INTRODUCTION TO DERIVED ALGEBRAIC GEOMETRY MSRI, SUMMER 2023 MINICOURSE ON DG CATEGORIES

DIMA ARINKIN

PROBLEM SETS 8-9 Operations on DG categories. The Fourier-Mukai transform.

1. (Problem from the lecture) Let

 $\mathcal{A}
ightarrow \mathcal{B}
ightarrow \mathcal{C}$

be a short exact sequence of cocomplete DG categories. Suppose that we have a collection of $\{F_{\alpha}\} \subset \mathcal{B}^c$ whose images (compactly) generate \mathcal{C} and a collection $\{G_{\beta}\} \subset \mathcal{A}^c \subset \mathcal{B}^c$ of objects that generate \mathcal{A} . Show that the union of the two collections

 $\{F_{\alpha}\} \cup \{G_{\beta}\}$

generates \mathcal{B} . (In particular, this proves \mathcal{B} is compactly generated.)

2^{*}. (A little more on the bar resolution) Let R be a ring, and let B_{\bullet} be a resolution of R by free R-bimodules. Recall that we can associate to any $M^{\bullet} \in K(R)$ the total complex of the bicomplex

 $B_{\bullet} \otimes M^{\bullet};$

this provides a functor from the category K(R) to its full subcategory of semifree modules.

Show that the functor is the right adjoint of the inclusion functor.

3. Let $R = \bigoplus_{i \ge 0} R_i$ be a non-negatively graded ring. Consider the derived category $D(R)^{gr}$ of graded R-modules. (Hopefully, it is clear what this means: the grading of modules is independent of the cohomological grading.) Prove that the category is compactly generated and find a set of generators.

4. Continuing with the previous problem, prove that the category $D(R)^{gr}$ is not equivalent to the category D(S) for any dg ring S.

5^{*}. Consider the category $D(\Bbbk[x_0,\ldots,x_n])^{gr}$, and let

$$D(\Bbbk[x_0,\ldots,x_n])_0^{gr} \subset D(\Bbbk[x_0,\ldots,x_n])^{gr}$$

be the full subcategory of complexes on whose cohomology all x_i act locally nilpotently. Show that the subcategory is compactly generated, and identify the quotient

$$D(\Bbbk[x_0,\ldots,x_n])^{gr}/D(\Bbbk[x_0,\ldots,x_n])_0^{gr}$$

with $\operatorname{QCoh}(\mathbb{P}^n)$.

 6^* . In the notation of the previous problem, consider the colocalization functor

$$D(\Bbbk[x_0,\ldots,x_n])^{gr} \to D(\Bbbk[x_0,\ldots,x_n])_0^{gr}.$$

Show that the functor is fully faithful on the subcategory of compact objects. This implies that the 'larger' category $D(\Bbbk[x_0,\ldots,x_n])^{gr}$ can be obtained from the 'smaller' category $D(\Bbbk[x_0,\ldots,x_n])^{gr}$ by 'renormalization': taking the ind-completion of its full subcategory. (It is called 'renormalization' because we change which objects are considered compact.)