DAG Exercises - 2 - Axiomatic (lazy) ∞ -category theory

Benjamin Antieau

Summer 2023

II.1. Let $\mathcal{C} = F_{\bullet}$ be a quasi-category. Define a category $\pi \mathcal{C}$ as follows. The objects are the elements of F_0 . The morphisms should be certain equivalence classes of elements of F_1 ; the identity maps should be the degenerate 1-simplices. Define this notion of equivalence and composition (using F_2), showing that with your definition $\pi \mathcal{C}$ is indeed a category. This is a model for the homotopy category of \mathcal{C} .

II.2. Let A_{\bullet} be a simplicial abelian group. Show that $d: A_n \to A_{n-1}$ defined as $\sum_{i=0}^n (-1)^i \partial_i$ makes

$$0 \leftarrow A_0 \leftarrow A_1 \leftarrow A_2 \leftarrow \cdots$$

into a chain complex of abelian groups.

II.3. If C is a category and $N_{\bullet}C$ denotes its nerve, show that $N_{\bullet}C$ is a Kan complex if and only if C is a groupoid.

II.4. Recall that a Kan complex is said to be contractible if every square

admits a dotted arrow making the diagram commutative. If C is a category, what does it mean for $N_{\bullet}C$ to be a contractible Kan complex?

References