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Online convex optimization in the simplex

I Let V be the d-dimensional simplex ∆d

I The loss at time t of pt ∈ ∆d is `>t pt = E[`t(It)] for It ∼ pt
I This is a linear loss with bounded coefficients `t(i) ∈ [0, 1] for i = 1, . . . , d
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Prediction with expert advice

A sequential decision problem
I d actions
I Unknown deterministic assignment of losses to actions `t =

(
`t(1), . . . , `t(d)

)
∈ [0, 1]d

for each time step t

? ? ? ? ?? ?? ??

For t = 1, 2, . . .

1. Player picks an action It (possibly using randomization) and incurs loss `t(It)
2. Player gets feedback information: `t(1), . . . , `t(d)
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Regret

RT =
T∑
t=1

`>t pt − min
p∈∆d

T∑
t=1

`>t p

= E
[
T∑
t=1

`t(It)
]
− min
i=1,...,d

T∑
t=1

`t(i)

Recall lower bound for the simplex: RT = Ω
(√
T ln d

)
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Exponentially weighted forecaster (Hedge)

I Linear losses `t(pt) = `>t pt = E[`t(It)] for It ∼ pt and `t ∈ [0, 1]d

I EG with linear losses is called the Hedge algorithm

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

) =
exp

(
−η

∑t
s=1 `s(i)

)
∑d
j=1 exp

(
−η

∑t
s=1 `s(j)

)
I At time t+ 1 draw action It+1 from pt+1

Nicolò Cesa-Bianchi Lecture 4 Mathematics of Machine Learning 4 / 20



Exponentially weighted forecaster (Hedge)

I Linear losses `t(pt) = `>t pt = E[`t(It)] for It ∼ pt and `t ∈ [0, 1]d

I EG with linear losses is called the Hedge algorithm

pt+1(i) =
exp

(
−η

∑t
s=1∇`s(ps)i

)
∑d
j=1 exp

(
−η

∑t
s=1∇`s(ps)j

) =
exp

(
−η

∑t
s=1 `s(i)

)
∑d
j=1 exp

(
−η

∑t
s=1 `s(j)

)

I At time t+ 1 draw action It+1 from pt+1
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Regret bound for Hedge

I If η =

√
ln d
8T then RT ≤

√
T ln d

2

I This matches the asymptotic lower bound, including constants
I We prove this later in a more general setting
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The bandit problem: playing an unknown game

I d actions
I Unknown deterministic assignment of losses to actions `t =

(
`t(1), . . . , `t(d)

)
∈ [0, 1]d

for each time step t
? ? ? ? ?? ?? ??

For t = 1, 2, . . .

1. Player picks an action It (possibly using randomization) and incurs loss `t(It)
2. Player gets feedback information: Only `t(It) is revealed
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A growing range of applications

I Ad placement

I Dynamic content/layout optimization
I Real time bidding
I Recommender systems
I Clinical trials
I Network protocol optimization
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A feedback graph over actions
?

? ?

? ?? ?

? ?

?

`t(i) is observed iff It ∈ {i} ∪ NG(i)
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Recovering expert and bandit settings

Experts: clique

.7

.3 .6

.7 .2.2 .1

.4 .9

.4

Bandits: edgeless graph

?

.3 ?

? ?? ?

? ?

?
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Relationships between actions
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Hedge revisited on a feedback graph G
Player’s strategy must use loss estimates

I pt(i) ∝ exp
(
−η

t−1∑
s=1

̂̀
s(i)

)
i = 1, . . . , d

I ̂̀
t(i) =


`t(i)

Pt
(
`t(i) observed

) if `t(i) is observed because It ∈ {i} ∪ NG(i)

0 otherwise

Importance sampling estimator

Et
[̂̀
t(i)

]
= `t(i)

Pt
(
`t(i) observed

) × Pt
(
`t(i) observed

)
+ 0 = `t(i)

Et
[̂̀
t(i)2

]
= `t(i)2

Pt
(
`t(i) observed

)2 × Pt
(
`t(i) observed

)
+ 0
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Regret analysis

Wt+1
Wt

=
d∑
i=1

wt+1(i)
Wt

pt(i) = 1
Wt

exp
(
−η

t−1∑
s=1

̂̀
s(i)

)
= wt(i)

Wt
is a r.v.!

=
d∑
i=1

wt(i)
Wt

exp
(
−η ̂̀t(i)) (because wt+1(i) = e−η

∑t−1
s=1

ˆ̀
s(i)−η ˆ̀

t(i))

=
d∑
i=1

pt(i) exp
(
−η ̂̀t(i))

≤
d∑
i=0

pt(i)
(

1− η ̂̀t(i) +
(
η ̂̀t(i))2

2

)
(using e−x ≤ 1− x+ x2/2 for all x ≥ 0)

≤ 1− η
d∑
i=1

pt(i)̂̀t(i) + η2

2

d∑
i=1

pt(i)̂̀t(i)2
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Regret analysis (cont.)
Taking logs, using

T∑
t=1

ln Wt+1
Wt

= ln WT+1
W1

and ln(1 + x) ≤ x yields

ln WT+1
W1

≤ −η
T∑
t=1

d∑
i=1

pt(i)̂̀t(i) + η2

2

T∑
t=1

d∑
i=1

pt(i)̂̀t(i)2

Moreover, for any fixed action k, we also have

ln WT+1
W1

≥ ln wT+1(k)
W1

= −η
T∑
t=1

̂̀
t(k)− ln d

Putting together and dividing both sides by η > 0 gives
T∑
t=1

d∑
i=1

pt(i)̂̀t(i)− T∑
t=1

̂̀
t(k) ≤ ln d

η
+ η

2

T∑
t=1

d∑
i=1

pt(i)̂̀t(i)2
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Regret analysis (cont.)

Recall where we were:
T∑
t=1

d∑
i=1

pt(i)̂̀t(i)− T∑
t=1

̂̀
t(k) ≤ ln d

η
+ η

2

T∑
t=1

d∑
i=1

pt(i)̂̀t(i)2

Take expectation w.r.t. I1, . . . , IT

E
[
T∑
t=1

d∑
i=1

pt(i)Et
[̂̀
t(i)

]
−

T∑
t=1

Et
[̂̀
t(k)

]]
≤ ln d

η
+ η

2E
[
T∑
t=1

d∑
i=1

pt(i)Et
[̂̀
t(i)2]]
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Regret analysis (cont.)
Recall where we were:
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η
+ η

2

T∑
t=1

d∑
i=1

pt(i)̂̀t(i)2
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Nicolò Cesa-Bianchi Lecture 4 Mathematics of Machine Learning 14 / 20



Regret analysis (cont.)
Recall where we were:

T∑
t=1

d∑
i=1

pt(i)̂̀t(i)− T∑
t=1

̂̀
t(k) ≤ ln d

η
+ η

2

T∑
t=1

d∑
i=1

pt(i)̂̀t(i)2

Take expectation w.r.t. I1, . . . , IT

E
[
T∑
t=1

d∑
i=1

pt(i)Et
[̂̀
t(i)

]
−

T∑
t=1

Et
[̂̀
t(k)

]]
≤ ln d

η
+ η

2E
[
T∑
t=1

d∑
i=1

pt(i)Et
[̂̀
t(i)2]]

This is just the regret

RT = E
[
T∑
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Regret analysis (cont.)

RT ≤
ln d
η

+ η

2 E
[
T∑
t=1

d∑
i=1

pt(i)Et
[̂̀
t(i)2

]]

≤ ln d
η

+ η

2 E
[
T∑
t=1

d∑
i=1

pt(i)
Pt
(
`t(i) is observed

)] (variance bound)

= ln d
η

+ η

2 E
[
T∑
t=1

d∑
i=1

pt(i)
pt(i) +

∑
j∈NG(i) pt(j)

]
(def. of feedback graph)

≤ ln d
η

+ η

2T α(G)

α(G) is the independence number of G
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Regret analysis (cont.)
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pt(i) +

∑
j∈NG(i) pt(j)
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(def. of feedback graph)

≤ ln d
η

+ η

2T α(G) (cool graph-theoretic fact)

α(G) is the independence number of G

Nicolò Cesa-Bianchi Lecture 4 Mathematics of Machine Learning 15 / 20



Independence number α(G)
The size of the largest independent set in G
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Regret bound

RT ≤
ln d
η

+ η

2Tα(G)

=
√
Tα(G) ln d

Note: This bound is tight for all G (up to logarithmic factors)

Special cases
Experts (clique): α(G) = 1 RT ≤

√
T ln d Hedge algorithm

Bandits (edgeless graph): α(G) = d RT ≤
√
Td ln d Exp3 algorithm
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More general feedback models

Experts Bandits

Cops & Robbers Revealing ActionNicolò Cesa-Bianchi Lecture 4 Mathematics of Machine Learning 18 / 20



Partial monitoring: not observing your own loss
Dynamic pricing: Perform as the best fixed price

1. Post a T-shirt price
2. Observe if next customer buys or not
3. Adjust price

Feedback does not reveal the player’s loss

1 2 3 4 5
1 0 1 2 3 4
2 c 0 1 2 3
3 c c 0 1 2
4 c c c 0 1
5 c c c c 0

Loss

1 2 3 4 5
1 1 1 1 1 1
2 0 1 1 1 1
3 0 0 1 1 1
4 0 0 0 1 1
5 0 0 0 0 1

Feedback
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A general gap theorem

I A constructive characterization of the minimax regret for any partial monitoring game

I Only three possible rates for nontrivial games:

1. Easy games (e.g., experts, bandits, cops & robbers): Θ
(√
T
)

2. Hard games (e.g., revealing action, dynamic pricing): Θ
(
T 2/3)

3. Impossible games: Θ(T )

1

2

34

5
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Nicolò Cesa-Bianchi Lecture 4 Mathematics of Machine Learning 20 / 20



A general gap theorem

I A constructive characterization of the minimax regret for any partial monitoring game
I Only three possible rates for nontrivial games:

1. Easy games (e.g., experts, bandits, cops & robbers): Θ
(√
T
)

2. Hard games (e.g., revealing action, dynamic pricing): Θ
(
T 2/3)

3. Impossible games: Θ(T )

1

2

34

5
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