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Two roles for models

 SCENARIOS: What are the plausible impacts of an event (bioterror
attack, accident, flu pandemic)?

* Scale, time of peak(s), duration
* For planning: interventions may not be explicitly modeled

 INTERVENTIONS: What are the likely consequences of an
intervention?
* Lives saved, change in timing of epidemic, reduction of peak
* Costs expended and averted
* Social disruption.....etc.



ee-e CENTER for COMMUNICABLE Di1sease DyNaMICS ?QR(;’;\KR

SCHOOL OF PUBLIC HEALTH

Possible Guides to Decision Making

e Reasoning from historical analogies
e Previous pandemics
e Interpandemic influenza
e Other infectious diseases

e Clinical or public health experience
e Political considerations: do something
e Implicit mental models

e Explicit mathematical models
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Decisionmaking requires use of mental
models
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Historical & differences capr;city
examples of next pandemic
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(drug, vaccine
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Mathematical model makes inputs and
assumptions explicit

e Transport Nurses
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What is special about decision making?

“Pure science”

Consequence of judging models
inadequate = more science, agnosticism

Caution dictates: shun Type 1 error; avoid
(provisional) acceptance of hypotheses
for which evidence is inadequate

Agnosticism = the default

Decision making

Consequence of judging models
inadequate = must rely on something
else (mental models, extrapolating
history) for decision

Caution dictates: protect people (+- save

59)

Agnosticism = paralysis, inability to inform
cautious action
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Sources of uncertainty/error when models are
used for decision making

* Model structure, parameter values, initial conditions

* Framing a very precise question (what are we trying to optimize?) and
choosing a precise and appropriate metric (expected outcome,

probability of a good outcome, minimax)

* Thinking outside the model — considerations that happen before the
model starts or after it ends or outside its geographic or other scope
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Some themes

* The data suck
Fixing them is both the hardest and most important activity for quantitative
analysis

* These issues (eg delays) can drastically influence conclusions

This is applied science, and quantitative skill + knowledge of the applications
are both key to doing it well

* A paradox

Sometimes models’ greatest contribution is to say something that is
mathematically and scientifically trivial, but important for policy yet

Proving with a model that “interventions reduce cases if we assume they are
effective” is not a great use of time

 Evaluation metrics and other “extra-model” considerations often
more important for decision than model details
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The data suck
Meteorology Epidemiology (esp in crisis)

(physics, economics, etc) -
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Pandemic Data analysis is all about
(unmeasured, changing) delays
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1-2 weeks 2-3 weeks 3-4 weeks

Event Same Early on, tests Even from best All-cause
almost symptoms as limited even for health depts mortality bump
never other admitted (eg NYC) is larger than
observed conditions; patients; now discharge often can account for
Maybe probably not noted with confirmed
asymptomatic reasonably COVID-19

reliable deaths (like flu)
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Consequences for control

B | Daily counts of deaths and patients with critical illness in Wuhan
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R Li et al. JAMA Network Open 2020 15 01 15 01
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Fixing the data consequences for
analysis
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How bad was HI1IN1 pandemic flu? It was hard to tell!

* Mexico May 4
* 509 confirmed
e 19 deaths (4%)

* USMay 4
e 268+786 confirmed +
probable

e 1 death (0.1%)
e Censoring bias (missing
deaths; underestimate
severity)

* Mild cases not detected
(overestimate severity)

EURDSURVEILLANCE pl. 14 - Issup 26 - 2 July - WWW.BUrOS|
THE EMERGING INFLUENZA PANDEMIC: ESTIMATING THE CASE
FATALITY RATIO

N Wilson [rick.wilson@otago.ac.nz)’, M G Baker®
1 b of Otago

1. Department of Public Health, University o ago, Wellington, New Zealand
plausio 2 NE thn | d |
andemic stra de iy
Juce subsiantially ‘owe i a ‘
an 3 previc published 3 AS th

* Garske et al. BMJ 14 Jul
* CFR0.2-1.2%
* Focus on censoring bias
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Potential Biases in Estimating Absolute and
Relative Case-Fatality Risks during Outbreaks

Marc Lipsitch'?2*_ Christl A. Donnelly®, Christophe Fraser®, Isobel M. Blake®, Anne Cori®,
llaria Dorigatti®, Neil M. Ferguson®, Tini Garske®, Harriet L. Mills, Steven Riley®, Maria

D. Van Kerkhove®#, Miguel A. Hernan'*
1000
1 Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of
’a Public Health, Boston, Massachusetts, United States of America, 2 Department of Inmunology and
am Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of
(4] America, 3 MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease
3 Epidemiology, Imperial College London, London, United Kingdom, 4 Centre for Global Health, Institut
Pasteur, Paris, France, 5 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston,
%D CrossMark Massachusetts, United States of America
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Aworker prepares a scanning and system kit in India, on March 6. (Sam
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Opinion by Mare Lipsitch
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Severity pyramid approach: Combining different data
sources for a composite estimate of case-severity
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OPEN @ ACCESS Freely available online PLOS mepicine

The Severity of Pandemic HIN1 Influenza in the United
States, from April to July 2009: A Bayesian Analysis

Anne M. Presanis’, Daniela De Angelis', The New York City Swine Flu Investigation Team>', Angela

jia, United
lic Health, Li ing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR,
a & Infectious Diseases, Harvard School of Public Health, Boston,

NYC

Milwaukee sCER
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CDC surveys

Symptomatic
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Age-specific severity estimates

0-4 yr

sCHR: ratio of

hospitalizations to
symptomatic cases

0.33% (0.21-0.63)

sCIR: ratio of ICU
admissions to

symptomatic cases

0.044% (0.026-0.078)

sCFR: ratio of
deaths to

symptomatic cases

0.004% (0.001-0.011)

5-17 yr

0.11% (0.08-0.18)

0.019% (0.013-0.027)

0.002% (0.000-0.004)

18-64 yr

0.15% (0.11-0.25)

0.029% (0.021-0.040)

0.010% (0.007-0.016)

65+ yr

0.16% (0.10-0.30)

0.030% (0.016-0.055)

0.010% (0.003-0.025)

TOTAL

0.16% (0.12-0.26)

0.028% (0.022-0.035)

0.007% (0.005-0.009)

0-4 yr

2.45% (1.10-5.56)

0.321% (0.133-0.776)

0.026% (0.006-0.092)

5-17 yr

0.61% (0.27-1.34)

0.106% (0.043-0.244)

0.010% (0.003-0.031)

18-64 yr

3.00% (1.35-5.92)

0.542% (0.230-1.090)

0.159% (0.066-0.333)

65+ yr

1.84% (0.21-25.38)

0.100% (0.035-4.711)

0.028% (0.008-1.471)

TOTAL

1.44% (0.83-2.64)

0.222% (0.134-0.458)

0.048% (0.026-0.096)
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Self-reported
ILI denominator
(NYC data only)

Self-reported
frequency of
seeking care
(NYC/Milw./
CDC data)
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Accouting for delays: decisions

Prevalence per 10K
Crtical cases per 10K

Kissler S*, Tedijanto C* et al. Science 2020
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Accounting for delays: analysis
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H1N1 Reproduction Number from Early USA data

Laura Forsberg White (BU/HSPH)
Jacco Wallinga (RIVM/HSPH)

Lyn Finelli (CDC)

Carrie Reed (CDC)

Steven Riley (Hong Kong U)
Marc Lipsitch

Marcello Pagano (HSPH)

Influenza & Other Respiratory Viruses 2009
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United States reported cases as of May 8
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Correcting for missing onset date, reporting
delays
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/ Reporting delays

i
. @ 7| — Original Data «
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Numbers are questionable because ascertainment is imperfect
and changing in space and time
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Estimation of R,: impact of data inputs

Data to 4/26 Data to 4/28 | Change in estimate
from analytic change

Original data 1.95 1.51

Account for 2.19 2.31 +10-40%
missing onset

dates

Account for 2.27 2.52 +4-10%
reporting delays

Account for 1.73 1.81 -20-30%
increased

reporting
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Nowcasting: part of the solution

« Given how many cases we know about today and in the recent
past, how many cases will we eventually know about that
occurred todav and in the recent past?

600 A -
j = Cases

Initial reports g
Predicted 3 10004
400 4
&
&
o
200 4
O.
B
2 o8] & (e W WEOW LY Yoo 530 m
08) gé MM‘L&M ! Au lerlu’ kd i | | %SUQ
S McGough et al. 2020 PLoS Comp Bio
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| could go on with examples from this and
prior epidemics

* Today’s data set and tomorrow’s may not say the same about
today

* Testing detects a changing and unknown proportion of cases

* Different jurisdictions generate data in fundamentally different
ways

* There is not always a good incentive to be transparent about
these details, and people are busy

HHHHHHHHHHHHHHHHHHHH
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Before drawing strong policy conclusions
from noisy data please check with someone
who has been working in the field for a long
time: a cautionary tale
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Methods for reproduction number

Cori Method

R, is the average number of new infections caused at time t, by a person already infectious at time t.

-> R, reflects transmission happening at time t.

AN
AN
A A d R s BMJ Yale  HOME | ABOUT | SUBMIT| NEWS & NOTES
m e X lV | ALERTS / RSS
L. N . THE PREPRINT SERVER FOR HEALTH SCIENCES
Individuals infected in the past Search
now show various degrees of g(t-s) Advanced Search
infectiousness. T T T | T
AAAAAAR A 'T‘ T T
| o ¢© Comments (1) Q Previous Next O
t time of becoming infected Practical considerations for measuring the
effective reproductive number, Rt Posted June 23,2020.
Katelyn M Gostic, Lauren McGough, ) Edward Baskerville, =) Sam Abbott, Keya Joshi, Download PDF % Email
Christine Tedijanto, {2/ Rebecca Kahn, {2 Rene Niehus, I James A Hay, B Daw/Code ¢ Share
1 H Pablo M. De Salazar, (2 Joel Hellewell, {2 Sophie Meakin, James Munday, Nikos Bosse, o
Wallinga and Teunis Method ) 2 ) , @ Ciation Tool

Katharine Sherratt, Robin M Thompson, (& Laura F White, (& Jana Huisman,
Jérémie Scire, () Sebastian Bonhoeffer, {2 Tanja Stadler, ) Jacco Wallinga,

X . . Sebastian Funk, () Marc Lipsitch, {2 Sarah Cobey :m - Like 2
R, is the average number of new infections caused (eventually) by a person who becomes infectious at doi: https://doi.org/10.1 101/2020.06.18.201 34858 :

timet. This article is a preprint and has not been peer-reviewed [what

does this mean?]. It reports new medical research that has yet to COVID-19 SARS-CoV-2

be evaluated and so should not be used to guide clinical practice. preprints from medRxiv and
-> From the perspective of an hinDviy

observer at time t, this is a leading ‘
estimate. It predicts transmission |
events that have not yet occurred. w(s-t)

WL 40000nns

I >
t time of becoming infectious
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Subtle methodologic choices can lead to
major errors in policy evaluation

15001 |

” |
o
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1000 1 |
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J 9 Jan24 Jan29 Feb03 Feb i
Daterof Symrptom Onset K J05h|, S
‘Puri()d 1 AP(H od 2 Period 3 AP(:-li()d 4 ‘P(,*n()d 5 CObey, M
Lipsitch

Comment on
data from
Pan et al.
JAMA 2020

an 24 Jan29 Feb03 Feb08
Date

Method — Cori = WT = Cori_shift
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SUBSCRIBE NOW Account

The United States Needs a “Smart
(Juarantine to Stop the Virus Spread
Within Families

Evidence from around the world shows that stay-at-home orders
take us only so far.

By Harvey V. Fineberg, Jim Yong Kim and Jordan Shlain
Dr. Fineberg, Dr. Kim and Dr. Shlain specialize in public health.
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Sometimes the most important contributions
to policy are scientifically dull: expressions of
ignorance

EPROPUBLICA wo Coasts. One Virus. How New York Suffered Nearly 10 Times the Numbe P Newsletters O Search [RILUELS
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CORONAVIRUS

Two Coasts. One Virus. How New York
Suffered Nearly 10 Times the Number
of Deaths as California.

Marc Lipsitch, a Harvard professor of epidemiology and the director of the Center
for Communicable Disease Dynamics, created one of the first modeling tools used
in the U.S. for the COVID-19 pandemic. The model was available to both city and
state officials in New York in February, a full week before the first confirmed New
York case. The state said the Lipsitch model was not one they looked at for
guidance. The city did make use of it, and concluded that just a couple of dozen sick
people in New York could ultimately produce more than 100,000 cases by the
middle of April, which is quite close to what happened.
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This work contained nothing scientifically
novel
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https://rebeccakahn.shinyapps.io/COVID19/

But it did say something important to policy makers (we didn’t realize at the time that it was particularly important):
Not having a problem you can see should not be reassuring: there may be a problem you don’t see


https://rebeccakahn.shinyapps.io/COVID19/
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Paradox

Saying the "obvious” with a model can prompt total rethinking from
decision makers but

Saying the obvious with a model is not scientifically rewarding, and is
often dependent on model assumptions

(Partial) Resolution?

A model that confirms strongly held priors (often by assuming them) is
not usefu

A model that causes questioning of strongly held priors (by showing
something which is obvious to the modeler, but not necessarily the
decision maker, can be useful
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Extra-model considerations



ee-e CENTER for COMMUNICABLE Di1sease DyNaMICS ?QRQ’I:\KR

How to prepare for/respond to the risk of bioterrorist
smallpox (2002)
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Terrorists may attack us with smallpox
Choices (simplified)

1.Mass vaccinate before anything happens*
2.Mass vaccinate in response to an attack

3.Use targeted vaccination after an attack to vaccinate contacts of infected people
(as in the successful eradication campaign)

*Assume for that in 2002 #1 is dangerous and politically unacceptable. So choice is
between 2 and 3
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Assumptions about smallpox

* Without a vaccination campaign, millions of cases and deaths occur with high
probability given an attack

e Mass vaccination leads to almost certain death of a small fraction of vaccinees due
to adverse reactions (order hundreds in US)

* With mass vaccination, only very few secondary cases would occur because
disease spread would be stopped by “herd immunity” — each primary case would
create only <1 secondary case. But more vaccines used, greater cost.

* With traced vaccination, the same protection might occur, but there is a risk
(bigger than with mass vaccination) that it could fail, leading to a large epidemic
(millions)

MV vs TV: tradeoff certainty of more vaccines, more cost and more adverse events
vs. reduced risk of large epidemic
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Vaccine policies
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Q Immune or dead

HHHHHHHHHHHHHHHHHHHH
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Formulating different questions with

Basic reproductive ratio (R,)

1.4

1.2

TV inadequate
MV prevents runaway
epidemic (106 deaths)

MV optimal

TV optimal

TV adequate; Avoid unnecessa
adverse events (10?2 deaths)

0.8

5 10 15 20

Emergency response to a smallpox attack: The case
for mass vaccination

Edward H. Kaplan**, David L. Craft?, and Lawrence M. Wein®

*Yale University School of Management, and Ds of and Public Health, Yale School of Medicine, New Haven, CT 06520-8200; and
*Operations Research Center and 5Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139-3407

Implied minimax metric: pick the strategy that
minimizes the risk of the worst outcome -> MV better
(also: makes inappropriate assumptions about
natural history that favor MV)

25

different metrics for success
A

X HARVARD
SCHOOL OF PUBLIC HEALTH
TH.CHAN
No residual immunity
Intervention Cases
Deaths per VEy,
1000 (%) prevented per
dose
None 97.2 - -
80% mass vaccination after any cases
1st case 09 99 0.50
15th case 9.4 86 077
25th case 13.7 80 0.73
80% targeted vaccination after any cases
1st case 109 88 2.01
15th case 19.6 78 1.57
25th case 28.2 68 1.7

Containing Bioterrorist Smallpox

M. Elizabeth Halloran, et al.

Science 298, 1428 (2002);

DOI: 10.1126/science.1074674
AVAAAS

MV better to prevent death in most situations (not
all)

Abstract emphasizes how TV better in cases
prevented per dose

No clear policy conclusion (better natural history)
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For this problem, the Kaplan model had lousy assumptions
but | argue a better metric: minimax. Minimize the chance
of the worst outcome. Halloran et al’s cases prevented per
dose is unlikely to be relevant for decisions.
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Moreover, an extramodel consideration, “reload,” arguably trumps the
findings of the model: post-attack, MV is the only reasonable policy

* Reload: if there is someone willing and able to do one smallpox attack then the same
people and others are probably willing and able to do more. (Richard Danzig, former
Sec’y of the Navy)

* Implication: once it’s happened, our updated estimate of the risk of more attacks should
be much higher than our estimate of the probability of attacks is now.
* p(2+ attacks | one attack) [POSTERIOR RISK TO SOMEONE NOT IN THIS OUTBREAK]
>> p(at least one attack) [PRIOR RISK TO ANYONE IN THE COUNTRY]

* Thus after an attack anywhere in the US, it would be rational for the public to demand
mass vaccination because they want to be protected against future attacks. How little
one could get away with in this outbreak is probably irrelevant.
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Extra-model considerations (and reload) have
implications beyond smallpox

SCHOOL OF PUBLIC HEALTH

Models of pandemic (H5N1) flu containment had as their outcome stopping spread of one highly
transmissible strain in humans in ~Thailand

WHO plans for “blanket containment” based on modeled feasibility of such an approach

If we did it (never tried this before), wouldn’t there be more introductions? If so, (a) reduces case for
blanket containment as one of the efforts will fail, and (b) argues that following a successful containment
effort, massive poultry culls would become acceptable even if not before — risk-benefit calculus changes.

OPEN @ ACCESS Freely available online PLOS mepicine

Pandemic Influenza: Risk of Multiple
Introductions and the Need to Prepare

for Them

Christina E. Mills, James M. Robins, Carl T. Bergstrom, Marc Lipsitch*
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Conclusions

* The data suck. The bigger the problem, the more they suck.
Your team should include someone with experience working on
sucky data (preferably infectious disease data) who need not be
a mathematician but shouldn’t be scared of you.

* Trying to understand the questions and the assumptions of
decision makers is fascinating in itself and also helps make
more useful models (# most scientifically/mathematically
interesting)

« Evaluation metrics can be more important than model results in
determining best choices — think carefully about them

e Collaboration!



