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The model

The infection is SIR. An infected individual infects each neighbour
with a constant rate β, and recovers with a constant rate ρ.
(Thus exponential infectious times.)

The infection spreads on a network (graph) that is a random
network with a given degree sequence (di )

n
1.

Equivalently, the random network is constructed by the
configuration model from a given degree sequence.

This is a standard model that has been studied by several authors.

Technical note. The configuration model gives a network that may
contain loops and multiple edges. (Few, under our conditions.)
We may either acccept that, or condition on this not happening.
The results today are valid for both versions.
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The model allows for people being different, with different numbers
of contacts. Some may be superspreaders.

The tail of the degree distribution might be important. (Power law
tail? If so, the exponent α is important.)

No other differences between individuals.

Similar to homogeneous mixing, in an inhomogeneous population.

Static. (Yao and Durrett (2020) study a dynamic version.)
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Uses for modelling?

The model ignores lots of structure in typical real networks.

Might still be useful.

Gives insight in how the degree distribution affects the epidemic.
This might perhaps be valid for more general situations, including
reality.

In particular, this model gives an indication whether varying
degrees (= # contacts) influences the result much or not. For
example, if you construct a complicated model, and wonder
whether it is worth making it even more complicated by including
varying degrees, then results such as those presented here might
give some guidance.
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Stochastic vs deterministic

This model is stochastic. On the other hand, we study
mathematically limits as the population size tends to infinity, and
we show convergence to a deterministic limit described by some
differential equations. (Found by Volz (2008), in this case.)

Stochastic effects are important in the initial phase, when the
number of infected is small.

For example, if the epidemic starts with a single infected, then it is
random whether the infection will die out quickly or not.

If it leads to a big outbreak, the initial time delay is random

Once the outbreak has become large, the future evolution is
essentially deterministic.

One might also prove more refined mathematical results about
random 2nd order terms (fluctuations). [E.g. Ball (2018)]
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Some notation

n is the total number of individuals (vertices).
We consider asymptotics as n→∞.

Thus di = d
(n)
i (and so on) but we simplify notation.

nk is the number of vertices of degree k .

The indices S , I ,R denote susceptible, infected and recovered.
nS , nI , nR are the initial numbers of vertices of these types.

nk,S is the initial number of susceptibles of degree k ,
and so on.



Some assumptions

Recall that n→∞. Assume that

(A1) nS/n→ αS , nI/n→ αI , nR/n→ αR .
Thus αS + αI + αR = 1.
Today, for simplicity, αS = 1 and αI = αR = 0.

(A2) nk/n→ pk for every k ≥ 0, where
∑∞

k=0 pk = 1.
The asymptotic degree distribution (for susceptible vertices).

(A3) The average degree converges:

1

n

∞∑
k=0

knk =
1

n

n∑
i=1

di → µ :=
∞∑
k=0

kpk > 0.

(+ some technical conditions)
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Technical note, cont.

In general, the configuration model produces a multigraph, possibly
containing loops and multiple edges, and we prove the theorems
study the epidemic on this random multigraph.

To transfer the results to a random simple networks (no loops or
multiple edges), we condition. This yields the result automatically,
provided we also assume ∑

i

d2
i = O(n)

which implies that P(simple network) ≥ c > 0.

This condition implies that the asymptotic degree distribution (pk)
has a finite second moment, so this excludes cases with very heavy
tails. (Power laws with α < 3.)

Challenging open problem to treat random simple networks with
heavy tails!



The basic reproduction number is

R0 = αS ·
β

ρ+ β
·
∑∞

k=0(k − 1)kpk
µ

.

Note that the (asymptotic) average degree of an individual is

∞∑
k=0

kpk = µ

However, in the initial phase, the probability that an individual gets
infected is proportional to its degree (= # contacts). Thus a
random infected individual has a size-biased degree distribution
with

P(degree k) =
kpk
µ
.

Hence, the average number of new contacts that an infected
individual has is ∑∞

k=0(k − 1)kpk
µ

.



Let St , It ,Rt be the numbers of susceptible, infected and recovered
individuals at time t.

Theorem
Suppose R0 > 1. Let ε > 0 be a sufficiently small constant. Then
w.h.p., either the number of infected susceptibles is Op(1) for ever,
or it becomes eventually > εn (a major outbreak).
Condition on a major outbreak, and let
T0 := inf{t ≥ 0 : St/n ≤ 1− ε}.
There exist some deterministic continuous functions Ŝt , Ît , R̂t ,
t ∈ (−∞,∞), such that then

ST0+t/n
p−→ Ŝt , IT0+t/n

p−→ Ît , RT0+t/n
p−→ R̂t ,

uniformly on (−∞,∞).

Corollary

Conditional on T0 <∞ (big outbreak), the number of susceptibles
that escape infection satisfies

S∞/n
p−→ Ŝ∞



Define

vS(θ) =
∞∑
k=0

pkθ
k (pgf for degree distribution)

hS(θ) = θv ′(θ) (pgf for size-biased distribution)

h(θ) = µθ2

hR(θ) =
µρ

β
θ(1− θ)

hI (θ) = h(θ)− hS(θ)− hR(θ)



Theorem (cont.)

Suppose R0 > 1.

1. There is a unique θ∞ ∈ (0, 1) with hI (θ∞) = 0. hI is strictly
negative on (0, θ∞) and strictly positive on (θ∞, 1).

2. Assume 0 < ε < 1− vS(θ∞).
There is a unique θt : R→ (θ∞, 1) such that

d

dt
θt = −β θthI (θt)

h(θt)
, θ0 = v−1S (1− ε).

θt decreases from 1 to θ∞ on (−∞,∞).

3.
Ŝt = vS(θt).



4. Ît is the unique solution to

d

dt
Ît =

βhI (θt)hS(θt)

h(θt)
− ρÎt , lim

t→−∞
Ît = 0,

5. R̂t := 1− Ŝt − Ît .

The equations are equivalent to the “Volz equations”, derived
heuristically by Volz (2008). (See also Miller (2011).)

Similar results have been proved by Bohman and Picollelli (2012)
and Decreusefond, Dhersin, Moyal and Tran (2012).



The function θt is not directly observable, but it is the
(asymptotic) probability that (at time t) a susceptible half-edge
has not been infected by its partner.

Hence a susceptible individual of degree k remains suceptible with
probability θkt , and the proportion remaining healthy is
(asymptotically) ∑

k

pkθ
k
t = vS(θt) = Ŝt .

as asserted in the theorem.

The ratio hI (θt)/h(θt) in the differential equations above is the
infection pressure, i.e. the probability that a given susceptible
half-edge is paired to an infective half-edge.



Method

We use the standard method of revealing the edges only as they are
needed. Thus we use the following version of the epidemic process:

Initially, all half-edges are free (not paired).

Each free infective half-edge chooses a free half-edge at rate β,
uniformly at random from among all the other free half-edges.
Together the pair form an edge, and are removed from the pool of
free half-edges. If the chosen half-edge belongs to a susceptible
vertex then that vertex becomes infective.

Infective vertices also recover at rate ρ.

The idea is to concentrate on the half-edges rather than the
vertices.
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The observables St , It ,Rt are as before.

We further define Xt as the number of free half-edges at time t,
and XS,t , XI ,t , XR,t as the numbers of free susceptible, infective
and recovered half-edges.

Theorem (cont.)

6. Conditional on T0 <∞ (a big outbreak),

XS,T0+t/n
p−→ hS(θt), XI ,T0+t/n

p−→ hI (θt),

XR,T0+t/n
p−→ hR(θt), XT0+t/n

p−→ h(θt),

uniformly on (−∞,∞).

In particular, the infection pressure hI (θt)/h(θt) is the limit of the
proportion XI ,T0+t/XT0+t of free half-edges that are infective.
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Proof

The idea is to use martingale arguments (Doob’s inequality) to
show convergence of the stochastic processes to deterministic
functions.



It simplifies to first make a (random) time change:

1. The equations simplify.

2. The martingale argument works best on finite intervals. The
time change compresses (−∞,∞) to a finite interval, which
nicely takes care of the initial and final stages.

In real time, a free susceptible half-edge is infected with rate
βXI ,t/(Xt − 1).

In the time-changed version, we multiply both infection and
recovery rates by the inverse of this. Thus

I each free half-edge is “infected” with rate 1, and is then no
longer free (only susceptible half-edges become infected)

I each infected vertex recovers with intensity

ρ

β

Xt − 1

XI ,t
.

Stop when XI ,t = 0. Still a Markov process.
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Time-changed version

We denote the new time by τ , and the time-changed processes by
S ′τ , etc.

A free susceptible half-edge is infected with rate 1, and lives thus
an exponential Exp(1) time.

A susceptible vertex of degree k is infected with rate k , and lives a
time Exp(1/k).

By the law of large numbers (Glivenko-Cantelli), there are
≈ nS ,ke

−kτ left at time τ . Thus, uniformly in τ ,

S ′τ/n
p−→
∑
k

pke
−kτ = vS(e−τ )

As in theorem, with θt = e−τ(t).



Other quantities are a little more complicated, so we use
martingales: The argument above says (with S ′τ (k) the number of
susceptible vertices of degree k):

dS ′τ (k) = −kS ′τ (k) + dMτ ,

where Mτ is a martingale. The quadratic variation is easily
estimated and Doob’s inequality shows supτ |Mτ |/n

p−→ 0. Hence,
as said above,

sup
τ
|S ′τ (k)− S ′0(k)e−τ | p−→ 0

Similarly,

dX ′τ = −2βX ′I ,τ ·
X ′τ − 1

βX ′I ,τ
dτ + dMX ,τ = −2(X ′τ − 1)dτ + dMX,τ

and so on . . .
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Inverting the time-change

Let

Aτ =

∫ τ

0

1

β

(
X ′σ − 1

X ′I ,σ

)
dσ

and let τ(t) be the inverse function, so Aτ(t) = t for t ≥ 0.

Then the real time processes can be recovered by

St = S ′τ(t), . . .



Some extensions

1. αI > 0. Starting with a large epidemic.

2. αR > 0. Starting with a large number of immune individuals.
E.g. vaccinated. (May study the effect of degree distribuition of
the vaccinated.)

3. Near-critical case. R0 = R
(n)
0 → 1 with R

(n)
0 − 1� n−1/3.

Theorem (under technical conditions)

Let Z be the total number of susceptible vertices that ever get
infected. Conditional on a (rather) big outbreak,

Z

(R0 − 1)n

p−→ c ,

for some (computable) c > 0.
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