INTRODUCTION TO DERIVED ALGEBRAIC GEOMETRY MSRI, SUMMER 2023 MINICOURSE ON DG CATEGORIES

DIMA ARINKIN

Problem sets 6-7 Compactly generated DG categories. Quasicoherent sheaves.

As before, \mathcal{A} is an arbitrary DG category.

1. Show that the image of the Yoneda embedding $\mathcal{A} \to \operatorname{Ind}(\mathcal{A}) = D(\mathcal{A}^{op})$ consists of compact objects.

2^{*}. Show that if $M \in D(\mathcal{A})$ is compact, it is perfect. (For a simpler problem, assume that M is the cone of a map between two free modules, possibly of infinite rank.)

3^{*}. Put $R = \Bbbk[x]$ be the classical polynomial algebra and consider the category C(R) (rather than D(R)). It is a cocomplete DG category. Which of the following objects compactly generate the category:

- (1) M where M is a finitely generated R-module;
- (2) $(R/f^d R)$, where f is either 0 or irreducible and d > 0;
- (3) R/fR, where f is either 0 or irreducible;
- (4) R?

4. Let $R = \Bbbk[x]$ be the classical polynomial algebra, and let M be \Bbbk considered as an R-module with the trivial action of x.

- (1) Verify that $M \in D(R)$ is perfect and compute the DG ring of endomorphisms $\operatorname{End}_R(M)$.
- (2) Describe the full subcategory compactly generated by M as explicitly as possible. What condition does $N \in D(R)$ need to satisfy to belong to this category?
- (3) Describe the right orthogonal complement to M in D(R) as explicitly as possible.

(Remark: The subcategory generated by M is equivalent to $D(\operatorname{End}_R(M)^{op})$; this is a version of the Koszul transform.)

5. Let C be a smooth projective connected curve over an algebraically closed field k. Let $x \in X$ be a point. Show that the invertible sheaves \mathcal{O}_C and $\mathcal{O}_C(-x)$ compactly generate the category $\operatorname{QCoh}(X)$.

6. Show that the category $QCoh(\mathbb{P}^n)$ is compactly generated by invertible sheaves $\mathcal{O}, \ldots, \mathcal{O}(n)$. Conclude that the category is (quasi)equivalent to the derived category of a certain classical ring.

(One way to approach this problem, due to A. Beilinson, is to use the Koszul resolution of the diagonal in $\mathbb{P}^n \times \mathbb{P}^n$. I suggest you try to prove this by induction instead.)

7^{*}. Let $f : Y \to X$ be a locally closed embedding (or, more generally, any quasi-affine morphism.) Show that if $\mathcal{A} \subset \operatorname{QCoh}(X)$ compactly generates $\operatorname{QCoh}(X)$, then $f^*(\mathcal{A})$ compactly generates $\operatorname{QCoh}(Y)$. Here and everywhere in this course, all functors are derived by default. Can you formulate a categorical statement generalizing this problem?

(The last two problems imply that the category QCoh(X) for a quasi-projective X is compactly generated without using the Thomason-Trobaugh Theorem.)