INTRODUCTION TO DERIVED ALGEBRAIC GEOMETRY MSRI, SUMMER 2023 MINICOURSE ON DG CATEGORIES

DIMA ARINKIN

Problem set 3 Modules over a DG category

(Problems marked with * are slightly harder, or perhaps they concern some side topics, so I consider them less important.)

Everywhere below, \mathcal{A} is a DG category, and $C(\mathcal{A})^{sf} \subset C(\mathcal{A})$ is the full subcategory of semifree objects.

1. (Example of twisted complexes) Let R be a DG ring, and let $M \in C(\mathcal{A})$ be a semifree module "of rank 3": it admits a filtration with quotients M_0 , M_1/M_0 , M_2/M_1 being free of rank one. Apply the strategy from the lecture: Lift generators of these free modules to elements e_0 , e_1 , e_2 of M, and write the conditions on the differential $d(e_i)$ in this basis. Do not assume that e_i 's have degree 0.

2. Let \mathcal{A} be a DG category with finite set of objects x_1, \ldots, x_k . Show that the category $C(\mathcal{A})$ is equivalent to the category C(R) for some DG algebra R. Is this a strict equivalence, or only a quasi-equivalence?

(You can take $R = \bigoplus_{i,j} \operatorname{Hom}_{\mathcal{A}}(x_i, x_j)$.)

The 'clever' way to do solve this is to use the free object $\bigoplus_i h_{x_i} \in C(\mathcal{A})$, but it can also be done directly.

What happens if some or all of x_i 's are isomorphic?

3. Continuing with the previous problem: under the equivalence $C(\mathcal{A}) \simeq C(R)$, show that any semifree *R*-module is semifree as an \mathcal{A} -module, and that a semifree \mathcal{A} -module is isomorphic to a direct summand of a semifree *R*-module.

4^{*}. Continuing with the previous question: show that the embedding $C(R)^{sf} \to C(\mathcal{A})^{sf}$ is a quasi-equivalence.

5^{*}. (An easier version of a question from lecture) Suppose $M \in C(\mathcal{A})$ has a subcomplex N such that N is semifree and M/N is *free*. Show that M is semifree. (You can also try the harder statement where you only suppose that M/N is semifree.)