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FTRL recap

FTRL:

Best model in V

Regret

Nicolo Cesa-Bianchi
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weV s=1

T
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FTRL = FTL + regularization

> L, =/0ly+ 01+ -+l where {g =
> w; = argmin {p(w) = argmin ¢ (w)
weV we

> w1 = argmin Ly(w)
wevV

> We give a different proof of the FTL stability lemma
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FTRL stability lemma

T T
< : : :
;et(Wt+1) < &gggﬁt(u) (we prove this by induction on T')
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FTRL stability lemma

T T
Zet(Wt+1) < inf Zﬁt(u) (we prove this by induction on T')
=0 ueVizo
lo(w1) < inf lo(u) (base case T' = 0: w; = argmin {y(w))
ucV weV
T-1 T-1
Z Et(th) < inf Z Et(u) (T —1— T)
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FTRL stability lemma

Zﬁt(wtﬂ) < irelglgﬁt(u) (we prove this by induction on T')
lo(wq) < inf £o(u) (base case T'= 0: w; = argmin {y(w))
ueV weV

T—1 T—1
2 li(wig) < érelg Z U (u) (T-1-1T)
T—1

l(wiy1) Z L (wryr) (choose u = wr41)
t=0
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FTRL stability lemma

1 <inf » / this by inducti T
Z (weg) < zlzlelvg (u) (we prove this by induction on T')
lo(w1) < inf lo(u) (base case T' = 0: w; = argmin {y(w))
ucV weV
T-1 T-1
<i —
2 li(wiyq) < érelg Z O (u) (T-1-1T)
T-1
l(wiy1) Z L (wryr) (choose u = wr41)
t=0
T T
~inf L
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FTRL stability lemma

1 <inf » / this by inducti T
Z (weg) < zlzlelvg (u) (we prove this by induction on T')
lo(w1) < inf lo(u) (base case T' = 0: w; = argmin {y(w))
ucV weV
T-1 T-1
2 Et(th) < &Ié% Z Et(u) (T —1— T)
T-1
l(wiy1) Z L (wryr) (choose u = wr41)
t=0
T T
;& Wit1) Z& wri) = érelgg&(u) (add 7 (wr41) on both sides)
T T
Ry =" (t(w) = b(w")) < bo(w?) = Lo(wr) + 3 (Gu(wr) = lu(wii) )
t=1 t=1
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FTRL stability analysis

» Assume ) is p-strongly convex with respect to |||
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» Assume ) is p-strongly convex with respect to |||
» Pick a learning rate > 0 and consider % which is 11/n-strongly convex
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FTRL stability analysis

» Assume ) is p-strongly convex with respect to |||
» Pick a learning rate > 0 and consider % which is 11/n-strongly convex
» For all t > 1, we assume ¢; is G-Lipschitz with respect to ||-|

> w1 = argmin Ly(w)
wevV

v

Li1(wigr) — Loy (wy) > VI (wy) (w1 — wy) + % lw; — wy ]| % w; — wig |

)

2n lw; — wiy |? > =

Li(wy) — Li(wii1) > VL (wii1) " (wp — wpir) + 2 o

lws — w1
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FTRL stability analysis

» Assume ) is p-strongly convex with respect to |||
» Pick a learning rate > 0 and consider % which is 11/n-strongly convex
» For all t > 1, we assume ¢; is G-Lipschitz with respect to ||-|

> w1 = argmin Ly(w)
wevV

v

aqmwn—quwZVMAmewH—w»+%Wm—wHW gﬂw—www2

M@M—MWmﬂZVM@Mﬂww—wHﬂ+%WW—WHWZ%ﬂw—wHNQ
U (wy) — by(wygq) > " |w; — wigq || (by summing the two above inequalities)
n
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FTRL stability analysis

» Assume ) is p-strongly convex with respect to |||
» Pick a learning rate > 0 and consider % which is 11/n-strongly convex
» For all t > 1, we assume ¢; is G-Lipschitz with respect to ||-|

> w1 = argmin Ly(w)
wevV

v

aamwn—quwZVMAwMWwH—w»+%Wm—wHW gﬂw—www2

Liwy) = L(wi1) 2 Ve(wen)| (w0 = win) + oo o= wen|* 2 5o oy — we

U (wy) — by(wygq) > " |w; — wigq || (by summing the two above inequalities)
n

l(wy) — ly(wigr) < G llwg — wigq]| (G-Lipschitzness of ¢, for t > 1)

Gn . . G
|w — wypa]| < m implying  £¢(wy) — £y(wi1) < A
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FTRL regret bound

w*) — Y(w & w*) — Y(w 2
Ry < ) ; Plun) +; (Et(wt) —gt(wt—&-l)) < ) p Ylen) +"7CiT
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FTRL regret bound

w*) — Y(w & w*) — Y(w 2
Ry < ) ; Plun) +; (Et(wt) —ﬂt(wtﬂ)) < Pl p Ylen) +"7(iT

D [u
Assuming max ¥(u) glé%lﬁ(w) D~ and choosing n G\ / T We get

Ry < 2GD\/f = O(GDVT)
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Lipschitz constants and dual norm of gradients
wTu
» Dual norm of ||| is [|w]], = sup ——
uekd || @]l
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Lipschitz constants and dual norm of gradients

-
» Dual norm of ||| is ||w]|, = sup wu
uerd [|ull

> Example (p-norms): the dual norm of [-[| , is -], where %—I— % =1landp,qg>1
> Relationship to convex duality: 1) = 3 ||||1127 and ¢* = H||§

» Holder inequality: u'w < ||ul| ||w]],

» Fenchel-Young inequality: u'w < ¥(u) + ¢* (w)
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Lipschitz constants and dual norm of gradients

, w'u

» Dual norm of ||| is [|w]], = sup ——
uerd [|ull

> Example (p-norms): the dual norm of [-[| , is -], where %—I— % =1landp,qg>1
> Relationship to convex duality: 1) = 3 ||||1127 and ¢* = H||§
» Holder inequality: u'w < ||ul| ||w]],
» Fenchel-Young inequality: u'w < ¥(u) + ¢* (w)

Theorem
Let £ :V — R be a differentiable convex function. Then { is G-Lipschitz over V with respect
to a norm ||-|| iff for all w € V we have that |V{(w)]|, < G
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Lipschitz constants and dual norm of gradients
: w'u
» Dual norm of ||| is [|w]], = sup ——
uerd [|ull
> Example (p-norms): the dual norm of [-[| , is -], where %—l— % =1landp,qg>1
> Relationship to convex duality: 1) = 3 ||||1127 and ¢* = H||3
» Holder inequality: u'w < ||ul| ||w]],
» Fenchel-Young inequality: u'w < ¥(u) + ¢* (w)
Theorem
Let £ :V — R be a differentiable convex function. Then { is G-Lipschitz over V with respect
to a norm ||-|| iff for all w € V we have that |V{(w)]|, < G

> Assume max |(V{);| = ©(1)
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Matching the regularizer to the geometry of the model space

Projected Lazy OGD
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Matching the regularizer to the geometry of the model space

Projected Lazy OGD
» Take V to be the closed Euclidean ball of radius D

1
> )= 5 ||-|I3 is 1-strongly convex with respect to ||-|,

D2

» maxy(u) — miny(w) = —

uev (w) wev¢( ) 2
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Matching the regularizer to the geometry of the model space

Projected Lazy OGD
» Take V to be the closed Euclidean ball of radius D
> )= % ||-|I3 is 1-strongly convex with respect to ||-|,
. D?
" v =
> Lipschitz constant: G' = O(v/d)
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Matching the regularizer to the geometry of the model space

Projected Lazy OGD
» Take V to be the closed Euclidean ball of radius D

1
> )= 5 ||-|I3 is 1-strongly convex with respect to ||-|,

D2
> max(u) - minp(w) = 5

> Lipschitz constant: G' = O(v/d)
> Ry < 2GD[ O(DVdT)
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Matching the regularizer to the geometry of the model space

EG
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Matching the regularizer to the geometry of the model space

EG
> Vis probability simplex Ay
> J(p sz In p; is 1-strongly convex with respect to |||

[

PD:maxw() mlni/)('w) Ind

» Lipschitz constant: G = O(1)
> Ry <2GD,/T = O(VTnd)
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Matching the regularizer to the geometry of the model space

EG

v

V is probability simplex Ay

v

Y(p) = Zpi In p; is 1-strongly convex with respect to |||
D=ngrvt) —piyvlw) =lnd

Lipschitz constant: G = O(1 )

Ry <2GD,/T = O(VTnd

For V= Ay, prOJected lazy OGD only achieves Ry = O(VdT')
The geometry of V matters

vy VYV VY
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Lower bounds
» V is a bounded set of Euclidean diameter D
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» G-Lipschitz linear losses: £;(w) = £,Gw ' zo where g, € {—1, 1} are uniform i.i.d.

T
E l max RT(U)] =E [ max Zﬁt(u)] (since E[4;(w)] = 0)

uc{vi,va} ue{vy,va} et

G T
= 51[-3 l Zetzg(fvl —v3)

t=1

] (using max{a,b} = 3 (a+b+ |a— b))

Nicolo Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 9/15



Lower bounds
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» G-Lipschitz linear losses: £;(w) = £,Gw ' zo where g, € {—1, 1} are uniform i.i.d.

T
E l max RT(U)] =E [ max Zﬁt(u)] (since E[4;(w)] = 0)
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Lower bounds
» V is a bounded set of Euclidean diameter D
» Take vi,vs € V such that ||vg — va||, = D and set zgp = (v1 — v2)/ ||lv1 — V2|5
» G-Lipschitz linear losses: £;(w) = £,Gw ' zo where g, € {—1, 1} are uniform i.i.d.

T
E| max Rp(u)| =E| max Zﬁt(u) (since E[4;(w)] = 0)
ue{vi,va} ue{vy,va} —1
G~ 1 . .
= 51[-3 Zetzo (v1 —w2)|| (using max{a,b} = 5(a+b+ |a—b]))
t=1
T
= GTDE [ ;zst ] (because 2z (v1 — vg) = D)
T Als R y
> GD\/? (Khintchine inequality)
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Lower bound for the simplex
> Stochastic linear losses £, = (¢;(1),...,¢:(d))
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Lower bound for the simplex

> Stochastic linear losses £, = (¢;(1),...,¢:(d))
» /(i) € {0,1} independent random coin flip forallt > 1andi=1,...,d

T

T
> pit| =
t=1

2

» For any online algorithm E
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Lower bound for the simplex

> Stochastic linear losses £, = (¢;(1),...,¢:(d))
» /(i) € {0,1} independent random coin flip forallt > 1andi=1,...,d

T
E|> pit
t=1

» For any online algorithm

> Then the expected regret is

’ﬂ
5
=
LM~
hQ
&‘
I
N
|
=
=
=
M=
:F

where (i) € {—1,1} are uniform i.i.d.
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Lower bound for the simplex: finishing up

[max Zst ]: (1-0(1))vV2T Ind

7’t1

Therefore, Rp = Q(VT Ind)

Nicolo Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 11/15



FTRL with time-varying regularizer

> Fix a sequence 1,1, ... of regularizers
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> Fix a sequence 1,1, ... of regularizers
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FTRL with time-varying regularizer

> Fix a sequence 1,1, ... of regularizers
> LY =1+ L=t i+ by
T

» FTRL prediction w;y; = argmin Lf(w) and best model w* = argminZEt(w)
weV weV t=1
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FTRL with time-varying regularizer

> Fix a sequence 1,1, ... of regularizers

> L =t L=t o+l
T

» FTRL prediction w;y; = argmin Lf(w) and best model w* = argminz&(w)
weV weV t=1

—Lyr(w*) = ¢y (w*) — Li(w")
— Ly(w*) = tri1(w*) — L (w1) + LY (w1) — L(wrs1) + LY (wri1) — L (w”)

=11 (w1) write as telescoping <0
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FTRL with time-varying regularizer

> Fix a sequence 1,1, ... of regularizers

> L =t L=t o+l
T

» FTRL prediction w;y; = argmin Lf’( ) and best model w* = argmlnz&
weV weV 44

—Lyr(w*) = ¢y (w*) — Li(w")
— Ly(w*) = tri1(w*) — L (w1) + LY (w1) — L(wrs1) + LY (wri1) — L (w”)

=11 (w1) write as telescoping <0

T
— Lr(w*) < ¢rpa(w*) = dr(wr) + ) (Lf 1(wi) Lf(wtﬂ))
t=1
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FTRL with time-varying regularizer

> Fix a sequence 1,1, ... of regularizers

> L =t L=t o+l
T

» FTRL prediction w;y; = argmin Lf(w) and best model w* = argminz&(w)
weV weV t=1

—Lyr(w*) = ¢y (w*) — Li(w")
— Ly(w*) = tri1(w*) — L (w1) + LY (w1) — L(wrs1) + LY (wri1) — L (w”)

=11 (w1) write as telescoping <0

M=

- LT('UJ*) < ¢T+1 (w*) - 1/11 (wl) + (Lf_l(wt) — L;ﬂ(wt+1))

t

Il
—

M=

Ry <ry1(w”) — 1 (wr) + (qu(wt) — LY (wii1) + ét(wt))

t

Il
i
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Analysis of FTRL with time-varying regularizer

T
Ry <rii(w*) = gr(wn) + 3 (LY (w0) — L (wesr) + fo(awy)
t=1
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Analysis of FTRL with time-varying regularizer

T
Ry < $r(w*) = i (wi) + 3 (L (wi) = LY (wig1) + Gi(wr))
t=1
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Analysis of FTRL with time-varying regularizer

T
Ry < r(w") = a(wi) + Y (L3 (wi) = LY (wis) + bi(wy))
t=1

We now bound the terms Lip_l('wt) — LY (wigr) + bo(wy)
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume 1)y is pg-strongly convex and vy < iy fort > 1
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume vy is pg-strongly convex and ¢y < 4 fort > 1

» Recall f(w)— f(w*) > g |w — w*||* for f p-strongly convex and w* = argmin f(w)
weV
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume vy is pg-strongly convex and ¢y < 4 fort > 1

» Recall f(w)— f(w*) > g |w — w*||* for f p-strongly convex and w* = argmin f(w)
weV

> Let wi = argmin LV | (w) + £ (w)
weV
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume vy is pg-strongly convex and ¢y < 4 fort > 1

» Recall f(w)— f(w*) > g |w — w*||* for f p-strongly convex and w* = argmin f(w)
weV

> Let wi = argmin LV | (w) + £ (w)
weV

LY (wi) = L (wig1) + Ci(wy)
= (L{y (w) + L(wy)) — (L) (wig1) + o(wis1)) + Ye(wisn) — Yer1(wig)
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume vy is pg-strongly convex and ¢y < 4 fort > 1
» Recall f(w)— f(w*) > g |w — w*||* for f p-strongly convex and w* = argmin f(w)

weV
> Let wi = argmin LV | (w) + £ (w)
weV

L%—l(’wt) - L:tb('wz%l) + £ (wy)
= (L (wi) + b(wy)) = (L (wign) + Le(weir)) + Ye(wesn) — Yot (wes1)
< (LY (wy) + be(wy)) — (LY (w}) + Le(w]))  (minimality of w} and condition on ;)
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume vy is pg-strongly convex and ¢y < 4 fort > 1

» Recall f(w)— f(w*) > n H'w w*||? for f p-strongly convex and w* = argmin f(w)
weV

> Let w; = argmin Ltfl(w) + l(w)
weV

Ly (we) = LE(
= (L (wi) + b(wy)) = (L (wign) + Le(weir)) + Ye(wesn) — Yot (wes1)
< (LY (wy) + be(wy)) — (LY (w}) + Le(w]))  (minimality of w} and condition on ;)
(LE (wy) + bo(w

wiy1) + L(wy)

) = (L ) + t(wi)) = B o, — wi|* (sc. + minimality of wj)
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Analysis of FTRL with time-varying regularizer (cont.)

> Assume vy is pg-strongly convex and ¢y < 4 fort > 1

» Recall f(w)— f(w*) > H'w w*||? for f p-strongly convex and w* = argmin f(w)

weV
> Let w; = argmin Lt71(w) + U (w)
weV

LYy (we) = LY (wya1) + ()

(Lép 1(wt +€t 'wt )

LY

) ( i (wig1) + b(wig1)) + Yr(wirr) — Yepr(wigr)
< (LY (wy) + Ly(wy)) —

(w

(LY | (w}) + €t(wt)) (minimality of w} and condition on 1))

D) = (L4 (w)) + ta(w})) > B lw, — wi |
2

L (wi) = Ly (w)) + b(wy) — bi(w]) < G |lw; — wi|

(Lil(’wt ) + 4 (s.c. + minimality of wy)

(minimality of w; + Lip.)
Nicolo Cesa-Bianchi
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Analysis of FTRL with time-varying regularizer (cont.)
> Assume vy is pg-strongly convex and ¢y < 4 fort > 1

» Recall f(w)— f(w*) > n H'w w*||? for f p-strongly convex and w* = argmin f(w)
weV
> Let w; = argmin Ltfl(w) + l(w)
weV

LYy (we) — LY (wy41) + C(wy)

= (L{ 1 (wi) + o(wy)) — (LY (1) + L(wisn)) + br(wisr) — Yot (i)

(Lf’ L(we) + G(wy)) — (Lip 1 (wy) +€t(wt)) (minimality of w} and condition on 1))
(w

(LY (i) + £ (wy)) = (LE (w]) + Li(wy) > 5 lw; —wi[|*  (s.c. + minimality of w;)

Lg:l('wt) - L?ﬂ(wf) + U (wy) — 4 (w)) < G ||wy — wi| (minimality of w; + Lip.)
2G?
LYy (we) — Lf (wis1) + Ge(wy) < s
t
Nicold Cesa-Bianchi Lecture 3
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Regret bound

Assume ¢ > 0 is u-strongly convex and i, = v where ny <1 fort > 1
MNi—1
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Regret bound

Assume ¢ > 0 is u-strongly convex and i, = v where ny <1 fort > 1
MNi—1

Ry < ¢r(w +2G22—
tht
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Regret bound

Assume ¢ > 0 is u-strongly convex and i, = v where ny <1 fort > 1
MNi—1

Ry < ¢r(w +2G22—
tlut

D? .
=~ +2G? Z =1 (vp¢ is (p/m—1)-strongly convex)
nr ~= p
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Regret bound

Assume ¢ > 0 is u-strongly convex and i, = v where ny <1 fort > 1
MNi—1

Ry < ¢r(w +2G22—
1Mt

D
— + 2G? Z -1 (vp¢ is (p/m—1)-strongly convex)

D [p
— GD,/ +2GD,/ (n-1==1/7)
'“t 1 GVt

Nicolo Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 15/15



Regret bound

Assume ¢ > 0 is u-strongly convex and i, = v where ny <1 fort > 1
MNi—1

Ry < ¢r(w +2G22—
1/"Lt

D
— + 2G? Z -1 (vp¢ is (p/m—1)-strongly convex)

D [p
_GD,/ +2GD,/ (n-1==1/7)
'“t 1 GVt
<5GD,|—
V,u

T
using Z Vi< 2VT
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