INTRODUCTION TO DERIVED ALGEBRAIC GEOMETRY MSRI, SUMMER 2023 MINICOURSE ON DG CATEGORIES

DIMA ARINKIN

Problem set 1
 DG Categories and DG functors

(Problems marked with $*$ are slightly harder, or perhaps they concern some side topics, so I consider them less important.)

1. Consider the DG category of complexes of R-modules $C(R)$. Verify that composition of homomorphisms defines a morphism of complexes

$$
\operatorname{Hom}\left(C_{1}^{\bullet}, C_{2}^{\bullet}\right) \otimes \operatorname{Hom}\left(C_{2}^{\bullet}, C_{3}^{\bullet}\right) \rightarrow \operatorname{Hom}\left(C_{1}^{\bullet}, C_{3}^{\bullet}\right)
$$

2. Let \mathcal{A} be a DG category. Prove that a morphism $\phi: x \rightarrow y$ in \mathcal{A} is a quasiisomorphism if and only if for any object $z \in \mathcal{A}$, the induced map

$$
\operatorname{Hom}(z, x) \rightarrow \operatorname{Hom}(z, y)
$$

is a quasi-isomorphism. (It is natural to reduce this to a form of Yoneda's Lemma, but doing this rigorously requires a bit of caution.
3. (From Toën's notes) Let R be the (classical) ring $k[x] /\left(x^{2}\right)$. Consider the (commutative) DG algebra R^{\prime}, which, as a graded algebra, equals $k[x, y]$ with $\operatorname{deg}(x)=0$, $\operatorname{deg}(y)=-1$, and d is defined via $d x=0$, and $d y=d x$. Now consider R and R^{\prime} as DG categories with a single object.

Prove that there is a quasi-equivalence between these categories, but only in one direction.
$\mathbf{4}^{*}$. Let us consider the simplest example of localization (or, rather, quotient) of a DG category. Let \mathcal{A} be a DG category with an object $x \in \mathcal{A}$. (Feel free to assume that \mathcal{A} consists of two objects.) Construct a new DG category $\mathcal{B}=\mathcal{A} /\{x\}$ characterized by the following universal property: there is a universal DG functor $\phi: \mathcal{A} \rightarrow \mathcal{B}$ together with a contracting homotopy of $\phi(x)$ (that is, a degree -1 element in the complex $\operatorname{Hom}(\phi(x), \phi(x))$ whose derivative is $i d_{\phi(x)}$. (The description should be sufficiently explicit: e.g., what is the complex $\operatorname{Hom}_{\mathcal{B}}(\phi(x), \phi(x))$?)
(This is a special case of Drinfeld's construction of quotients of DG categories.)
5*. (Bar resolution) Let R be a ring. Let B. be a resolution of R by projective R-bimodules; there is a standard such resolution called the bar resolution:

$$
\ldots R \otimes R \otimes R \rightarrow R \otimes R \rightarrow R
$$

(If you haven't seen how to write the morphisms here, try guessing or look it up!) Show that for any two R-modules M and N, the complex

$$
\operatorname{Hom}_{R \otimes R^{o p}}\left(B_{\bullet}, \operatorname{Hom}_{k}(M, N)\right)
$$

computes $\operatorname{Ext}_{R}^{\bullet}(M, N)$.
(There are at least two natural ways of thinking about this problem: via the composition of derived functors and via natural resolutions of modules.)

