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FTRL recap
FTRL:

wt+1 = argmin
w∈V

ψ(w) +
t∑

s=1
`s(ws)

Best model in V

w∗ = argmin
w∈V

T∑
t=1

`t(w)

Regret

RT =
T∑
t=1

`t(wt)−
T∑
t=1

`t(w∗)
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FTRL = FTL + regularization

I Lt = `0 + `1 + · · ·+ `t where `0 = ψ

I w1 = argmin
w∈V

`0(w) = argmin
w∈V

ψ(w)

I wt+1 = argmin
w∈V

Lt(w)

I We give a different proof of the FTL stability lemma
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FTRL stability lemma
T∑
t=0

`t(wt+1) ≤ inf
u∈V

T∑
t=0

`t(u) (we prove this by induction on T )

`0(w1) ≤ inf
u∈V

`0(u) (base case T = 0: w1 = argmin
w∈V

`0(w))

T−1∑
t=0

`t(wt+1) ≤ inf
u∈V

T−1∑
t=0

`t(u) (T − 1→ T )

T−1∑
t=0

`t(wt+1) ≤
T−1∑
t=0

`t(wT+1) (choose u = wT+1)

T∑
t=0

`t(wt+1) ≤
T∑
t=0

`t(wT+1) = inf
u∈V

T∑
t=0

`t(u) (add `T (wT+1) on both sides)

RT =
T∑
t=1

(
`t(wt)− `t(w∗)

)
≤ `0(w∗)− `0(w1) +

T∑
t=1

(
`t(wt)− `t(wt+1)

)
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Nicolò Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 3 / 15



FTRL stability lemma
T∑
t=0

`t(wt+1) ≤ inf
u∈V

T∑
t=0

`t(u) (we prove this by induction on T )

`0(w1) ≤ inf
u∈V

`0(u) (base case T = 0: w1 = argmin
w∈V

`0(w))

T−1∑
t=0

`t(wt+1) ≤ inf
u∈V

T−1∑
t=0

`t(u) (T − 1→ T )

T−1∑
t=0

`t(wt+1) ≤
T−1∑
t=0

`t(wT+1) (choose u = wT+1)

T∑
t=0

`t(wt+1) ≤
T∑
t=0

`t(wT+1) = inf
u∈V

T∑
t=0

`t(u) (add `T (wT+1) on both sides)

RT =
T∑
t=1

(
`t(wt)− `t(w∗)

)
≤ `0(w∗)− `0(w1) +

T∑
t=1

(
`t(wt)− `t(wt+1)

)
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FTRL stability analysis
I Assume ψ is µ-strongly convex with respect to ‖·‖

I Pick a learning rate η > 0 and consider ψ
η which is µ/η-strongly convex

I For all t ≥ 1, we assume `t is G-Lipschitz with respect to ‖·‖
I wt+1 = argmin

w∈V
Lt(w)

Lt−1(wt+1)− Lt−1(wt) ≥ ∇Lt−1(wt)>(wt+1 −wt) + µ

2η ‖wt −wt+1‖2 ≥
µ

2η ‖wt −wt+1‖2

Lt(wt)− Lt(wt+1) ≥ ∇Lt(wt+1)>(wt −wt+1) + µ

2η ‖wt −wt+1‖2 ≥
µ

2η ‖wt −wt+1‖2

`t(wt)− `t(wt+1) ≥ µ

η
‖wt −wt+1‖2 (by summing the two above inequalities)

`t(wt)− `t(wt+1) ≤ G ‖wt −wt+1‖ (G-Lipschitzness of `t for t ≥ 1)

‖wt −wt+1‖ ≤
Gη

µ
implying `t(wt)− `t(wt+1) ≤ G2η

µ
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Nicolò Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 4 / 15



FTRL regret bound

RT ≤
ψ(w∗)− ψ(w1)

η
+

T∑
t=1

(
`t(wt)− `t(wt+1)

)
≤ ψ(w∗)− ψ(w1)

η
+ η

G2

µ
T

Assuming max
u∈V

ψ(u)−min
w∈V

ψ(w) = D2 and choosing η = D

G

√
µ

T
we get

RT ≤ 2GD
√
T

µ
= O

(
GD
√
T
)
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Lipschitz constants and dual norm of gradients
I Dual norm of ‖·‖ is ‖w‖∗ = sup

u∈Rd

w>u

‖u‖

I Example (p-norms): the dual norm of ‖·‖p is ‖·‖q where 1
p + 1

q = 1 and p, q > 1
I Relationship to convex duality: ψ = 1

2 ‖·‖
2
p and ψ∗ = 1

2 ‖·‖
2
q

I Hölder inequality: u>w ≤ ‖u‖ ‖w‖∗
I Fenchel-Young inequality: u>w ≤ ψ(u) + ψ∗(w)

Theorem
Let ` : V→ R be a differentiable convex function. Then ` is G-Lipschitz over V with respect
to a norm ‖·‖ iff for all w ∈ V we have that ‖∇`(w)‖∗ ≤ G

I Assume max
i

∣∣(∇`)i∣∣ = Θ(1)

I If ` is G-Lipschitz with respect to ‖·‖2, then G = O
(√
d
)

I If ` is G-Lipschitz with respect to ‖·‖1, then G = O(1)
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p and ψ∗ = 1

2 ‖·‖
2
q

I Hölder inequality: u>w ≤ ‖u‖ ‖w‖∗
I Fenchel-Young inequality: u>w ≤ ψ(u) + ψ∗(w)

Theorem
Let ` : V→ R be a differentiable convex function. Then ` is G-Lipschitz over V with respect
to a norm ‖·‖ iff for all w ∈ V we have that ‖∇`(w)‖∗ ≤ G

I Assume max
i

∣∣(∇`)i∣∣ = Θ(1)

I If ` is G-Lipschitz with respect to ‖·‖2, then G = O
(√
d
)

I If ` is G-Lipschitz with respect to ‖·‖1, then G = O(1)
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Matching the regularizer to the geometry of the model space

Projected Lazy OGD

I Take V to be the closed Euclidean ball of radius D
I ψ = 1

2 ‖·‖
2
2 is 1-strongly convex with respect to ‖·‖2

I max
u∈V

ψ(u)−min
w∈V

ψ(w) = D2

2
I Lipschitz constant: G = O(

√
d)

I RT ≤ 2GD
√

T
µ = O

(
D
√
dT
)
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Matching the regularizer to the geometry of the model space

EG

I V is probability simplex ∆d

I ψ(p) =
∑
i

pi ln pi is 1-strongly convex with respect to ‖·‖1

I D = max
u∈V

ψ(u)−min
w∈V

ψ(w) = ln d

I Lipschitz constant: G = O(1)
I RT ≤ 2GD

√
T
µ = O

(√
T ln d

)
I For V = ∆d, projected lazy OGD only achieves RT = O

(√
dT
)

I The geometry of V matters
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Lower bounds
I V is a bounded set of Euclidean diameter D

I Take v1,v2 ∈ V such that ‖v1 − v2‖2 = D and set z0 = (v1 − v2)
/
‖v1 − v2‖2

I G-Lipschitz linear losses: `t(w) = εtGw>z0 where εt ∈ {−1, 1} are uniform i.i.d.

E
[

max
u∈{v1,v2}

RT (u)
]

= E
[

max
u∈{v1,v2}

T∑
t=1

`t(u)
]

(since E
[
`t(w)

]
= 0)

= G

2 E
[∣∣∣∣∣

T∑
t=1

εtz
>
0 (v1 − v2)

∣∣∣∣∣
]

(using max{a, b} = 1
2
(
a+ b+ |a− b|

)
)

= GD

2 E
[∣∣∣∣∣

T∑
t=1

εt

∣∣∣∣∣
]

(because z>0 (v1 − v2) = D)

≥ GD

√
T

8

Nicolò Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 9 / 15



Lower bounds
I V is a bounded set of Euclidean diameter D
I Take v1,v2 ∈ V such that ‖v1 − v2‖2 = D and set z0 = (v1 − v2)

/
‖v1 − v2‖2

I G-Lipschitz linear losses: `t(w) = εtGw>z0 where εt ∈ {−1, 1} are uniform i.i.d.

E
[

max
u∈{v1,v2}

RT (u)
]

= E
[

max
u∈{v1,v2}

T∑
t=1

`t(u)
]

(since E
[
`t(w)

]
= 0)

= G

2 E
[∣∣∣∣∣

T∑
t=1

εtz
>
0 (v1 − v2)

∣∣∣∣∣
]

(using max{a, b} = 1
2
(
a+ b+ |a− b|

)
)

= GD

2 E
[∣∣∣∣∣

T∑
t=1

εt

∣∣∣∣∣
]

(because z>0 (v1 − v2) = D)

≥ GD

√
T

8
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Nicolò Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 9 / 15



Lower bounds
I V is a bounded set of Euclidean diameter D
I Take v1,v2 ∈ V such that ‖v1 − v2‖2 = D and set z0 = (v1 − v2)

/
‖v1 − v2‖2

I G-Lipschitz linear losses: `t(w) = εtGw>z0 where εt ∈ {−1, 1} are uniform i.i.d.

E
[

max
u∈{v1,v2}

RT (u)
]

= E
[

max
u∈{v1,v2}

T∑
t=1

`t(u)
]

(since E
[
`t(w)

]
= 0)

= G

2 E
[∣∣∣∣∣

T∑
t=1

εtz
>
0 (v1 − v2)

∣∣∣∣∣
]

(using max{a, b} = 1
2
(
a+ b+ |a− b|

)
)

= GD

2 E
[∣∣∣∣∣

T∑
t=1

εt

∣∣∣∣∣
]

(because z>0 (v1 − v2) = D)

≥ GD

√
T

8
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≥ GD

√
T

8 (Khintchine inequality)
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Lower bound for the simplex
I Stochastic linear losses `t =

(
`t(1), . . . , `t(d)

)

I `t(i) ∈ {0, 1} independent random coin flip for all t ≥ 1 and i = 1, . . . , d

I For any online algorithm E
[
T∑
t=1

p>t `t

]
= T

2
I Then the expected regret is

T

2 − E
[

min
p∈∆d

T∑
t=1

q>`t

]
= T

2 − E
[

min
i=1,...,d

T∑
t=1

`t(i)
]

= E
[

max
i=1,...,d

T∑
t=1

(1
2 − `t(i)

)]

= 1
2E
[

max
i=1,...,d

T∑
t=1

εt(i)
]

where εt(i) ∈ {−1, 1} are uniform i.i.d.
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Lower bound for the simplex: finishing up

E
[

max
i=1,...,d

T∑
t=1

εt(i)
]

=
(
1− o(1)

)√
2T ln d

Therefore, RT = Ω
(√
T ln d

)

Nicolò Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 11 / 15



FTRL with time-varying regularizer
I Fix a sequence ψ1, ψ2, . . . of regularizers

I Lψt = ψt+1 + Lt = ψt+1 + `1 + · · ·+ `t

I FTRL prediction wt+1 = argmin
w∈V

Lψt (w) and best model w∗ = argmin
w∈V

T∑
t=1

`t(w)

−LT (w∗) = ψT+1(w∗)− LψT (w∗)

− LT (w∗) = ψT+1(w∗)− Lψ0 (w1)︸ ︷︷ ︸
=ψ1(w1)

+Lψ0 (w1)− LψT (wT+1)︸ ︷︷ ︸
write as telescoping

+LψT (wT+1)− LψT (w∗)︸ ︷︷ ︸
≤0

− LT (w∗) ≤ ψT+1(w∗)− ψ1(w1) +
T∑
t=1

(
Lψt−1(wt)− Lψt (wt+1)

)

RT ≤ ψT+1(w∗)− ψ1(w1) +
T∑
t=1

(
Lψt−1(wt)− Lψt (wt+1) + `t(wt)

)
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Analysis of FTRL with time-varying regularizer

RT ≤ ψT+1(w∗)− ψ1(w1) +
T∑
t=1

(
Lψt−1(wt)− Lψt (wt+1) + `t(wt)

)

We now bound the terms Lψt−1(wt)− Lψt (wt+1) + `t(wt)
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Analysis of FTRL with time-varying regularizer (cont.)
I Assume ψt is µt-strongly convex and ψt ≤ ψt+1 for t ≥ 1

I Recall f(w)− f(w∗) ≥ µ

2 ‖w −w∗‖2 for f µ-strongly convex and w∗ = argmin
w∈V

f(w)

I Let w∗t = argmin
w∈V

Lψt−1(w) + `t(w)

Lψt−1(wt)− Lψt (wt+1) + `t(wt)

=
(
Lψt−1(wt) + `t(wt)

)
−
(
Lψt−1(wt+1) + `t(wt+1)

)
+ ψt(wt+1)− ψt+1(wt+1)

≤
(
Lψt−1(wt) + `t(wt)

)
−
(
Lψt−1(w∗t ) + `t(w∗t )

)
(minimality of w∗t and condition on ψt)(

Lψt−1(wt) + `t(wt)
)
−
(
Lψt−1(w∗t ) + `t(w∗t )

)
≥ µt

2 ‖wt −w∗t ‖
2 (s.c. + minimality of w∗t )

Lψt−1(wt)− Lψt−1(w∗t ) + `t(wt)− `t(w∗t ) ≤ G ‖wt −w∗t ‖ (minimality of wt + Lip.)

Lψt−1(wt)− Lψt (wt+1) + `t(wt) ≤
2G2

µt
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Regret bound
Assume ψ ≥ 0 is µ-strongly convex and ψt = ψ

ηt−1
where ηt ≤ ηt−1 for t ≥ 1

RT ≤ ψT (w∗) + 2G2
T∑
t=1

1
µt

= D2

ηT
+ 2G2

T∑
t=1

ηt−1
µ

(ψt is (µ/ηt−1)-strongly convex)

= GD

√
T

µ
+ 2GD

√
1
µ

T∑
t=1

√
t (ηt−1 = D

G

√
µ

t
)

≤ 5GD
√
T

µ

using
T∑
t=1

√
t ≤ 2

√
T
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Nicolò Cesa-Bianchi Lecture 3 Mathematics of Machine Learning 15 / 15



Regret bound
Assume ψ ≥ 0 is µ-strongly convex and ψt = ψ

ηt−1
where ηt ≤ ηt−1 for t ≥ 1

RT ≤ ψT (w∗) + 2G2
T∑
t=1

1
µt

= D2

ηT
+ 2G2

T∑
t=1

ηt−1
µ

(ψt is (µ/ηt−1)-strongly convex)

= GD

√
T

µ
+ 2GD

√
1
µ

T∑
t=1

√
t (ηt−1 = D

G

√
µ

t
)

≤ 5GD
√
T

µ

using
T∑
t=1

√
t ≤ 2

√
T
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