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Global Burden of Some Infectious Diseases

� Smallpox (430 BC-1979): over 300 million deaths in the 19th century

� 1918-1920 H1N1 In�uenza Pandemic: four successive waves; 500
million cases over 20-50 million deaths. Other in�uenza pandemics:
1957-1958 (H2N2); 1968 (H3N2); 2009 (H1N1)

� Black Death (Black plague) 1340-1771: over 75 million deaths

� Malaria (1600-to date): over 500,000 deaths annually (mostly children
under �ve years of age)

� Cholera pandemics and outbreaks (1817-to date): 7 pandemics
(hundreds of thousands deaths)

� HIV/AIDS (1981-to date): 38 million PLWHA; 35 million deaths
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Global Burden of Some Infectious Diseases Ctd.

� 2002-2003 SARS coronavirus pandemic: 8,000 cases (744 deaths)

� MERS coronavirus pandemic (2012-to date): 2,517 cases (866 deaths)

� Ebola outbreaks in West Africa (2014-2016): 15,261 lab-con�rmed
(11,325 deaths)

� 2015-2016 Zika outbreaks in the Americas: 707,133 reported cases
(175,063 laboratory-con�rmed)

� SARS-CoV-2 pandemic (2019-to-date): over 20 million con�rmed
cases (over 740,000 deaths)

Why do we care? Globalization (we are vulnerable to what's happening in
far away places). �We are constantly a short �ight away from a serious
epidemic" (Canada's Advisory Committee on SARS, 2003)
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Role of Mathematical Modeling in Disease Dynamics

� Building and testing theories; assessing quantitative conjectures;
providing insights on speci�c questions; determining sensitivities to
changes in parameter values estimating key parameters from data

� Comparing, planning, implementing, evaluating and optimizing various
detection, prevention, therapy and control programs

� Identifying trends and making general forecasts

� Early estimate of epidemiological thresholds (R0) and disease burden

Mathematical epidemiology is inherently interdisciplinary, involving
collaborations with other scientists (clinicians, epidemiologists,
immunologists, virologists, computer scientists, statisticians, data analysts,
social scientists) and public health practitioners and policy makers
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Types of Models for Infectious Disease Dynamics

� Compartmental (deterministic, stochastic, discrete-time)

� Spatial/patch/metapopulation

� Agent-based (individual-based)

� Contact network

� Machine learning

� Statistical

Choice of model type depends on:

(a) Type of problem being addressed or question(s) being asked

(b) Nature/type/level/reliability of data available
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History of Mathematical Modeling of Infectious Diseases

Framework (mostly) developed by biologists and epidemiologists:

� Daniel Bernoulli (mathematician and physicist): modeling work to
assess e�cacy of smallpox vaccine in the 1760s

� Sir Ronald Ross (British medical doctor; Nobel prize in Medicine,
1902) and George Macdonald (British malariologist): 1900-1957

� William O. Kermack (Scottish biochemist) and Anderson G.
McKendrick (military physician and epidemiologist): 1927-1933

1 Bernoulli, D. Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de
l'inoculation pour la prévenir. Mém Math. Phys. Acad. Roy. Sci. Paris, 1760: 1-45

2 Kermack, W.O. and McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. Roy.
Soc. Lond. B. 1927(115): 700-721
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Public Health �Wish List" During New Epidemics

� Early estimation of reproduction number (R0)

� Determining the qualitative nature of disease spread (spreading speed;
epidemic peak/decline; multi-wave phenomenon?)

� Estimating disease burden (expected number of infections,
hospitalizations, ICU admissions, deaths)

� Assessment of control strategies (targeted strategies; herd immunity;
cost of interventions; optimal allocation of limited resources)
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Mathematical, Statistical and Computational �Wish List"

Mathematical: characterizing model dynamics (existence and asymptotic
stability of steady-state solutions; characterizing bifurcation types; deriving
conditions for e�ective control or persistence of disease; herd thresholds)

Statistical: data-�tting (case, hospitalization, mortality, social media data
etc.); parameter estimation; optimization (optimal control); uncertainty
quanti�cation; sensitivity analysis

Computational: e�cient (high-performance computing), robust, accurate,
dynamically-consistent numerical methods for integrating associated
continuous-time models for the disease dynamics; simulation of large-scale
models (social network, agent-based), design of user-friendly decision
support software systems for running scenario analysis in parameter space
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Formulating Compartmental Epidemiology Models

� Split the total population at time t (N(t)) into mutually-exclusive
compartments of susceptible (S(t)), infected (I (t)) and recovered
(R(t)) individuals

N(t) = S(t) + I (t) +R(t)

� Let β (N) be the e�ective contact rate per person per unit time. Then,
β (N)I/N is the average number of contacts with infectious individuals
a susceptible individual makes per unit time (disease incidence)
� Consider the disease incidence g(S , I ,N) = β (N)SI/N:

(i) Standard incidence if β (N) = β (a constant)
(ii) Mass action incidence if β (N) = βN

Other forms of compartmental models: SIRS, SEIR, SEIRS, SVEIRS etc.
Dynamics typically determined by reproduction number (R0)

Herbert Hethcote. Mathematics of infectious diseases. SIAM Review, 2000
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Basic (R0) and Control (Rc) Reproduction Numbers

Basic 
reproduction
Number, 𝑅!=2

Control 
Reproduction
Number, 𝑅"=2
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Kermack-McKendrick (KM) SIR Model

dS(t)

dt
= −βS(t)I (t)

dI (t)

dt
= βS(t)I (t)− γI (t)

dR(t)

dt
= γI (t)

β : mean number of contacts an infective makes per unit time
1/γ : mean duration of infectivity

Model used to explain pattern of epidemics: plague (London 1665-1666, Bombay 1906); cholera (London 1865)
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KM Model: Main Assumptions

� Closed population: no births, deaths due to disease or natural causes
(no entry into or departure from the population). Time scale of the
disease is faster than demographic time scale

� Each infected individual is instantaneously infectious (duration of
infectivity= length of disease)

� Homogeneous mixing (no age, spatial or social structure)

� Large population size (stochastic e�ects for small populations)

� Exponentially-distributed waiting times in compartments

� Recovery induces permanent natural immunity against reinfection
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Homogeneous vs. Heterogeneous Mixing Assumptions

Homogeneous mixing: individuals in a population mix randomly and
uniformly with each other (i.e., the population is assumed to be
homogeneous). Everyone is equally likely to mix with (and infect or acquire
infection from) everyone else

Heterogeneous mixing: accounts for heterogeneities in diseases, hosts and
their interactions. Incorporates host diversities (such as, risk/age/spatial
structure, contact/mixing structure and preferences, compliance to public
health interventions)

Homogeneous mixing assumption mostly made for mathematical
tractability (although this does not generally a�ect the predictive power
and robustness of the model). Models for heterogeneously-mixed
populations are often not amenable to rigorous analyses
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KM Model: Basic Reproduction Number (R0)

Suppose at time t = 0 all individuals were susceptible (i.e., S(0) = N).
Hence, at t = 0, one infected individual will infect βS(0) = βN susceptible
individuals per unit time. Since an infected individual will remain infectious
for an average period of 1

γ
, then

R0 =
βS(0)

γ

Control and mitigation strategies based on two parameters: decrease β

(contact reduction, masks usage) and increase γ (treatment)

(a) R0 < 1: Epidemic declines to zero

(b) R0 > 1: Epidemic causes an outbreak (rises to a peak, and then
declines to zero)

E�ective Reproduction Number: Rc (t) = R0
S(t)

N(t)
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KM Model: Epidemic Curves
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E�ective (time-varying) Reproduction Number
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Agent-based Models (ABMs) for Disease Dynamics

ABMs are a type of computational models for simulating the actions and
interactions of autonomous agents (individuals, groups, etc.) with each
other and with an environment. The behavior/actions of agents are
governed by a set of coded rules. At each time step, an agent decides what
it will do

Each agent is unique with di�erent set of characteristic (e.g., age, gender,
vaccination status). These characteristics can in�uence how the agents
decide (i.e., they a�ect the agents' likelihood of acquiring infection)

Disease spread is monitored through each individual. Contacts of each
individual with others in the relevant social networks and geographical
areas are tracked

ABMs can capture the dynamics of the disease spread combined with the heterogeneous mixing and social networks
of the agents, thereby helping to determine where an agent got infected and who infected them
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ABMs vs. Equations-based Models

Population type: ABM has heterogeneous agents. Equations-based model
generally has homogeneous population (incorporating heterogeneity
requires adding more equations)

Mixing type: Heterogeneous for ABM; Homogeneous for Equations-based
(mixing patterns across groups may di�er, but are same within each group)

Computational costs and data needs: ABMs are �data hungry" and
computationally-extensive. ABMs are not amenable to mathematical
analysis (generally follow the traditional SEIR formalism, equations ABMs
not given explicitly).

Results generated from the two modeling types can sometimes be similar or quite di�erent. ABMs can capture
certain complexities that other modeling types may not (Hunter et al., 2018)

1 Perez and Dragicevic. Int. J. Public Health, 2009

2 E. Hunter et al. PLoS One, 2018
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KM Model: Demographic E�ects

dS

dt
= Π−βSI −µS ≡ f1(S , I ,R)

dI

dt
= βSI − γI −µI ≡ f2(S , I ,R)

dR

dt
= γI −µR ≡ f3(S , I ,R)

Feasible region: Ω = {(S , I ,R) ∈ R3
+ : S + I +R ≤ Π/µ}.

Theorem 1

The region Ω is positively-invariant and attracting for the model.

Implication: the model is well-posed mathematically and epidemiologically.
Hence, it is su�cient to study its dynamics in Ω.
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Linearization

Disease-free equilibrium (DFE): E0 : (S∗, I ∗,R∗) = (Π/µ,0,0)

Under what conditions can the system settle at the DFE?

Compute Jacobian of the system (standard linearization):

J(S , I ,R) =



∂ f1
∂S

∂ f1
∂ I

∂ f1
∂R

∂ f2
∂S

∂ f2
∂ I

∂ f2
∂R

∂ f3
∂S

∂ f3
∂ I

∂ f3
∂R


=

 −β I −µ −βS 0
β I βS− (γ + µ) 0
0 γ −µ



Hartman-Grobman Theorem: topological equivalence of phase portraits
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Linearization Ctd.

Negative eigenvalues if R0 =
β Π/µ

µ + γ
< 1. R0 < 1 is necessary for disease

elimination

Theorem 2

The DFE is locally-asymptotically stable if R0 < 1, and unstable if R0 > 1.

Theorem 3

The DFE is globally-asymptotically stable in Ω whenever R0 ≤ 1

Theorem 4

The model has a unique endemic equilibrium point (EEP), given by

(S∗∗, I ∗∗) =

(
γ + µ

β
,µ(R0−1)

)
, which exists only if R0 > 1. This

equilibrium is globally-asymptotically stable in Ω\E0 whenever R0 > 1.

Proofs of G.A.S. based on using Lyapunov function theory. Transcritical/forward bifurcation at R0 = 1
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Forward Bifurcation Diagram
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Computation of Reproduction Number Using Other
Methods: Inspection & NGM

R0 measures the average number of new cases a typical infected person
will generate during his/her duration of infectiousness if introduced in a
completely susceptible population

Let F represents the nonnegative matrix of new infection terms. Let V
represents the M−matrix of linear transition terms in the infected
compartments of the model.

Intuitively, R0 is de�ned (First Principle) as:

R0 = (infection rate near the DFE) × (average duration of infectiousness)

= ρ
(
FV−1

)
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Computation of R0 Ctd.

For the KM model with demographics,

R0 = (βS∗)×
(

1

γ + µ

)

= (β Π/µ)×
(

1

γ + µ

)

Thus, the disease will be e�ectively�controlled (or eliminated) if R0 < 1.
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R0 for SEIARS Model

dS

dt
= Π + ψR−β

(
I + ηA

N

)
S−µS ,

dE

dt
= β

(
I + ηA

N

)
S−σE −µE ,

dI

dt
= rσE − γI I −µI −δI I ,

dA

dt
= (1− r)σE − γAA−µA−δAA,

dR

dt
= γI I + γAA−ψR−µR; N(t) = S(t) +E (t) + I (t) +R(t).

DFE: (S∗,E ∗, I ∗,A∗,R∗) = (Π/µ,0,0,0,0)
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R0 for SEIARS Model Ctd.: First Principle

Two sources of infection (I and A). Let R0I and R0A represent the average
number of new cases generated by individuals in the I and A class, resp.

R0I = (infection rate near the DFE)
× (probability of surviving E and moving to the I class)
× (average duration in the I class)

= (βS∗/N∗)×
(

rσ

σ + µ

)
×
(

1

γI + µ + δI

)
R0A = (infection rate near the DFE)

× (probability of surviving E and moving to the A class)
× (average duration in the A class)

= (βηS∗/N∗)×
[

(1− r)σ

σ + µ

]
×
(

1

γA + µ + δA

)

R0 = R0I +R0A
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SEIARS Model Ctd.: Next Generation Operator Method

F =

 0 β βη

0 0 0
0 0 0

 ,

V =

 σ + µ 0 0
−rσ γI + µ + δI 0

−(1− r)σ 0 γA + µ + δA

 .

R0 = ρ(FV−1)

Challenge: Proof of G.A.S. of endemic equilibrium of SEIARS model?

1 Diekmann et al. On the de�nition and computation of the basic reproduction ratio R0 in models for
infectious disease in heterogeneous population. J. Math. Biol., 1990

2 van den Driessche and Watmough. Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Math. Biosci., 2002
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Vaccine-induced Herd Immunity

A population is at herd immunity if a large enough fraction has been
immunized to ensure that the disease cannot become endemic.

That is, herd immunity is the �indirect protection from infection conferred
to susceptible individuals when a su�ciently large proportion of immune
individuals exist in a population" (Randolph and Barreiro, 2020).

Often considered in the context of vaccination programs. Once attained,
those that cannot be vaccinated (e.g., infants, immunocompromised,
anti-vaxxers etc.) are still protected against acquiring infection.
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Herd Immunity Ctd.

Let p be the proportion of successfully immunized individuals

dS

dt
= Π(1−p) + ψR−β

(
I

N

)
S−µS

dV

dt
= Πp−µV

dI

dt
= β

(
I

N

)
S− γI −µI

dR

dt
= γI −ψR−µR

Main assumptions: homogenous mixing; perfect vaccine protection; no
waning or therapeutic bene�ts

Feasible region: D =
{

(S ,V , I ,R) ∈ R4
+ : S +V + I +R ≤ Π/µ

}
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Herd Immunity Ctd.

� Vaccination reproduction number: RV = (1−p)R0

� Basic reproduction number: R0 =
β Π

µ(γ + µ)

� Herd immunity threshold (solve for p from RV = 1): pc = 1− 1

R0

Theorem 5

DFE is globally-asymptotically stable (G.A.S.) in the region D if RV < 1
(i.e., p > pc), and unstable if RV > 1 (i.e., p < pc). The model has a

unique and G.A.S. endemic equilibrium (in D \D0), where
D0 = {(S ,V , I ,R) ∈D : I = 0}, whenever RV > 1.

Proof based on using a Lyapunov function of Goh-Volterra type

Community-wide vaccine-derived herd immunity achieved if p > pc
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Herd Immunity Thresholds for some Diseases

Disease R0 Herd Immunity Threshold (pc)

Diphtheria 6-7 83%−86%
Ebola (2014 outbreaks) 1.5-2.5 33%-60%
In�uenza (pandemics) 1.5-1.8 33%-44%
Measles 12-18 92%-95%

Mumps 4-7 75%-86%
Pertussis 12-17 92%-94%

Polio 5-7 80%-86%
Smallpox 5-7 80%-86% (eradicated)
SARS 2-3 50%-67%
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SIR Model with Imperfect Vaccine

dS

dt
= Π + ωV −β

I

N
S−ξS−µS

dV

dt
= ξS−β (1− εv )

I

N
V −ωV −µV

dI

dt
= β

I

N
S + β (1− εv )

I

N
V − γI −µI −δ I

dR

dt
= γI −µR

Π (recruitment rate), ω (vaccine waning rate), β (infection rate), ξ

(vaccination rate), µ (natural death rate), 0< εv ≤ 1 (vaccine e�cacy to
prevent infection), γ (recovery rate), δ (disease-induced death rate)
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SIR Model with Imperfect Vaccine Ctd.

Disease-free equilibrium:

((S∗,V ∗, I ∗,R∗) =

(
Π(ω + µ)

µ(ω + ξ + µ)
,

ξ Π

µ(ω + ξ + µ)
,0,0

)

Reproduction number: Rv =

[
β
S∗

N∗
+ β (1− εv )

V ∗

N∗

](
1

γ + µ + δ

)

Herd immunity threshold:
1

εv

(
1− 1

R0

)

Theorem 6

Model undergoes a vaccine-induced backward bifurcation at Rv = 1

Proof based on using center manifold theory
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Backward Bifurcation Diagram
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Modeling Dynamics of 2019 Novel Coronavirus

Timeline:

� Wuhan city public health o�cials informed the W.H.O. of a
pneumonia of an unknown etiology on December 31, 2019

� Disease rapidly spread globally (index case in US on January 20,
2020). W.H.O. declared COVID-19 to be a global pandemic on March
11, 2020

Coronaviruses are a group of related RNA viruses that cause diseases in
mammals and birds (they cause respiratory track infections in humans).
There are numerous coronaviruses in the wild (about 2 million)

No safe and e�ective vaccine or antiviral for use in humans. Control
measures limited to basic public health measures using NPIs (community
lockdown, face masks, social/physical-distancing, closure of large
gatherings, quarantine, isolation, testing, contact tracing etc.)
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Comparing the three recent coronavirus cousins

SARS-CoV MERS-CoV COVID-19
(SARS-CoV-2)

Origin Guangdong, China Saudi Arabia Wuhan, China
Duration 2002-2003 2012-to date Dec. 2019-to date
Reservoir Bats and civet cats Bats/camels Bats (Pangolin?)
Countries 29 27 220
Incubation period 2-7 days 5 days 2-14 days
Con�rmed cases 8,000 2,519 > 20 million
Global deaths 744 866 > 740, 000
Case fatality ratio 9.5% 34.4% 2.3%-4%

Symptoms:

(a) SARS: Flu-like; coughing; fever

(b) MERS: Flu-like; coughing; fever

(c) COVID-19: Shortness of breath; coughing; fever

Main lesson from SARS and MERS: coronaviruses are controllable using basic public health measures!

Mathematics of Epidemics, MSRI August 12-14, 2020 Abba Gumel (Arizona State University);agumel@asu.edu 36 / 57



Modeling COVID-19 Dynamics in U.S.

COVID burden in U.S.: over 5 million con�rmed cases; over 164,000 deaths

Objective: could face masks curtail post-lockdown resurgence of COVID-19 in the U.S.?

State variable Description

S Population of susceptible individuals

E Population of exposed (newly-infected but not infectious) individuals

Ep Population of pre-symptomatic (infectious) individuals

Ia Population of asymptomatically-Infectious individuals

Im Population of infectious individuals with mild symptoms

Is Population of infectious individuals with severe symptoms

Ii Population of infectious individuals in self-isolation

Ih Population of hospitalized individuals

Ic Population of individuals in ICU

Ru(Rt) Population of untested (tested) recovered individuals
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Flow Diagram of the Model
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Notation: σa = rσp,σm = (1− r)gσp,σs = (1− r)(1−g)σp
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Equations of Mathematical Model

Ṡ = −λS , Ė = λS− (σe + τd )E , Ėp = σeE − (σp + τd )Ep,

İa = rσpEp− (γa + τd )Ia, İm = (1− r)gσpEp−ρmIm,

İs = (1− r)(1−g)σpEp− (δs + γs + ρs)Is ,

İi = τd (E +Ep + Ia) + ρmIm + (1− f )ρs Is − (γi + ξi + δi )Ii ,

İh = f ρs Is + ξi Ii − (γh + ψh + δh)Ih, İc = ψhIh− (γc + δc)Ic ,

Ṙu = γaIa + γs Is + γi Ii − τsRu, Ṙt = γhIh + γc Ic + τsRu.

λ = (1− εmcm)

[
βpEp + βaIa + βmIm + βs Is

N−θ(Ii + Ih + Ic)

]
.

Ngonghala et al. Could masks curtail the post-lockdown resurgence of COVID-19 in the US? Mathematical
Biosciences, 2020. Mask types: cloths, surgical/medical, N95 respirators
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Fitting Cumulative Deaths Data for AZ, FL, NY and U.S.
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Daily Deaths Data
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Aim 1: Main drivers of the pandemic in the U.S.

Objective: who (among the four infectious classes) are responsible for most
of the infections during the pre-lockdown and lockdown periods?

Based on �tted values of the community contact rates (βp, βa, βs , βm)

Period Transmission source AZ FL NY US

Pre-lockdown Pre- & asymptomatic (Ep + Ia) 65% 72% 87% 57%
Symptomatic (Im + Is) 35% 28% 13% 43%

Lockdown Pre- & asymptomatic (Ep + Ia) 70% 76% 66% 63%
Symptomatic (Im + Is) 30% 24% 34% 37%

Majority of cases generated by asymptomatic people (i.e., people who do
not even know they had the disease). This emphasize the urgent need for
widescale random testing (and tracing and isolation)
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Aim 2: Impact of Early Lockdown on Pandemic Trajectory

A week before lockdown, NY state had 740 cases and 10 deaths. A week later, number of cases and deaths rose to
15, 885 and 740, resp. Exponential spread phase. �Hit hard, hit early strategy"

Jurisdiction Pre-lockdown period Lockdown period

AZ March 6-31, 2020 March 31-May 15, 2020

FL March 1- April 3, 2020 April 3-May 4, 2020

NY March 1-22, 2020 March 22-May 28, 2020

US January 22-April 7, 2020 April 7-May 28, 2020

The U.S. could have saved up to 78% of the cumulative mortality on day of lifting of lockdown if the measures were
implemented a week earlier (the savings increased to 93% if implemented two weeks earlier)
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Aim 3: Impact of Increased Masking During Lockdown

Mask compliance during lockdown period (obtained from �tting): AZ
(14%-17%), FL (16%-21%), NY (15%-21%) and U.S. (18%-23%)
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Aim 3: Impact of Increased Masking During Lockdown Ctd.

Actual cumulative mortality on the day lockdown was lifted (Row 2), and
cumulative mortality as a function of mask use compliance that would have
been recorded on the day lockdown was lifted

Mask compliance level (cm) AZ FL NY USA
Baseline mask compliance during lockdown 651 1,399 30,140 105,896

25% mask compliance 558 1,282 23,540 93,410
50% mask compliance 374 996 1,4780 74,030
75% mask compliance 285 819 10,320 62,540
100% mask compliance 236 705 7,682 55,300

Deaths averted on the day of lockdown lifting if certain percentage
consistently wore masks during lockdown:

� 50% masks usage during lockdown: up to 30,000 deaths averted

� 100% masks usage during lockdown: up to 50,000 deaths averted
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Aim 4: Impact of Increased Masking After Lockdown Lifting

Three levels of lifting of community lockdown measures (mild, moderate, high)

High lifting of lockdown: devastating second waves for AZ and FL in
October 2020 and entire U.S. in Feb. 2021 (if control measures are
maintained at their lockdown baselines). No second wave for NY state
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A Two-group Face Masks Usage Model

Subscript notation: consistently wear face masks (M), no masks (U)

dSU
dt

= −β (IU + ηAU)SUN −β
[
(1− εo)IM + (1− εo)ηAM

]SU
N

dEU

dt
= β (IU + ηAU)SUN + β

[
(1− εo)IM + (1− εo)ηAM

]SU
N
−σEU

dIU
dt

= ασEU −φ IU − γI IU ,
dAU

dt
= (1−α)σEU − γAAU

dHU

dt
= φ IU − γHHU −δHU ,

dRU

dt
= γI IU + γAAU + γHHU .

dDU

dt
= δHU ;

dDM

dt
= δHM .

Mathematics of Epidemics, MSRI August 12-14, 2020 Abba Gumel (Arizona State University);agumel@asu.edu 47 / 57



dSM
dt

= −β (1− εi )(IU + ηAU)
SM
N

− β (1− εi ) [(1− εo)IM + (1− εo)ηAM ]
SM
N

dEM

dt
= β (1− εi )(IU + ηAU)SMN

+ β (1− εi ) [(1− εo)IM + (1− εo)ηAM ]
SM
N
−σEM

dIM
dt

= ασEM −φ IM − γI IM ,
dAM

dt
= (1−α)σEM − γAAM

dHM

dt
= φ IM − γHHM −δHM

dRM

dt
= γI IM + γAAM + γHHM .

Eikenberry et al.. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail
the COVID-19 pandemic. Infectious Disease Modeling, 2020

R0 = β0 [1+ (1− εo)(1− εi )]

[
ασ

σ(φ + γI )
+

η(1−α)

γA

]
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Could a transmission-blocking vaccine eliminate COVID-19?

State variable Description
Su Population of unvaccinated susceptible individuals

Sv Population of vaccinated susceptible individuals

E1 Population of early-exposed individuals

E2 Population of pre-symptomatic infectious individuals

Is Population of symptomatically-infectious individuals

Ia Population of asymptomatically-infectious individuals

Ih Population of hospitalized individuals

R Population of recovered individuals
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Equations for COVID-19 Vaccination Model

Ṡu = −(λe + λs + λa)Su−ξvSu,

Ṡv = ξvSu − (1− εv )(λe + λs + λa)Sv ,

Ė1 = (λe + λs + λa) [Su + (1− εv )Sv ]−σ1E1,

Ė2 = σ1E1−σ2E2, İs = (1− r)σ2E2− (φs + γs + δs)Is ,

İa = r σ2E2− γaIa, İh = φs Is − (γh + δh)Ih,

Ṙ = γs Is + γaIa + γhIh.

λe = βe(1− εMcM)
E2
N

, λs = βs(1− εMcM)
Is
N
, λa = βa(1− εMcM)

Ia
N

Enahoro et al. Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.? Infectious Disease Modeling,
2020
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Data Fitting for Vaccination Model
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Herd Immunity Threshold: Impact of increased masking

Herd immunity threshold: fv = 1

εv

[
1− 1

R0(1−εMcM)

]
; εMcM 6= 1

cM 0% 10% 17.04% (baseline) 30% 50% 100%

fv 85.4% 83.4% 81.8% 78.5% 72.3% 45.9%

Size of herd immunity threshold may depend on the level of heterogeneity
incorporated into the model (Britton et al., 2020)

Britton et al. A mathematical model reveals the in�uence of population heterogeneity on herd immunity to
SARS-CoV-2. Science, 2020
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E�ect of Vaccine E�cacy and Coverage on Disease Burden
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E�ect of Mask Compliance

Mask compliance (CM): (a) 10%, (b) 30%, (c) 50%
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My Top 10 Mathematical Challenges

� Mathematical analysis of non-autonomous COVID-19 model
associated with implementing gradual re�nement of control and
mitigation interventions and/or seasonality: persistence and
bifurcations (Hopf?) assuming endemicity conditions

� Mathematical analysis of a COVID-19 model in a
heterogeneously-mixed population (preferential mixing): existence and
stability of solutions; bifurcation types

� Dynamics of COVID-19 and seasonal in�uenza

� Mathematics of risk-structured COVID-19 vaccination model

� Mathematics of a metapopulation model for the U.S.: does the
e�ective suppression of community transmission in one or few states
absolve those states from future outbreaks? We are ALL in this
together
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My Top 10 Mathematical Challenges Ctd.

� Statistical and machine learning tools and theories for integrating
social media data to parametrize COVID-19 model

� Statistical tools for avoiding identi�ability challenges in �tting
COVID-19 models (multiple local minima)

� Uncertainty quanti�cation and sensitivity analysis of COVID-19
models (model reduction?)

� Using zoonotic data for dynamics of coronaviruses in the wild
(epidemic intelligence) to e�ectively predict the probability of a
spillover that could trigger human pandemics

� Designing numerical methods that capture the correct asymptotic
stability and bifurcations of COVID-19 model
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