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Bayesian statistics for mathematicians/probabilists

A probability illustration (Diaconis and Holmes, 2002 [3]).

• Vanilla Birthday problem (we fix p = 1
365 ): How many people, k,

in the room for a 50-50 chance of a birthday?
• The Birthday problem for students all the same year with
heterogeneous p’s.

• Replace p = 1
365 by a distribution of possible probabilities that

take into account for instance the difference between
probabilities of a birth on a weekend and that on a weekday.
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Birthday Problem with Dirichlet(c, c, . . . , cs)

What k required for a 50− 50 chance of a match when n = 365:

• Uniform Prior, c=1 k .
= .83

√
n, for n = 365, k .

= 16
• Dirichlet(a1,a2, . . . ,a365) Symmetric Prior, ai = c

c .5 1 2 5 20 ∞
kc 13.2 16.2 18.7 20.9 21.9 22.9
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Honest Priors: Dirichlet(a1,a2, . . . ,a365)

Construct a 2 “hyper”parameter family of Dirichlet priors writing
ai = Aπi, with π1 + π2 · · ·+ πn = 1. Assign weekdays parameter
πi = a, weekends πi = γa, with 260a+ 104γa = 1. Here γ is the
parameter ‘ratio of weekends to weekdays’, (roughly we said γ

.
= .7)

and A measures the strength of prior conviction. The table below
shows how k varies as a function of A and γ. We have assumed the
year has 7× 52 = 364 days.

A γ .5 .7 1
1 2.2 2.2 2.2
364 16.1 16.3 16.4
728 18.4 18.6 18.8∞ 22.2 22.4 22.6
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The Coupon Collector’s Problem

In its classical version (Laplace (1812), Feller (1968)) k balls are
dropped uniformly and independently into n boxes, all boxes are
covered if each contains at least one ball. The classical
approximations (Feller (1968),page 105) show that for

k = n logn+ θn, −∞ < θ < ∞
P(cover) =

n∑
k=0

(−1)k
(
n

k

)
(1−

k

n
)k

.
= e−e−θ

For example, when n = 365, P(cover) .
= 1

2 for k = 2287 or as Feller
(1968) puts it : in a village of 2300 inhabitants it is about even odds
that every day is someone’s birthday.
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Bayesian version

• With a uniform prior

P(cover) =

(
k−1
n

)(
n+k−1

n

) .
= e−

1
θ , for k = θn2, 0 < θ < ∞ (1)

For example, Pu(cover) =
1
2 for θ = 1.44.

When n = 365 this will need k = 191, 844.

Thus a Bayesian with a uniform prior would think it takes a
town-sized village to have even odds that every day is
someone’s birthday.
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Bayesian version

• With a general Dirichlet prior Dã

Let A = a1 + a2 + · · ·+ an

and λi =
(A− ai)(A− ai + 1) · · · (A− ai + (k− 1))

A(A+ 1) · · · (A+ k− 1)
and if λ = λ1 + λ2 + · · ·+ λn, then

P{cover} ∼ e−λ

As an example, if ai ≡ c,

Pc(cover) ∼ e−( c
θ
)c for k = θn

c+1
c

when n = 365, to have Pc(cover)
.
= 1

2 requires kc of:

c 1 2 5 10 20 ∞
kc 191, 844 16, 000 4, 555 3176 2685 2297
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Mathematical remarks

1. In the Birthday problem, use of a prior makes a mild difference.
For the coupon collectors problem the prior makes a huge
difference.
Here, the same prior on the same underlying space seems
sensible for one event (birthdays) and strange for other events
(coverings).

2. Maths: We used Stein’s method is to prove a Poisson
approximation for the number of empty cells. This is proved
with error bounds which shows that the numbers in the table
above are accurate to at least 5%.
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Applications: When does heterogeneity matter?

Strains of Myobacterium tuberculosis.
How many samples need to be collected if the strains are very
unequally distributed if we want a coverage of 90% of all possible
strains?
How many people need to be infected to attain a coverage of 75%?
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Part II

Heterogeneity of R0 and R

(Joint work with Claire Donnat)

Asst Prof., U Chicago, Dept of Statistics.
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Basic parameter and decomposition

The reproductive number R characterizes the expected number of
secondary cases produced by one single typical infectious case.

This quantity can be further broken down into different categories.

• R0 (basic reproductive number) — assumes that the population
is completely susceptible for modeling a completely novel virus

• “effective” Reff, assumes a mixed population of susceptible and
immune hosts.

We focus on discussing how to deal with the heterogeneity of these
parameters, that we replace by random variables.

R = τ× c×DI (2)

where τ is the transmissibility (i.e., probability of infection given
contact between a susceptible and infected individual), c is the
average number of contact per day between susceptible and
infected individuals, and DI is the duration of infectiousness.

τ and c can be considered random variables.
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Basic decomposition: many sources of heterogeneity.

R thus serves as an epidemiological metric to describe the
contagiousness or transmissibility of infectious agents: the outbreak
is expected to continue if R is greater than 1, or to naturally subside
if R is strictly less than 1.

This coefficient inherently depends on some local characteristics of
the population and of the virus.

It is tied to temporal and spatially-varying factors, such as
population age demographics, political or environmental variables,
cultural or social dynamics, or the density of the population — all
favoring or diminishing the rate of contacts c between individuals.

It can also vary according to differences in climate or infectiousness
that impact DI (heterogeneity of strains is also a possibility).
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Hierarchical model for R

The expected number of secondary cases is contingent on each
primary cases’ socio-economic status, age, etc., and perhaps even
time — as one could imagine the contact rates varying between
weekends and weekdays.

A very fine-grain analysis of the R’s heterogeneity would thus model
R as a distribution over cases and time in a given population.
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R could be hierarchically
broken down according to
regions, age groups, and, at
the most granular level,
across subjects.
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Model the heterogeneity of the reproductive number R

Bayesian hierarchical extension to standard models of R0.
Let G be the number of groups that we want to analyze (these could
either be localized virus outbreak clusters , regions or countries).
Let Ng denote the population of each of these groups, initially
assumed to be completely susceptible.
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Figure 1: Standard compartmental SEIR model

Estimate the number of new cases per day using the model.
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dSk(t)

dt
= −

Sk(t)

Nk

R
(k)
0
DI

Ik(t)

dEk(t)

dt
= −

Sk(t)

Nk

R
(k)
0
DI

Ik(t) −
Ek(t)

DE

dIk(t)

dt
=

Ek(t)

DE

−
Ik(t)

DI

(3)

where:

• Sk(t),Ek(t), Ik(t), and Rk(t) are the number of susceptible,
latent, infectious, and removed individuals at time t in group k;

• DE and DI are the mean latent (assumed to be the same as
incubation) and infectious period (equal to the serial interval
minus the mean latent period);

• R(k)
0 is the basic reproductive number is population k.
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Deterministic equations do not provide natural uncertainty
quantification for estimates of R0, nor account for heterogeneities.

Stochastic components in SEIR models as in the study of Ebola [11].

Doing this using Bayesian methods avoids the identifiability issues
associated to simply adding more parameters to account for the
heterogeneity of the basic reproductive numbers R0.

Similar to a non-parametric model by Fraser [7], also used for
estimating R0 in Cori et al [2].

A version of this model was implemented in the R-package EarlyR
[12], which has been used in recent studies[13].
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Simplest case: time until 5,000 deaths
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Compression of the exposed and infected periods– the model relies
solely on inferring the number of new cases from previous
observations using an “infectivity profile” [2].

In this setting, each infected case is expected to contaminate on
average of R0 patients (by definition) — but the distribution of this
number of new infections is given by a probability distribution which
only depends on the time s elapsed since infection: one could
indeed imagine a patient becoming increasingly contagious over the
first few days of the infection as the viral load builds up, and
decreasingly so after the peak of the illness.

This infectious profile is typically modeled as a Gamma distribution.
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Infectious profile

Cori et al [2] propose the use of the parameters of the serial interval
(more substantial observational data and better estimation) as a
good proxy.
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We focus solely on R, which we assume to have a distribution over
space and time.

We assume the parameters of the serial interval to have been
correctly estimated and thus, the coefficients ws to be known.

We call X the number new infectious cases each day.

The incidence on day t conditioned on the previous incidences can
be modeled by a Poisson distribution of the form:

∀t ⩽ T , Xt ∼ Poisson(R
t−1∑
s=1

wsXt−s) (∗)

where ws = P
[
Γα,β ∈ (s, s+ 1)

]
.
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Hierarchical Models

Here, we assume a hierarchical structure
for R, decomposes it as the product of
the transmissibility τ, the daily contact cg
and the duration of individual infections
DI — which we assume to be known.
Rate of contact cg is group-specific.
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The model is summarized as:

∀t ⩽ T ,∀g ⩽ G, Xt,g ∼ Poisson(R(g)
t−1∑
s=1

wsXg,t−s)

∀g = 2 · · ·G, cg ∼ Γ(2, 1)
τ ∼ β(1, 39)

R(g) = cgτDI

(4)

It is extended to a full random-effect version by taking the effective
reproductive rate R(g), at each time step, to be sampled from a
gamma distribution: R(g)

t ∼ Γ(R(g) ∗ 10, 10).
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Mathematics/Statistics issue: Non-identifiability

If we could have several values for the parameters that give the same
observables, we say there is non-identifiability.

cτ is invariant by rescaling of the two factors.

Fix the first group’s daily contact rate c1 to a fixed value — we pick it
here to be 1.

All other values of c can be understood as relative measures with respect to
this benchmark group — thus a c2 with value 2 would indicate that, on a
daily basis, an infected individual in population 2 has twice as many
contacts in the susceptible group than in population 1.

This benchmark value could be either an arbitrary benchmark value (which
should allow the potential R to vary within reasonable ranges), or an
informed measure of social interactions — for instance, a daily contact of
one person per day might seem like an appropriate value for a population in
complete lockdown, such as seen in Wuhan as of January 22nd.

24



Computational Details

• RStan programming suite[1].
• This uses Hamiltonian Monte Carlo to generate samples and
estimate the different parameters of the model.

• We use a total of 8 chains, with 5,000 warmup iterations and
1,000 sampling steps.

• All the associated code and data are provided on Github1.
• There is no theory that says that these Hamiltonian Monte Carlo
methods have converged, we set up synthetic experiments that
we use to benchmark the accuracy of our method.

• Computations were done on a HPC cluster and took a few hours.

1https://github.com/donnate/heterogeneity_R0
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Heterogeneity of R0’s
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Figure 2: Distribution of the recovered spatial reproductive numbers R for
the spatial Random-Effects Model. ( Beware the different scales)
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Evaluating the impact heterogeneity in predictive scenarios.

Our goal is to assess the toll of hospital load that a rapidly
propagating pandemic can induce. As such, we emphasize that we
focus on short-term estimation, and the study of the uncertainty for
time frames of a few weeks.

Quantify the effect of governmental measures on the “flattening of
the curve”.

Assess how informative our exponential growth model truly is when
used in the context of drawing predictive scenarios under such huge
uncertainty.

We use our fitted reproductive number to generate new predictions
for the next 200 days.
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We do not assume here that a given policy can manage to bring the
R0 to a given value (e.g. 1) – in other words, that the effect of the
policy is absolute.

Spectrum of social distancing measures and their effect in relative
terms.

We thus consider policies that divide the daily contact rate by a
certain factor, rather than in absolute value.
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The model that we adopt here is the following. For each day:

1. We generate the number of new incident cases based on the
Bayesian model detailed and fitted in the previous section.

2. We then generate the number of people among these incidence
cases that will require hospitalization. This number is generated
by a binomial distribution, with a hospitalization rate that is
contingent on the geographic localization and takes into
account the age demographic layout of each cluster:

π
(g)
Hosp ∼ 0.01 ∗ Γ(αT

gπ
Hosp
α , 1)

where αg is the proportion of each age group in location g

(divided in 4 groups: from “0-19” years-old, “20-54”, “54-65”, and
“65+”), and πα is the hospitalization rate per group (expressed in
percentages, and assumed to be universal across all contagion
groups).

3. Once the number of newly hospitalized people has been
selected, we choose among them using a binomial distribution
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the people directly admitted into an Intensive Care Unit (ICU).
The parameter for the binomial is also contingent on the
demographics:

π
(g)

ICU|Hosp ∼
0.01 ∗ Γ(αT

gπ
ICU
α , 1)

π
(g)
Hosp

where πICUα is the ICU rate per group (also expressed in
percentages, and assumed to be universal across all contagion
groups).

4. Finally, the fatalities are chosen among the people placed in the
ICU, and sampled from a binomial distribution with probability:

π
(g)

death|ICU ∼
0.01 ∗ Γ(αT

gπ
death
α , 1)

π
(g)
ICU

5. For the hospitalizations, ICU and number of deaths selected, we
assign time of death and of departure from the hospital/ICU by
sampling from a matched normal distribution.
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The scenarios are thus sampled as follows:

τ ∼ Posterior(τ)
∀g, cg ∼ Posterior(cg)

Xt,g ∼
1
2

(
N
(
2

√√√√R

K∑
s=1

wsXt−s +
3
8
, 1
))2

−
3
8

π
(g)
Hosp ∼ 0.01 ∗ Γ(αT

gπ
Hosp
α , 1)

π
(g)

ICU|Hosp ∼
0.01 ∗ Γ(αT

gπ
ICU
α , 1)

π
(g)
Hosp

π
(g)

death|ICU ∼
0.01 ∗ Γ(αT

gπ
death
α , 1)

π
(g)
ICU

Hospt,g ∼ Binomial(Xt,g,π(g)
Hosp)

ICUt,g ∼ Binomial(Hospt,g,π
(g)

ICU|Hosp)

Deathst,g ∼ Binomial(ICUt,g,π(g)

death|ICU)

∀i ∈ [1...Deathst,g], T
Deathst,g
i ∼ N(µd,σd)

∀i ∈ [1...ICUt,g] T
ICUt,g
i ∼ N(µICU,σICU)

∀i ∈ [1...Hospt,g] T
Hosp t,g
j ∼ N(µh,σh)

(5)
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(A) Hospital Occupancy using a general R (world R0)
ICU beds
Deaths (per day)

Hospital beds

(B) Statistics using tailored cluster’s R

(i) Hospital Occupancy 

(ii) Death, ICU and Hospital Occupancy in Alternating 5/2 (80%
reduction of R for 5 days, 2 days of ``business as usual’’) 

(iii) Death, ICU and Hospital Occupancy in Alternating 2/5 (80%
reduction of R for 2 days, 5 days of ``business as usual’’) 

(ii) Death, ICU and Hospital Occupancy in Alternating 5/2 (80%
reduction of R for 5 days, 2 days of ``business as usual’’) 

(iii) Death, ICU and Hospital Occupancy in Alternating 2/5 (80%
reduction of R for 2 days, 5 days of ``business as usual’’) (i) Hospital Occupancy 

Hospital beds
ICU beds
Deaths (per day)
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Spatial
Random-Effects Model: Comparisons of the outcomes of the different
strategies. Estimated trajectories in terms of occupied hospital beds using
various R: the group’s tailored Bayesian R, as well as a general R estimated
from the aggregated data. We note the difference in the impact on the
healthcare systems that the aggregation vs the spatially heterogeneous R

yield.
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Figure 3: California. Spatial random effects trajectories in terms of occupied
hospital beds using various R: the group’s specific Bayesian R, as well as a
general R estimated from the aggregated data. Impact on the healthcare
projections that the aggregation vs the spatially heterogeneous R yield. 30
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Figure 5: Spatial Random-Effects. Four different groups (impact of a given
policy), using different R0s. This shows the importance of correctly
accounting for group-wise heterogeneity in the model.
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Part III

Next hurdle: Idenঞfiability.
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Deconvolution: Identifiability

source: Abba Gumel, MSRI Talk, Aug 12, 2020.

N(t) = S(t) + E(t) + I(t) +A(t) +H(t) +Q(t) + R(t)
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Identifiability
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Identifiability: problem solved in Bayesian framework

With proper prior and posterior distributions, the posterior
distributions enable the estimation of parameters and solutions to
”deconvolution problems” and the identifiability problems go away.
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Other complete Bayesian analyses (but with fixed R0)

Flaxman et., 2020[6] also used a Bayesian model with Stan to look for
changepoints.
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Effect of lockdown (Flaxman et al, 2020)

Nature | Vol 584 | 13 August 2020 | 259
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Fig. 1 | Country-level estimates of infections, deaths and Rt for France, Italy, 
Spain and the UK. Left, daily number of infections. Brown bars are reported 
infections; blue bands are predicted infections; dark blue, 50% credible 
interval; light blue 95% credible interval. The number of daily infections 
estimated by our model drops immediately after an intervention, as we assume 
that all infected people become immediately less infectious through the 

intervention. Afterwards, if Rt is above 1, the number of infections will start 
growing again. Middle, daily number of deaths. Brown bars are reported 
deaths; blue bands are predicted deaths; credible intervals are as in the left 
plot. Right, Rt. Dark green, 50% credible interval; light green, 95% credible 
interval. Icons are interventions, shown at the time at which they occurred.
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A simple and appropriate Bayesian computation for specificity/sensitivity

Carpenter and Gelman, 2020[8] provide an elegant solution to
accounting for the uncertainties in testing by using priors on the
false positive and false negative rates.
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Bayesian approaches

• Allow explicit inclusion of sources of heterogeneity through
hierarchical models.

• Are intermediary between full resolution of ABM and completely
summarized parametric methods.

• Simulations leading to uncertainty quantification which can
serve for experimental design and followup.

• Overcomes problems with non-identifiability.
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More research needed on

• Model selection and sensitivity analyses.
• Age/ stratification affects network structure and c.
• Using a more flexible model for DI, infection times (do different
virus strains vary).

• Superspreader and extreme value tail events.
• Communication of orders of approximation and uncertainty.
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R code and resources

Mathematicians show all their work and in statistics and
epidemiology, reproducible research is the only research.
(Data and Code).

Github: https://github.com/donnate/heterogeneity_R0
RECON: https://www.repidemicsconsortium.org

epidemia: https:
//github.com/ImperialCollegeLondon/epidemia

socialmixr: https://github.com/sbfnk/socialmixr
RStan: https://mc-stan.org/rstan/

book: Modern Statistics for Modern Biology
http://bios221.stanford.edu/book/
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Benefitting from the tools and schools of Statisticians.......

Thanks to the R, Stan and Bioconductor community and to
co-authors.

Persi Diaconis, Wolfgang Huber, JJ Allaire and Rob Gentleman.

Thank you to the organizers for inviting me.
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