conjugate of ψ
ψ?(θ) = max

w

(
w>θ − ψ(w)

)
I If ψ is differentiable

∂

∂w

(
wθ − ψ(w)

)
= θ − ψ′(w) = 0 iff ψ′(w) = θ

I w∗ = argmax
w∈R

(
wθ − ψ(w)

)

I ψ(w∗) = w∗θ − ψ?(θ)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 6 / 14



Convex duality

I Assume ψ is convex
I w′t+1 = argmin

w

(
ψ(w) +w>Gt

)
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = −Gt

I The convex function ψ? is the convex conjugate of ψ
ψ?(θ) = max

w

(
w>θ − ψ(w)

)
I If ψ is differentiable

∂

∂w

(
wθ − ψ(w)

)
= θ − ψ′(w) = 0 iff ψ′(w) = θ

I w∗ = argmax
w∈R

(
wθ − ψ(w)

)
I ψ(w∗) = w∗θ − ψ?(θ)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 6 / 14



Convex duality

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 7 / 14



Strongly convex regularizers

I w′t+1 = argmax
w

(
w>θt+1 − ψ(w)

)

I ψ?(θt+1) = max
w

(
w>θt+1 − ψ(w)

)
Theorem
If ψ is strongly convex, then ψ? is differentiable and max

w

(
w>θ − ψ(w)

)
is achieved at

w∗ = ∇ψ?(θ)

This implies w′t+1 = ∇ψ?(θt+1) for ψ strongly convex

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 8 / 14



Strongly convex regularizers

I w′t+1 = argmax
w

(
w>θt+1 − ψ(w)

)
I ψ?(θt+1) = max

w

(
w>θt+1 − ψ(w)

)

Theorem
If ψ is strongly convex, then ψ? is differentiable and max

w

(
w>θ − ψ(w)

)
is achieved at

w∗ = ∇ψ?(θ)

This implies w′t+1 = ∇ψ?(θt+1) for ψ strongly convex

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 8 / 14



Strongly convex regularizers

I w′t+1 = argmax
w

(
w>θt+1 − ψ(w)

)
I ψ?(θt+1) = max

w

(
w>θt+1 − ψ(w)

)
Theorem
If ψ is strongly convex, then ψ? is differentiable and max

w

(
w>θ − ψ(w)

)
is achieved at

w∗ = ∇ψ?(θ)

This implies w′t+1 = ∇ψ?(θt+1) for ψ strongly convex

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 8 / 14



Strongly convex regularizers

I w′t+1 = argmax
w

(
w>θt+1 − ψ(w)

)
I ψ?(θt+1) = max

w

(
w>θt+1 − ψ(w)

)
Theorem
If ψ is strongly convex, then ψ? is differentiable and max

w

(
w>θ − ψ(w)

)
is achieved at

w∗ = ∇ψ?(θ)

This implies w′t+1 = ∇ψ?(θt+1) for ψ strongly convex

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 8 / 14



FTRL update (for strongly convex regularizers)

1. θt+1 = θt −∇`t(wt) (gradient update)

2. w′t+1 = ∇ψ?(θt+1) (mirror mapping)
3. wt+1 = argmin

w∈V
Bψ(w,w′t+1) (Bregman projection)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 9 / 14



FTRL update (for strongly convex regularizers)

1. θt+1 = θt −∇`t(wt) (gradient update)
2. w′t+1 = ∇ψ?(θt+1) (mirror mapping)

3. wt+1 = argmin
w∈V

Bψ(w,w′t+1) (Bregman projection)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 9 / 14



FTRL update (for strongly convex regularizers)

1. θt+1 = θt −∇`t(wt) (gradient update)
2. w′t+1 = ∇ψ?(θt+1) (mirror mapping)
3. wt+1 = argmin

w∈V
Bψ(w,w′t+1) (Bregman projection)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 9 / 14



The Euclidean case: Lazy Online Gradient Descent

I ψ = 1
2η ‖·‖

2
2 strongly convex w.r.t. ‖·‖2 (η > 0 is a learning rate)

I ψ? = η
2 ‖·‖

2
2

I ∇ψ?(θ) = ηθ

FTRL update (Projected Lazy OGD):

1. w′t+1 = −η
t∑

s=1
∇`s(ws)

2. wt+1 = argmin
w∈V

∥∥w −w′t+1
∥∥

2 standard Euclidean projection onto V ⊂ Rd

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 10 / 14



The Euclidean case: Lazy Online Gradient Descent

I ψ = 1
2η ‖·‖

2
2 strongly convex w.r.t. ‖·‖2 (η > 0 is a learning rate)

I ψ? = η
2 ‖·‖

2
2

I ∇ψ?(θ) = ηθ

FTRL update (Projected Lazy OGD):

1. w′t+1 = −η
t∑

s=1
∇`s(ws)

2. wt+1 = argmin
w∈V

∥∥w −w′t+1
∥∥

2 standard Euclidean projection onto V ⊂ Rd

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 10 / 14



The Euclidean case: Lazy Online Gradient Descent

I ψ = 1
2η ‖·‖

2
2 strongly convex w.r.t. ‖·‖2 (η > 0 is a learning rate)

I ψ? = η
2 ‖·‖

2
2

I ∇ψ?(θ) = ηθ

FTRL update (Projected Lazy OGD):

1. w′t+1 = −η
t∑

s=1
∇`s(ws)

2. wt+1 = argmin
w∈V

∥∥w −w′t+1
∥∥

2 standard Euclidean projection onto V ⊂ Rd

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 10 / 14



The Euclidean case: Lazy Online Gradient Descent

I ψ = 1
2η ‖·‖

2
2 strongly convex w.r.t. ‖·‖2 (η > 0 is a learning rate)

I ψ? = η
2 ‖·‖

2
2

I ∇ψ?(θ) = ηθ

FTRL update (Projected Lazy OGD):

1. w′t+1 = −η
t∑

s=1
∇`s(ws)

2. wt+1 = argmin
w∈V

∥∥w −w′t+1
∥∥

2 standard Euclidean projection onto V ⊂ Rd

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 10 / 14



The Euclidean case: Lazy Online Gradient Descent

I ψ = 1
2η ‖·‖

2
2 strongly convex w.r.t. ‖·‖2 (η > 0 is a learning rate)

I ψ? = η
2 ‖·‖

2
2

I ∇ψ?(θ) = ηθ

FTRL update (Projected Lazy OGD):

1. w′t+1 = −η
t∑

s=1
∇`s(ws)

2. wt+1 = argmin
w∈V

∥∥w −w′t+1
∥∥

2 standard Euclidean projection onto V ⊂ Rd

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 10 / 14



The Entropic case: Exponentiated Gradient

I V = ∆d (probability simplex)

I ψ(p) = 1
η

∑
i

p(i) ln p(i) for p ∈ ∆d strongly convex w.r.t. ‖·‖1

I ψ?(θ) = max
p∈∆d

(
p>θ − ψ(p)

)
= 1
η

ln
(∑

i

eηθ(i)
)

we solve the constrained problem

I ∇ψ?(θ)i = eηθ(i)∑d
j=1 e

ηθ(j)

FTRL update (EG):

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 11 / 14



The Entropic case: Exponentiated Gradient

I V = ∆d (probability simplex)

I ψ(p) = 1
η

∑
i

p(i) ln p(i) for p ∈ ∆d strongly convex w.r.t. ‖·‖1

I ψ?(θ) = max
p∈∆d

(
p>θ − ψ(p)

)
= 1
η

ln
(∑

i

eηθ(i)
)

we solve the constrained problem

I ∇ψ?(θ)i = eηθ(i)∑d
j=1 e

ηθ(j)

FTRL update (EG):

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 11 / 14



The Entropic case: Exponentiated Gradient

I V = ∆d (probability simplex)

I ψ(p) = 1
η

∑
i

p(i) ln p(i) for p ∈ ∆d strongly convex w.r.t. ‖·‖1

I ψ?(θ) = max
p∈∆d

(
p>θ − ψ(p)

)
= 1
η

ln
(∑

i

eηθ(i)
)

we solve the constrained problem

I ∇ψ?(θ)i = eηθ(i)∑d
j=1 e

ηθ(j)

FTRL update (EG):

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 11 / 14



The Entropic case: Exponentiated Gradient

I V = ∆d (probability simplex)

I ψ(p) = 1
η

∑
i

p(i) ln p(i) for p ∈ ∆d strongly convex w.r.t. ‖·‖1

I ψ?(θ) = max
p∈∆d

(
p>θ − ψ(p)

)
= 1
η

ln
(∑

i

eηθ(i)
)

we solve the constrained problem

I ∇ψ?(θ)i = eηθ(i)∑d
j=1 e

ηθ(j)

FTRL update (EG):

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 11 / 14



The Entropic case: Exponentiated Gradient

I V = ∆d (probability simplex)

I ψ(p) = 1
η

∑
i

p(i) ln p(i) for p ∈ ∆d strongly convex w.r.t. ‖·‖1

I ψ?(θ) = max
p∈∆d

(
p>θ − ψ(p)

)
= 1
η

ln
(∑

i

eηθ(i)
)

we solve the constrained problem

I ∇ψ?(θ)i = eηθ(i)∑d
j=1 e

ηθ(j)

FTRL update (EG):

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

)
Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 11 / 14



Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous
iterate

wt+1 = argmin
w∈V

Bψ(w,wt) + ηtw
>∇`t(wt)

Projected update:

1. w′t+1 = argmin
w

Bψ(w,wt) + ηtw
>∇`t(wt)

2. wt+1 = argmin
w∈V

Bψ(w,w′t+1)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 12 / 14



Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous
iterate

wt+1 = argmin
w∈V

Bψ(w,wt) + ηtw
>∇`t(wt)

Projected update:
1. w′t+1 = argmin

w
Bψ(w,wt) + ηtw

>∇`t(wt)

2. wt+1 = argmin
w∈V

Bψ(w,w′t+1)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 12 / 14



Online Mirror Descent

Update minimizes trade-off between linearized loss and Bregman divergence from previous
iterate

wt+1 = argmin
w∈V

Bψ(w,wt) + ηtw
>∇`t(wt)

Projected update:
1. w′t+1 = argmin

w
Bψ(w,wt) + ηtw

>∇`t(wt)

2. wt+1 = argmin
w∈V

Bψ(w,w′t+1)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 12 / 14



OMD: computation of the update
Assume ψ is strongly convex

w′t+1 = argmin
w∈Rd

Bψ(w,wt) + ηtw
>gt (gt = ∇`t(wt))

= argmin
w∈Rd

ψ(w)− ψ(wt)−∇ψ(wt)>(w −wt) + ηtw
>gt

= argmin
w∈Rd

ψ(w) +w>
(
ηt gt −∇ψ(wt)

)

We use w′t+1 = argmin
w

(
ψ(w) +w>

(
ηt gt −∇ψ(wt)

))
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = ∇ψ(wt)− ηt gt
w′t+1 = ∇ψ?(θt+1) = ∇ψ?

(
∇ψ(wt)− ηt gt

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14



OMD: computation of the update
Assume ψ is strongly convex

w′t+1 = argmin
w∈Rd

Bψ(w,wt) + ηtw
>gt (gt = ∇`t(wt))

= argmin
w∈Rd

ψ(w)− ψ(wt)−∇ψ(wt)>(w −wt) + ηtw
>gt

= argmin
w∈Rd

ψ(w) +w>
(
ηt gt −∇ψ(wt)

)

We use w′t+1 = argmin
w

(
ψ(w) +w>

(
ηt gt −∇ψ(wt)

))
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = ∇ψ(wt)− ηt gt
w′t+1 = ∇ψ?(θt+1) = ∇ψ?

(
∇ψ(wt)− ηt gt

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14



OMD: computation of the update
Assume ψ is strongly convex

w′t+1 = argmin
w∈Rd

Bψ(w,wt) + ηtw
>gt (gt = ∇`t(wt))

= argmin
w∈Rd

ψ(w)− ψ(wt)−∇ψ(wt)>(w −wt) + ηtw
>gt

= argmin
w∈Rd

ψ(w) +w>
(
ηt gt −∇ψ(wt)

)

We use w′t+1 = argmin
w

(
ψ(w) +w>

(
ηt gt −∇ψ(wt)

))
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = ∇ψ(wt)− ηt gt
w′t+1 = ∇ψ?(θt+1) = ∇ψ?

(
∇ψ(wt)− ηt gt

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14



OMD: computation of the update
Assume ψ is strongly convex

w′t+1 = argmin
w∈Rd

Bψ(w,wt) + ηtw
>gt (gt = ∇`t(wt))

= argmin
w∈Rd

ψ(w)− ψ(wt)−∇ψ(wt)>(w −wt) + ηtw
>gt

= argmin
w∈Rd

ψ(w) +w>
(
ηt gt −∇ψ(wt)

)

We use w′t+1 = argmin
w

(
ψ(w) +w>

(
ηt gt −∇ψ(wt)

))
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = ∇ψ(wt)− ηt gt
w′t+1 = ∇ψ?(θt+1) = ∇ψ?

(
∇ψ(wt)− ηt gt

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14



OMD: computation of the update
Assume ψ is strongly convex

w′t+1 = argmin
w∈Rd

Bψ(w,wt) + ηtw
>gt (gt = ∇`t(wt))

= argmin
w∈Rd

ψ(w)− ψ(wt)−∇ψ(wt)>(w −wt) + ηtw
>gt

= argmin
w∈Rd

ψ(w) +w>
(
ηt gt −∇ψ(wt)

)

We use w′t+1 = argmin
w

(
ψ(w) +w>

(
ηt gt −∇ψ(wt)

))
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = ∇ψ(wt)− ηt gt

w′t+1 = ∇ψ?(θt+1) = ∇ψ?
(
∇ψ(wt)− ηt gt

)

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14



OMD: computation of the update
Assume ψ is strongly convex

w′t+1 = argmin
w∈Rd

Bψ(w,wt) + ηtw
>gt (gt = ∇`t(wt))

= argmin
w∈Rd

ψ(w)− ψ(wt)−∇ψ(wt)>(w −wt) + ηtw
>gt

= argmin
w∈Rd

ψ(w) +w>
(
ηt gt −∇ψ(wt)

)

We use w′t+1 = argmin
w

(
ψ(w) +w>

(
ηt gt −∇ψ(wt)

))
= argmax

w

(
w>θt+1 − ψ(w)

)
for θt+1 = ∇ψ(wt)− ηt gt
w′t+1 = ∇ψ?(θt+1) = ∇ψ?

(
∇ψ(wt)− ηt gt

)
Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 13 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update
I OMD and FTRL have similar regret bounds in many cases
I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update
I OMD and FTRL have similar regret bounds in many cases
I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update
I OMD and FTRL have similar regret bounds in many cases
I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update
I OMD and FTRL have similar regret bounds in many cases
I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update

I OMD and FTRL have similar regret bounds in many cases
I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update
I OMD and FTRL have similar regret bounds in many cases

I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14



Some differences between FTRL and OMD

1. w′t+1 = ∇ψ?
(
−

t∑
s=1

gs

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

1. w′t+1 = ∇ψ?
(
∇ψ(wt)− ηt gt

)
2. wt+1 = argmin

w∈V
Bψ(w,w′t+1)

I ∇ψ? maps gradients to iterates wt

I ∇ψ maps iterates to gradients

I FTRL updates a state variable −
t∑

s=1
gs and maps it to iterates when needed

I OMD maps iterates back to gradients before each update
I OMD and FTRL have similar regret bounds in many cases
I In certain cases, FTRL works better than OMD when using dynamic learning rates

Nicolò Cesa-Bianchi Lecture 2 Mathematics of Machine Learning 14 / 14


