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Motivation: What is the best way to deploy finite
testing resources for COVID-19 epidemic control?

Example Objective: Minimize prevalence of SARS-CoV-2
infection at some future time point

i.e. minimize E [Y (K )], where Y (K ) is an indicator of
active infection at some future time point K
Many alternatives; e.g., expected hospitalizations
(cumulative or max daily census) < some threshold, etc.

Mechanisms by which testing for SARS-CoV-2 affects
future disease prevalence

1 Direct impact: Isolation of infectious persons detected by
current testing

2 Information: Improved targeting of future
interventions – amplify impact of future testing, other
interventions (e.g., education, social support)
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Background: Adaptive Sampling Designs

Objective: Assign measurements to optimize information

Design: Sequentially sample individuals for testing

Sampling probability depends on individual covariates W
(e.g., geospatial coordinates)
Sampling mechanism updated over time based on results
of past testing rounds (and corresponding risk estimates)

Target parameter (Examples):

Disease prevalence at a point E [Y |W = w ]
”Hotspot” detection (i.e., I [E (Y |W = w) > ρ], for some
threshold prevalence ρ ∈ (0, 1))
Performance of adaptive design (e.g., hotspot classification
error)

Machine Learning + Statistical Inference (e.g., Pancheco et
al. 2020, Bibaut et. al., 2020)
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Example: Adaptive geospatial sampling for malaria
surveillance (eg, Pancheco et al. 2020,Kabaghe, et. al, 2017)

Exploitation vs Exploration
for hotspot classification
with geospatial correlation

Adaptive sampling
improves classification
accuracy
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Background: Adaptive Trial Designs

Objective: Assign treatments to optimize impact

Design: Covariate-Adjusted Response-Adaptive (CARA)
designs for responding to treatment effect heterogeneity

Randomization probability depends on covariates W
Updated over time based on outcomes of persons
previously randomized (and corresponding conditional
effect estimates)

Target parameter (examples):

Treatment allocation rule d0(W ) that maximizes (good)
outcomes over all possible rules d
Mean reward under this optimal rule E (Y (d0(W ))) (i.e.
mean counterfactual outcome had all treatments had been
allocated optimally)

Machine learning for effect heterogeneity + statistical
inference (e.g., Luedtke vdL, 2016a,b,c; Chambaz et al 2011,
2017)
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Example: Personalized behavioral interventions to
optimize retention in HIV Care in Kenya

AI

Initial machine-learning 
based recommendation: 
Using ADAPT-R I Data

“Observe”: 
Collect new 

outcome data

“Learn”: Analyze 
data with 

machine learning  
to update 

recommendation 
system

“Apply”: Assign interventions 
based on machine-learning 

recommendation

MD ”Apply:” Assign 
interventions using 
human judgement

“Observe”: Collect 
new outcome data

R

Outputs
• Overall effectiveness of AI vs MD

• Comparison of outcomes 
between the arms

• Final updated Machine learning 
recommendation system
• Using all data

• Patient outcomes had final ML 
recommendation system been used 
throughout
• Compared to outcomes in MD 

arm
• Compared to outcomes under 

initial ADAPT-R design

ADAPT-2: “Man vs. Machine”; NIH-sponsored R34 Pilot
(Petersen, Geng)
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Back to COVID-19:
Adaptive Epidemic Control “in the wild”

Testing plays a dual role: Information and Direct Impact

Prevalence varies over physical and covariate space

Impact of detecting an active infection varies depending
on behaviors, networks, viral load, etc.

Risk surface and epidemic context evolve over time

Testing decisions are at best partially controlled (hybrid
observational and randomized designs)

Networks imply complex dependence (and are not well
measured)
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Application: Berkeley Safe Campus Study

Cohort of 3000 students, workers, and researchers

Integrated data collection, testing and response system

Supported compliance 
for survey completion

Low barrier self-
referrals for testing

Test results, 
appointment 
check ins

Dashboards to summarize 
findings in real time.

Referral for 
Targeted Testing

Integrated secure data 
system + Real-time Analysis

Symptoms, exposures, 
mobility, behaviors, 
residence, demographics…

Petersen, Reingold, Packel, Hunter, Facente
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Simulation-based illustration

Agent-based mathematical model of UC Berkeley campus
(N=20,000) (Malenica, Coyle)

Household (including group housing), classroom, and
random contacts
Heterogeneity in risk (beyond network)
Infection seeding from outside of campus

Testing strategies contrasted (200 tests/day)

1 Random
2 Single regular interval
3 Static risk-stratified interval

1x/wk for Dorm, remaining tests at regular intervals

4 Based on estimated individual risk of infectiousness

Based on past data, accounting for testing mechanism
Different risk-driven testing functions ⇒ different
tradeoffs between ”exploitation and exploration”
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Risk-driven testing is much more efficient for
epidemic control
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Berkeley Safe Campus Study: Preliminary Results

High acceptability and uptake (98% uptake and 78%
average daily completion rate)

Nearly 85% of students “likely” or “extremely likely” to
continue to participate in the daily and weekly surveys
should campus continue these beyond the study

Triggered testing:
58 persons with a positive test
40-60% of students with a test triggered reported for
testing
5-10% of those tested positive

Additional lessons learned: self-sreferrals, low barrier
testing, social networks, de-stigmatization
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Application: San Francisco County

Same general design can (in theory) be applied to a city or
region: Adapt and respond cycles to target testing and
other interventions
Different “action”: Targeted outreach to neighborhoods
and communities in place of individual-level testing referral
More persons measured, but fewer covariates

Residential location and demographics
LOTS of missing values (and other data issues)

Chamie, 2020; Community-led testing in Mission District, in
partnership with Latino taskforce
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Heterogeneity between and within census tracts

Heterogeneity across census tracts
Within census tracts with high percent positive, Latinx
communities disproportionately affected
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Potential for improved epidemic control through
targeted testing

Focused testing, supported isolation (e.g., Right to
Recover), education and prevention
Geographic proximity and community mobilization and
partnerships
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Overview: General Statistical Framework

Contextual multiple-bandit problem in computer science

Need for statistical inference (both optimize a system and
make inferences about it)

Links to adaptive trial designs:

Optimizing and evaluating strategies for responding to
treatment effect heterogeneity

Extensions to real-world adaptive surveillance and response
systems for epidemic control

Theoretical progress and ongoing work
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Contextual multiple-bandit problem in computer
science

Consider a sequence (Wn,Yn(0),Yn(1))n≥1 of i.i.d. random
variables with common probability distribution PF

0 :

Wn, nth context (possibly high-dimensional)

Yn(0), nth reward under action a = 0 (in ]0, 1[)

Yn(1), nth reward under action a = 1 (in ]0, 1[)

We consider a design in which one sequentially,

observe context Wn

carry out randomized action An ∈ {0, 1} based on past
observations and Wn

get the corresponding reward Yn = Yn(An) (other one not
revealed),

resulting in an ordered sequence of dependent observations
On = (Wn,An,Yn).
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Contextual Multiple Bandit: General Objective

We want to estimate

the optimal treatment allocation/action rule d0:
d0(W ) = arg maxa=0,1 E0{Y (a)|W }, which optimizes EYd

over all possible rules d .

the mean reward under this optimal rule d0:
Ψ(PF

0 ) = E0{Y (d0(W ))},
and we want

maximally narrow valid confidence intervals “Statistical. . .

minimize regret 1
n

∑n
i=1(Yi − Yi (dn)) . . . bandits”

This general contextual multiple bandit problem has enormous
range of applications: e.g., on-line marketing, recommender
systems, randomized clinical trials.
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Balanced vs. adaptive sequential design

19



Motivation
and
Background

Applications

General
Statistical
Framework

Adaptive Test
and Respond
Design for an
Evolving
Epidemic

References

Balanced vs. adaptive sequential design
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Adaptive Testing and Response for
an Evolving Epidemic
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Observed longitudinal data structure on population
of individuals

Consider population of N individuals.
For each individual i , we observe a longitudinal data
structure

Oi = (Li (0),Ai (0), Li (1),Ai (1), . . . , Li (τ),Ai (τ),Yi (τ+1)).

Li (0) baseline history, including contacts of subject i , and
baseline infectious status Yi (0).
Ai (t) is indicator of being sampled/tested.
Li (t) includes Ai (t − 1)Yi (t) indicator of being infected, if
tested.
Li (t) may include changes in contacts, changes in risk
factors that are predictive of future infection.
Yi (τ + 1) = Ai (τ)Yi (τ + 1) indicator of being infectious, if
tested.
Notation: L(t) and A(t) for N dimensional vectors. L̄(t)
history of process up till t.
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Likelihood of observed data

We can factor likelihood according to time ordering.
Assume conditional on past at time t − 1, independence
across individuals of random Li (t):

P(Ō(τ + 1)) =
∏
t

{
N∏
i=1

P(Li (t) | L̄(t − 1), Ā(t − 1))

}
P(A(t) | Ā(t − 1), L̄(t − 1)).

Short-hand notation for density of O(τ + 1):∏
t

{∏
i

qi ,t(Li (t))

}
gt(A(t)),

where gt denotes the sampling/testing design drawing the
testing indicators (A1(t), . . . ,AN(t)) at time t.
With the exception of symptomatic subjects, we control
drawing A(t).
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Statistical Model: Stationarity in time

In order to be able to learn the data distribution from the
data over time t, we may assume that there is a common
mechanism generating Li (t + 1), given the history up till
time t, across time t.

For example, we assume
qi ,t(li (t) | Past(t)) = q(li (t) | zi (t)) is modeled by
common conditional density that only depends on past
through fixed dimensional extraction zi (t), but we leave
this function q unspecified.

Stationarity in time assumption is often problematic, but
over time, one might be able to learn and measure the
factors that result in changes in the data generating
process.
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Stationarity across individuals

One can also avoid making such an assumption, and rely
on asymptotics in number of individuals N.

In this case, we assume that at time t, there is a common
in i conditional density qt(Li (t) | Zi (t)), allowing that it
changes over time t.

In this case, one can still learn the data generating
distribution, but one would only use the recent estimates
of qt to optimize the next sampling mechanisms w.r.t. the
status of epidemic x-time points in the future (moving
target).
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Outcome of interest: Evaluation of adaptive design
g

The performance of the design could be measured by a
final proportion of actively infected:

Y c =
1

N

N∑
i=1

Ai (τ)

gτ,i (Ai (τ))
Yi (τ + 1).

This inverse probability of sampling weighted proportion of
actively infected has the same expectation as the actual
proportion of actively infected subjects.
A design g could therefore be evaluated by the
expectation of Y c

Eg ,qY
c .

For any choice g , true q, assuming sequential
randomization, this equals the mean outcome in the
counterfactual world in which we would have employed
adaptive design g (i.e., causal quantity, identified by
G -computation formula). 26
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Oracle adaptive design

We could restrict to a class G of conditional distributions
(gt : t = 1, . . .) that are only allowed to respond to certain
extractions from the past at time t.

Among that class of possible adaptive designs, we can
define an oracle design for our study with mechanism q:

g(q) = arg min
g∈G

Eg ,qY
c .

Oracle design depends on the unknown data generating
function q.
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Adaptive designs that learn the oracle design

At time t, we can use the past data, to estimate q.

Let qN,t be this estimator.

Then, we have an estimator gN,t = q(qN,t) of the oracle
adaptive design.

We can use this gN,t to sample the next A(t + 1).

As time t increases we have that gN,t converges to the
oracle design g(q).

We can consider analogue adaptive designs for the case
that we have stationarity across subjects, rely on N large,
and select g to optimize

g → Eq,gY
c
t+x .
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Theoretical advances supporting such complex
adaptive surveillance and treatment systems

Online super-learning for time-series (vdL, Malenica, 2019,
Benkeser et al, 2018, vdL,Rose, 2018)

Highly Adaptive Lasso: General nonparametric MLE
machine learning (vdL 2015, vdL, Rose, 2018)

TMLE to obtain efficient and normally distributed
estimators, fully utilizing machine learning, of quantities
such as EY c , or contrasts of different counterfactual mean
outcomes (vdL, Rubin, 2006, vdL, Rose , 2011, 2018)

Weak convergence theory for processes; i.e., Martingale
CLT and probability inequalities for martingales.
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Conclusions and Future Work

Building a real-world adaptive surveillance and response
system poses formidable challenges

Statistical
Operational

But also holds immense promise.

Lots of highly relevant advances are in place,

But still work to do
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