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Two roles for models

• SCENARIOS: What are the plausible impacts of an event (bioterror 
attack, accident, flu pandemic)?
• Scale, time of peak(s), duration
• For planning: interventions may not be explicitly modeled

• INTERVENTIONS: What are the likely consequences of an 
intervention?
• Lives saved, change in timing of epidemic, reduction of peak
• Costs expended and averted
• Social disruption…..etc.



Possible Guides to Decision Making

• Reasoning from historical analogies
• Previous pandemics
• Interpandemic influenza
• Other infectious diseases

• Clinical or public health experience
• Political considerations: do something
• Implicit mental models
• Explicit mathematical models
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What is special about decision making?
“Pure science”

Consequence of judging models 
inadequate = more science, agnosticism

Caution dictates: shun Type 1 error; avoid 
(provisional) acceptance of hypotheses 
for which evidence is inadequate

Agnosticism = the default

Decision making

Consequence of judging models 
inadequate = must rely on something 
else (mental models, extrapolating 
history) for decision

Caution dictates: protect people (+- save 
$$)

Agnosticism = paralysis, inability to inform 
cautious action



Sources of uncertainty/error when models are 
used for decision making
• Model structure, parameter values, initial conditions
• Framing a very precise question (what are we trying to optimize?) and 

choosing a precise and appropriate metric (expected outcome, 
probability of a good outcome, minimax)
• Thinking outside the model – considerations that happen before the 

model starts or after it ends or outside its geographic or other scope



Some themes
• The data suck 

Fixing them is both the hardest and most important activity for quantitative 
analysis

• These issues (eg delays) can drastically influence conclusions
This is applied science, and quantitative skill + knowledge of the applications 
are both key to doing it well

• A paradox
Sometimes models’ greatest contribution is to say something that is 
mathematically and scientifically trivial, but important for policy yet
Proving with a model that “interventions reduce cases if we assume they are 
effective” is not a great use of time

• Evaluation metrics and other “extra-model” considerations often 
more important for decision than model details



The data suck

Meteorology
(physics, economics, etc)

Epidemiology (esp in crisis)



Pandemic Data analysis is all about 
(unmeasured, changing) delays

Infection Symptoms Hospital ICU Death

Event 
almost 
never 
observed

Same 
symptoms as 
other 
conditions;
Maybe 
asymptomatic

Early on, tests 
limited even for 
admitted 
patients; now 
probably 
reasonably 
reliable

1-2 weeks 2-3 weeks 3-4 weeks

Even from best 
health depts 
(eg NYC) 
discharge often 
not noted

All-cause 
mortality bump 
is larger than 
can account for 
with confirmed 
COVID-19 
deaths (like flu)



Consequences for control

R Li et al. JAMA Network Open 2020



Fixing the data: consequences for 
analysis



How bad was H1N1 pandemic flu? It was hard to tell!

• Mexico May 4
• 509 confirmed
• 19 deaths (4%)

• US May 4
• 268+786 confirmed + 

probable
• 1 death (0.1%)

• Censoring bias (missing 
deaths; underestimate 
severity)
• Mild cases not detected 

(overestimate severity)

• Garske et al. BMJ 14 Jul
• CFR 0.2-1.2%
• Focus on censoring bias





Severity pyramid approach: Combining different data 
sources for a composite estimate of case-severity
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Age-specific severity estimates
sCHR: ratio of 
hospitalizations to 
symptomatic cases

sCIR: ratio of ICU 
admissions to 
symptomatic cases

sCFR: ratio of 
deaths to 
symptomatic cases

0-4 yr 0.33% (0.21-0.63) 0.044% (0.026-0.078) 0.004% (0.001-0.011)

5-17 yr 0.11% (0.08-0.18) 0.019% (0.013-0.027) 0.002% (0.000-0.004)

18-64 yr 0.15% (0.11-0.25) 0.029% (0.021-0.040) 0.010% (0.007-0.016)

65+ yr 0.16% (0.10-0.30) 0.030% (0.016-0.055) 0.010% (0.003-0.025)

TOTAL 0.16% (0.12-0.26) 0.028% (0.022-0.035) 0.007% (0.005-0.009)

0-4 yr 2.45% (1.10-5.56) 0.321% (0.133-0.776) 0.026% (0.006-0.092)

5-17 yr 0.61% (0.27-1.34) 0.106% (0.043-0.244) 0.010% (0.003-0.031)

18-64 yr 3.00% (1.35-5.92) 0.542% (0.230-1.090) 0.159% (0.066-0.333)

65+ yr 1.84% (0.21-25.38) 0.100% (0.035-4.711) 0.028% (0.008-1.471)

TOTAL 1.44% (0.83-2.64) 0.222% (0.134-0.458) 0.048% (0.026-0.096)

Self-reported
ILI denominator
(NYC data only)

Self-reported
frequency of 
seeking care
(NYC/Milw./
CDC data)



Accouting for delays: decisions

Kissler S*, Tedijanto C* et al. Science 2020



Accounting for delays: analysis



H1N1 Reproduction Number from Early USA data
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Influenza & Other Respiratory Viruses 2009



United States reported cases as of May 8



Correcting for missing onset date, reporting 
delays

Missing onset date

Reporting delays



Numbers are questionable because ascertainment is imperfect 
and changing in space and time

S. Riley et al. unpublished



Estimation of R0: impact of data inputs

Data to 4/26 Data to 4/28 Change in estimate 
from analytic change

Original data 1.95 1.51
Account for 
missing onset 
dates

2.19 2.31 +10-40%

Account for 
reporting delays

2.27 2.52 +4-10%

Account for 
increased 
reporting

1.73 1.81 -20-30%



Nowcasting: part of the solution

• Given how many cases we know about today and in the recent 
past, how many cases will we eventually know about that 
occurred today and in the recent past?

S McGough et al. 2020 PLoS Comp Bio



I could go on with examples from this and 
prior epidemics
• Today’s data set and tomorrow’s may not say the same about 

today
• Testing detects a changing and unknown proportion of cases
• Different jurisdictions generate data in fundamentally different 

ways
• There is not always a good incentive to be transparent about 

these details, and people are busy



Before drawing strong policy conclusions 
from noisy data please check with someone 
who has been working in the field for a long 
time: a cautionary tale



Methods for reproduction number



K Joshi, S 
Cobey, M 
Lipsitch

Comment on 
data from  
Pan et al. 
JAMA 2020

Subtle methodologic choices can lead to 
major errors in policy evaluation





Sometimes the most important contributions 
to policy are scientifically dull: expressions of 
ignorance



This work contained nothing scientifically 
novel

https://rebeccakahn.shinyapps.io/COVID19/

But it did say something important to policy makers (we didn’t realize at the time that it was particularly important): 
Not having a problem you can see should not be reassuring: there may be a problem you don’t see

https://rebeccakahn.shinyapps.io/COVID19/


Paradox
Saying the ”obvious” with a model can prompt total rethinking from 
decision makers but
Saying the obvious with a model is not scientifically rewarding, and is 
often dependent on model assumptions
(Partial) Resolution? 
A model that confirms strongly held priors (often by assuming them) is 
not useful
A model that causes questioning of strongly held priors (by showing 
something which is obvious to the modeler, but not necessarily the 
decision maker, can be useful



Extra-model considerations



How to prepare for/respond to the risk of bioterrorist 
smallpox (2002)

Terrorists may attack us with smallpox
Choices (simplified)
1.Mass vaccinate before anything happens*
2.Mass vaccinate in response to an attack
3.Use targeted vaccination after an attack to vaccinate contacts of infected people 

(as in the successful eradication campaign)

*Assume for that in 2002 #1 is dangerous and politically unacceptable.  So choice is 
between 2 and 3



Assumptions about smallpox
• Without a vaccination campaign, millions of cases and deaths occur with high 

probability given an attack
• Mass vaccination leads to almost certain death of a small fraction of vaccinees due 

to adverse reactions (order hundreds in US)
• With mass vaccination, only very few secondary cases would occur because 

disease spread would be stopped by “herd immunity” – each primary case would 
create only <1 secondary case.  But more vaccines used, greater cost.
• With traced vaccination, the same protection might occur, but there is a risk 

(bigger than with mass vaccination) that it could fail, leading to a large epidemic 
(millions)
• MV vs TV: tradeoff certainty of more vaccines, more cost and more adverse events 

vs. reduced risk of large epidemic 
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Formulating different questions with 
different metrics for success

TV inadequate
MV prevents runaway
epidemic  (106 deaths)

TV adequate; Avoid unnecessary
adverse events (102 deaths) 

Implied minimax metric: pick the strategy that 
minimizes the risk of the worst outcome -> MV better
(also: makes inappropriate assumptions about 
natural history that favor MV)

MV better to prevent death in most situations (not 
all)
Abstract emphasizes how TV better in cases 
prevented per dose
No clear policy conclusion (better natural history)



For this problem, the Kaplan model had lousy assumptions 
but I argue a better metric: minimax.  Minimize the chance 
of the worst outcome.  Halloran et al’s cases prevented per 
dose is unlikely to be relevant for decisions.



Moreover, an extramodel consideration, “reload,” arguably trumps the 
findings of the model: post-attack, MV is the only reasonable policy

• Reload: if there is someone willing and able to do one smallpox attack then the same 
people and others are probably willing and able to do more.  (Richard Danzig, former 
Sec’y of the Navy) 
• Implication: once it’s happened, our updated estimate of the risk of more attacks should 

be much higher than our estimate of the probability of attacks is now. 
• p(2+ attacks | one attack) [POSTERIOR RISK TO SOMEONE NOT IN THIS OUTBREAK]
>> p(at least one attack) [PRIOR RISK TO ANYONE IN THE COUNTRY]

• Thus after an attack anywhere in the US, it would be rational for the public to demand 
mass vaccination because they want to be protected against future attacks.  How little 
one could get away with in this outbreak is probably irrelevant.  



Extra-model considerations (and reload) have 
implications beyond smallpox

Models of pandemic (H5N1) flu containment had as their outcome stopping spread of one highly 
transmissible strain in humans in ~Thailand

WHO plans for “blanket containment” based on modeled feasibility of such an approach

If we did it (never tried this before), wouldn’t there be more introductions?  If so, (a) reduces case for 
blanket containment as one of the efforts will fail, and (b) argues that following a successful containment 
effort, massive poultry culls would become acceptable even if not before – risk-benefit calculus changes.



Conclusions
• The data suck. The bigger the problem, the more they suck. 

Your team should include someone with experience working on 
sucky data (preferably infectious disease data) who need not be 
a mathematician but shouldn’t be scared of you.

• Trying to understand the questions and the assumptions of 
decision makers is fascinating in itself and also helps make 
more useful models (≠ most scientifically/mathematically 
interesting)

• Evaluation metrics can be more important than model results in 
determining best choices – think carefully about them

• Collaboration! 


