The (Geometric Classification of surface)
Every clustel surface
$$S$$
 either an \mathbb{P}^2 , \mathbb{H}^1 or S^2
structure; the type it admits is unique and
determined by $\chi = \chi(S)$.

$$\frac{\chi_{-0}}{H^2} = 0 \qquad \chi_{-0}$$

$$\frac{\chi_{-0}}{\chi_{-0}} \qquad \chi_{-1}$$

Here, we write
$$X \leq Y$$
 if J a hones
 $f: X \longrightarrow Y$ with $f \operatorname{Ison}(X) f' \leq \operatorname{Ison}(Y)$,
and N if $= \cdot 2$ means X is
maximal writ $\leq \cdot$

$$\mathbb{E}_{x,1}/\mathbb{A}/\mathbb{Z}\mathbb{P}^{2}$$

where K is the figure & trait. Then

$$M = A \cup_{T^*} B$$

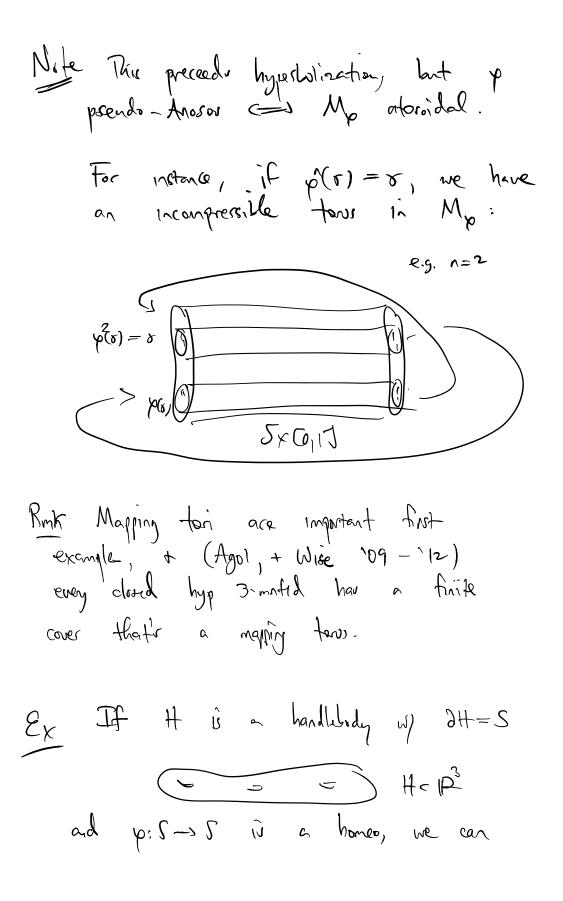
is not geometric,

$$T_{i}M = 1$$
, M contains no T_{i} -injecture tori.
Hence geometrization $\longrightarrow M = X$ is
geometric. But $\Gamma \cong T_{i}M \cong 1$, so $M \cong X$
is a model geometry. It's compact, so
 $M \cong S^{3}$. \square

The assumptions
$$=$$
 germetric. ∞ T, rule out
S³ geom. Inreducible rules out S²xIP geom
and aterridad rules out the rest.

$$\begin{aligned} & \mathcal{E}_{\mathbf{x}} \\ & \mathcal{S}_{\mathbf{p}}^{\mathbf{p}} \mathcal{S} = \mathcal{S} \quad \hat{\mu} \quad a \quad closed, \quad onertable, \quad surface \quad \omega/ \quad genvs \quad g \neq 2 \\ & and \quad p: \mathcal{S}_{-1} \mathcal{S} \quad \hat{\mu} \quad an \quad orientation \quad preserving \quad homeo. \\ & \mathcal{M}_{\mathbf{p}} := \quad & \mathcal{S}_{\mathbf{x}} \left[\mathcal{C}_{\mathbf{1}} \right] \\ & \mathcal{M}_{\mathbf{p}} := \quad & \mathcal{S}_{\mathbf{x}} \left[\mathcal{C}_{\mathbf{1}} \right] \\ & (\mathbf{x}, o) \sim (\mathbf{p} \left(\mathbf{x}_{\mathbf{1}} \right)) \end{aligned}$$

$$\frac{T_{hvrston}(198b)}{Hen} IF p i pseudo Anosov (pt)
then Mp is hyperbolic.
Here, p is pA if for any s.c.c.
 $v \in S$, we have $q^{0}(v) \neq v$ the V .
 $rethomotypic$$$



bill a smainhild
$$N_{p} = H v_{p} H$$
.
This pretentation is a Heegoard splitting of N_{p} .
Note: N_{p} is not hypothelic if p identifies
the 26 of 2 dirks in H .
 $F_{p} = P$ $F_{p} = N_{p}$.
Def The curve graph C(S) here vertices
that are homotopy choice of essential
single closed curve on S, and
 α, β are connected by an edge
when they can be realized disjointly on S
 $P = OP$ $P = C(S)$.
The disk set $D = C(S)$ is the set
of curve that band disks in H .
 $F_{p} = D$
The disk set $D = C(S)$ is the set
 $T_{p} = D$
The disk set $D = C(S)$ is the set
 $T_{p} = D$
 $T_{p} = D$