DAG Exercises - 5 - The cotangent complex

Benjamin Antieau

Summer 2023
V.1. Prove that if R and S are in CAlg_{k} and if $R \otimes_{k} S$ denotes, for the moment, the classical tensor product, then $\Omega_{R \otimes_{k} S / k}^{1} \simeq\left(\Omega_{R / k}^{1} \otimes_{k} S\right) \oplus\left(R \otimes_{k} \Omega_{S / k}^{1}\right)$, where all tensor products are classical.
V.2. Prove that $\Omega_{R / k}^{1} \cong I / I^{2}$ where I is the kernel of the multiplication map $R \otimes_{k} R \rightarrow R$.
V.3. Prove that if $k \rightarrow R \rightarrow S$ are maps of connective derived commutative rings, then there is a natural cofiber sequence

$$
S \otimes_{R} \mathrm{~L}_{R / k} \rightarrow \mathrm{~L}_{S / k} \rightarrow \mathrm{~L}_{S / R}
$$

V.4. Show that if G is a group scheme, then the cotangent complex of Spec $k \rightarrow G$ corresponding to the identity element of G is equivalent to \mathfrak{g}^{\vee}, the k-linear dual of the Lie algebra of G.
V.5. Show that if $R, S \in \mathrm{DAlg}_{k}^{\mathrm{cn}}$, then $\mathrm{L}_{R \otimes_{k} S / k} \simeq\left(\mathrm{~L}_{R / k} \otimes_{k} S\right) \oplus\left(R \otimes_{k} \mathrm{~L}_{S / k}\right)$.
V.6. Let k be a commutative ring in which 2 is invertible. Let $R=k[x, y] /\left(x^{2}+y^{2}-1\right)$ and let $X=\operatorname{Spec} R$ as a derived stack. Let $S \in \mathrm{DAlg}_{k}^{\mathrm{cn}}$. Compute $\pi_{i} X(S)$ (with any given base point of $X(S)$) in terms of $\pi_{i} S$. Attempt to do this two ways, first by writing R as a pushout, second by computing and using the cotangent complex of R.
V.7. Let $R=\operatorname{LSym}_{k} M$ for $M \in \mathrm{D}(k) \geqslant 0$. Compute $\mathrm{L}_{R / k}$.
V.8. Let $R=k[x] /\left(x^{2}\right)$. Compute $\mathrm{L}_{R / k}$ and $\mathrm{L}_{k / R}$. Why doesn't your solution contradict Avramov's theorem?
V.9. Suppose that $R \in \mathrm{CAlg}_{k}$ and x_{1}, \ldots, x_{c} is any set of elements in R. Define $S=R / /\left(x_{1}, \ldots, x_{c}\right)$ as the pushout

When is S discrete? Compute $\mathrm{L}_{S / R}$.
V.10. Suppose that $k \rightarrow R \rightarrow S$ be maps in DAlg $_{\mathbf{Z}}^{\mathrm{cn}}$. The associated Kodaira-Spencer class $\mathrm{KS}_{S / R}$, which despite the notation depends on k, is the map $\mathrm{L}_{S / R} \rightarrow\left(S \otimes_{R} \mathrm{~L}_{R / k}\right)[1]$ associated to the boundary map in the conormal sequence. It is typically viewed as an element of $\operatorname{Ext}_{S}^{1}\left(\mathrm{~L}_{S / R}, S \otimes_{R} \mathrm{~L}_{R / k}\right)$. Now, suppose that \widetilde{R} is a square-zero extension of R by $M \in \mathrm{D}(R)_{\geqslant 0}$, classified by a map $\mathrm{d}: \mathrm{L}_{R / k} \rightarrow M[1]$. Show that the obstruction to finding a deformation of S to \widetilde{R} is a class in $\operatorname{Ext}_{S}^{2}\left(\mathrm{~L}_{S / R}, S \otimes_{R} M\right)$ given as the composition of $\mathrm{KS}_{S / R}$ and $S \otimes_{R} \mathrm{~d}: S \otimes_{R} \mathrm{~L}_{R / k} \rightarrow S \otimes_{R} M[1]$. Show that the space of such deformations has π_{0} given by $\operatorname{Ext}_{S}^{1}\left(\mathrm{~L}_{S / R}, S \otimes_{R} M\right)$.

