Random walks on weakly hyperbolic groups

Giulio Tiozzo University of Toronto

Random and Arithmetic Structures in Topology MSRI - Fall 2020

> Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references: J. Maher and G. T.,

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

J. Maher and G. T.,

Random walks on weakly hyperbolic groups Random walks, WPD actions, and the Cremona group

Introduction to random walks

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West:

Introduction to random walks

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

Introduction to random walks

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

Answer. It depends on the topography (geometry) of the city.

Example 1: Squareville

Example 1: Squareville

In Squareville, blocks form a square grid.

Example 1: Squareville

In Squareville, blocks form a square grid. What is the probability of coming back to where you started?

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Lemma

Let $m = \sum_{n \ge 1} p^n(x, x)$ be the "average number of visits to x".

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Lemma

Let $m = \sum_{n \ge 1} p^n(x, x)$ be the "average number of visits to x". Then the random walk is recurrent iff $m = \infty$.

Definition

A random walk (w_n) on X is <u>recurrent</u> if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Lemma

Let $m = \sum_{n \ge 1} p^n(x, x)$ be the "average number of visits to x". Then the random walk is recurrent iff $m = \infty$.

Exercise. Prove the Lemma.

Let us first consider the easier case where your world is just a line.

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps?

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if N = 2n you get

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if N = 2n you get

$$p^{2n}(0,0)=\frac{1}{2^{2n}}\binom{2n}{n}$$

(choose 2n ways to go right)

ls

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if N = 2n you get

$$p^{2n}(0,0) = rac{1}{2^{2n}} {2n \choose n}$$
 (choose 2*n* ways to go right)
 $\sum_{n \ge 1} rac{1}{2^{2n}} {2n \choose n}$ convergent?

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if N = 2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (choose 2*n* ways to go right)
$$\sum_{n \ge 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?

Is $\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$ convergent? Apply Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if N = 2n you get

$$p^{2n}(0,0) = rac{1}{2^{2n}} inom{2n}{n}$$
 (choose 2*n* ways to go right)

Is
$$\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?
Apply Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^{r}$

$$\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{2^{2n}} \frac{\sqrt{n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n} \left(\frac{n}{e}\right)^n\right)^2} = \frac{1}{\sqrt{n}}$$

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if N = 2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} {\binom{2n}{n}}$$
 (choose 2*n* ways to go right)

Is
$$\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?
Apply Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^{r}$

$$\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{2^{2n}} \frac{\sqrt{n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n} \left(\frac{n}{e}\right)^n\right)^2} = \frac{1}{\sqrt{n}}$$

∴ our RW is recurrent.

Now, let us go to Squareville, i.e. the 2-dimensional grid.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}} {\binom{2n}{n}}^2 \sim \frac{1}{n}$ (match left & right and match up and down)

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}} {\binom{2n}{n}}^2 \sim \frac{1}{n}$ (match left & right and match up and down)

hence the random walk is recurrent.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}} {\binom{2n}{n}}^2 \sim \frac{1}{n}$ (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff d = 1, 2.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}} {\binom{2n}{n}}^2 \sim \frac{1}{n}$ (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff d = 1, 2.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}} {\binom{2n}{n}}^2 \sim \frac{1}{n}$ (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff d = 1, 2.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Exercise. Prove Polya's theorem for d = 3.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}} {\binom{2n}{n}}^2 \sim \frac{1}{n}$ (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff d = 1, 2.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Exercise. Prove Polya's theorem for d = 3. Moreover, for the simple random walk on \mathbb{Z}^d , show that $p^{2n}(0,0) \approx n^{-\frac{d}{2}}$.
Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin".

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then:

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

$$d_{n+1} = d_n + 1$$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

$$d_{n+1} = d_n + 1$$

 $\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

$$d_{n+1} = d_n + 1$$

$$\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}$$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

$$d_{n+1} = d_n + 1$$

$$\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}$$

Then $\mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

 $d_{n+1} = d_n + 1$ $\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}$ Then $\mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2} \Rightarrow \mathsf{RW} \text{ is transient}$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$d_{n+1} = egin{cases} d_n+1 & ext{with } \mathbb{P} = rac{3}{4} \ d_n-1 & ext{with } \mathbb{P} = rac{1}{4} \end{cases}$$

and if $d_n = 0$ then

 $d_{n+1} = d_n + 1$ $\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}$ Then $\mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2} \Rightarrow \text{RW is transient}$ (do we know $\lim_{n \to \infty} \frac{d_n}{n}$ exist?)

Exercise (P. Lessa)

Exercise (P. Lessa)

A <u>radially symmetric tree</u> of valence $(a_1, a_2, ...)$ is a tree where all vertices at distance *n* from the base point have exactly a_{n-1} children.

Exercise (P. Lessa)

A <u>radially symmetric tree</u> of valence $(a_1, a_2, ...)$ is a tree where all vertices at distance *n* from the base point have exactly a_{n-1} children. Prove that the simple random walk on a radially symmetric tree $(a_1, a_2, ...)$ is transient

Exercise (P. Lessa)

A <u>radially symmetric tree</u> of valence $(a_1, a_2, ...)$ is a tree where all vertices at distance *n* from the base point have exactly a_{n-1} children. Prove that the simple random walk on a radially symmetric tree $(a_1, a_2, ...)$ is transient iff

$$\sum_{n\geq 1}\frac{1}{a_1\cdot a_2\cdots a_n}<\infty$$

Exercise (P. Lessa)

A <u>radially symmetric tree</u> of valence $(a_1, a_2, ...)$ is a tree where all vertices at distance *n* from the base point have exactly a_{n-1} children. Prove that the simple random walk on a radially symmetric tree $(a_1, a_2, ...)$ is transient iff

$$\sum_{n\geq 1}\frac{1}{a_1\cdot a_2\cdots a_n}<\infty$$

Let G be a group and (X, d) a metric space.

Let *G* be a group and (X, d) a metric space. The <u>isometry</u> group of *X* is the group of elements which preserve distance:

Let *G* be a group and (X, d) a metric space. The <u>isometry</u> group of *X* is the group of elements which preserve distance:

 $\mathsf{Isom}(X) = \{f: X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X\}$

Let *G* be a group and (X, d) a metric space. The <u>isometry</u> group of *X* is the group of elements which preserve distance:

 $\mathsf{Isom}(X) = \{f : X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X\}$

Definition A group action of G on X is a homomorphism

 $\rho: G \rightarrow \mathsf{Isom}(X).$

Let *G* be a group and (X, d) a metric space. The <u>isometry</u> group of *X* is the group of elements which preserve distance:

 $\mathsf{Isom}(X) = \{f : X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X\}$

Definition A group action of G on X is a homomorphism

 $\rho: G \rightarrow \mathsf{Isom}(X).$

Example: the group of reals acting on itself by translations:

Let *G* be a group and (X, d) a metric space. The <u>isometry</u> group of *X* is the group of elements which preserve distance:

 $\mathsf{Isom}(X) = \{f : X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X\}$

Definition A group action of G on X is a homomorphism

 $\rho: G \rightarrow \mathsf{Isom}(X).$

Example: the group of reals acting on itself by translations: $X = \mathbb{R}$, $G = \mathbb{R}$ and the action $\rho : \mathbb{R} \to \text{Isom}(\mathbb{R})$ is given by $\rho(t) : x \mapsto x + t$.

Let μ be a probability measure on *G*.

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*,

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently and with distribution μ .

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently and with distribution μ . The sequence (g_n) is the sequence of <u>increments</u>, and we are interested in the products

$$w_n := g_1 \dots g_n$$

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently and with distribution μ . The sequence (g_n) is the sequence of <u>increments</u>, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence (w_n) is called a <u>sample path</u> for the random walk.

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently and with distribution μ . The sequence (g_n) is the sequence of <u>increments</u>, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence (w_n) is called a <u>sample path</u> for the random walk. More formally, the <u>space of increments</u> (or <u>step space</u>) is the product space $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$.

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently and with distribution μ . The sequence (g_n) is the sequence of <u>increments</u>, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence (w_n) is called a <u>sample path</u> for the random walk.

More formally, the <u>space of increments</u> (or <u>step space</u>) is the product space $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$. Consider the map $\Phi : G^{\mathbb{N}} \to G^{\mathbb{N}}$

$$\Phi:(g_n)\mapsto(w_n)$$

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently and with distribution μ . The sequence (g_n) is the sequence of <u>increments</u>, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence (w_n) is called a <u>sample path</u> for the random walk.

More formally, the <u>space of increments</u> (or <u>step space</u>) is the product space $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$. Consider the map $\Phi : G^{\mathbb{N}} \to G^{\mathbb{N}}$

$$\Phi:(g_n)\mapsto(w_n)$$

and define the sample space as the space (Ω, \mathbb{P}) where $\Omega = G^{\mathbb{N}}$ and $\mathbb{P} = \Phi_{\star} \mu^{\mathbb{N}}$ is the pushforward.

Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$.

Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{\pm 1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$.

Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$.

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- 3. X = 4-valent tree

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- 3. X = 4-valent tree

 $G = \mathbb{F}_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1} \} \}$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- 3. X = 4-valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$ <u>Reduced</u> := there are no redundant pairs, i.e. there is no *a* after a^{-1} , no a^{-1} after *a*, no *b* after b^{-1} , and no b^{-1} after *b*.

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- 3. X = 4-valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$ <u>Reduced</u> := there are no redundant pairs, i.e. there is no *a* after a^{-1} , no a^{-1} after *a*, no *b* after b^{-1} , and no b^{-1} after *b*.

$$\mu = \frac{1}{4} (\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})$$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z} .
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For d = 2 and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- 3. X = 4-valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$ <u>Reduced</u> := there are no redundant pairs, i.e. there is no *a* after a^{-1} , no a^{-1} after *a*, no *b* after b^{-1} , and no b^{-1} after *b*.

$$\mu = \frac{1}{4} (\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})$$

 \Rightarrow RW in Tree City

Definition Given a group *G* finitely generated by a set *S*,

Definition

Given a group *G* finitely generated by a set *S*, the <u>Cayley graph</u> $\Gamma = Cay(G, S)$ is a graph

Definition

Given a group *G* finitely generated by a set *S*, the <u>Cayley graph</u> $\Gamma = Cay(G, S)$ is a graph whose vertices are the elements of *G*

Definition

Given a group *G* finitely generated by a set *S*, the <u>Cayley graph</u> $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of *G* and there is an edge $g \rightarrow h(g, h \in G)$ if h = gs where $s \in S$.

Definition

Given a group *G* finitely generated by a set *S*, the <u>Cayley graph</u> $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of *G* and there is an edge $g \to h(g, h \in G)$ if h = gs where $s \in S$.

Definition

Given a finitely generated group *G* and a finite generating set *S*, we define the word length of $g \in G$ as

$$||g|| := \min\{k : g = s_1 s_2 \dots s_k, s_i \in S \cup S^{-1}\}.$$

Definition

Given a group *G* finitely generated by a set *S*, the <u>Cayley graph</u> $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of *G* and there is an edge $g \to h(g, h \in G)$ if h = gs where $s \in S$.

Definition

Given a finitely generated group *G* and a finite generating set *S*, we define the word length of $g \in G$ as

$$\|g\| := \min\{k : g = s_1 s_2 \dots s_k, s_i \in S \cup S^{-1}\}.$$

Moreover, we define the word metric or word distance between $g, h \in G$ as

 $d(g,h) := \|g^{-1}h\|.$

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree.

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = \frac{az+b}{cz+d}$$

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = rac{az+b}{cz+d}.$$

The group *G* acts by isometries for the <u>hyperbolic metric</u> $ds = \frac{dx}{y}$.

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = rac{az+b}{cz+d}.$$

The group *G* acts by isometries for the <u>hyperbolic metric</u> $ds = \frac{dx}{y}$. Let $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$.

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = rac{az+b}{cz+d}.$$

The group *G* acts by isometries for the <u>hyperbolic metric</u> $ds = \frac{dx}{y}$. Let $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. The boundary of \mathbb{H} is $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$.

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = rac{az+b}{cz+d}.$$

The group *G* acts by isometries for the <u>hyperbolic metric</u> $ds = \frac{dx}{y}$. Let $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. The boundary of \mathbb{H} is $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$. Random walks of this type converge almost surely to the boundary.

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = rac{az+b}{cz+d}.$$

The group *G* acts by isometries for the <u>hyperbolic metric</u> $ds = \frac{dx}{y}$. Let $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. The boundary of \mathbb{H} is $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$. Random walks of this type converge almost surely to the boundary. Equivalently, one can also use the Poincaré disc model.

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h\in G.$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then $Cay(\mathbb{F}_2, S)$ is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then $Cay(\mathbb{Z}^2, S)$ is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by Möbius transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = rac{az+b}{cz+d}.$$

The group *G* acts by isometries for the <u>hyperbolic metric</u> $ds = \frac{dx}{y}$. Let $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. The boundary of \mathbb{H} is $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$. Random walks of this type converge almost surely to the boundary. Equivalently, one can also use the Poincaré disc model. The disc has a natural topological boundary, i.e. the circle.

1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?

- 1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

- 1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n} \qquad \text{(if it exists)}$$

- 1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n}$$
 (if it exists)

A measure μ on *G* has <u>finite first moment</u> on *X* if for some (equivalently, any) $x \in X$

$$\int_G d(x,gx) \ d\mu(g) < +\infty.$$

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle,

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry

$$= d(x, w_n(\omega)x) + d(x, g_{n+1} \dots g_{n+m}x) = d(x, w_n(\omega)x) + d(x, w_m(T^n\omega)x)$$

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry

$$= d(x, w_n(\omega)x) + d(x, g_{n+1} \dots g_{n+m}x) = d(x, w_n(\omega)x) + d(x, w_m(T^n\omega)x)$$

where T is the shift on the space of increments,

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry

$$= d(x, w_n(\omega)x) + d(x, g_{n+1} \dots g_{n+m}x) = d(x, w_n(\omega)x) + d(x, w_m(T^n\omega)x)$$

where T is the shift on the space of increments, hence the claim follows by Kingman's subadditive ergodic theorem.
3. Does a sample path track geodesics in X?

3. Does a sample path track geodesics in X? How closely?

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the <u>hitting measure</u> ν on ∂X as

$$u(\mathbf{A}) = \mathbb{P}(\lim_{n \to \infty} g_n x \in \mathbf{A})$$

for any $A \subset \partial X$.

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the <u>hitting measure</u> ν on ∂X as

$$u(\mathbf{A}) = \mathbb{P}(\lim_{n \to \infty} g_n x \in \mathbf{A})$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure?

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the <u>hitting measure</u> ν on ∂X as

$$u(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure?

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the <u>hitting measure</u> ν on ∂X as

$$u(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the <u>hitting measure</u> ν on ∂X as

$$u(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)$$

for any $A \subset \partial X$.

- 5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
- 6. Is $(\partial X, \nu)$ a model for the <u>Poisson boundary</u> of (G, μ) ?

- 3. Does a sample path track geodesics in X? How closely?
- If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the <u>hitting measure</u> ν on ∂X as

$$u(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)$$

for any $A \subset \partial X$.

- 5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
- 6. Is $(\partial X, \nu)$ a model for the <u>Poisson boundary</u> of (G, μ) ? That is, do you have a <u>representation formula</u> for bounded harmonic functions?

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces:

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R}\checkmark$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R}\checkmark$ (NOT \mathbb{R}^2 !)

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R}\checkmark$ (NOT \mathbb{R}^2 !) $X = \text{tree}\checkmark$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R}\checkmark$ (NOT \mathbb{R}^2 !) $X = \text{tree }\checkmark$ $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)\checkmark$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R}\checkmark$ (NOT \mathbb{R}^2 !) $X = \text{tree }\checkmark$ $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)\checkmark$ X = locally infinite tree

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space *X* is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces:

$$X = \mathbb{R}\checkmark (\text{NOT }\mathbb{R}^2!)$$

$$X = \text{tree } \checkmark$$

$$G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$$

X = locally infinite tree (not proper!)

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces:

$$X = \mathbb{R}\checkmark (\text{NOT } \mathbb{R}^2!)$$

$$X = \text{ tree } \checkmark$$

$$G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, \mathcal{S})$$

X =locally infinite tree (not proper!)

Recall a space is proper if metric balls $\{z \in X : d(x, z) \le R\}$ are compact.

Definition Given an isometry g of X and $x \in X$, we define its <u>translation</u> <u>length</u> as

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

$$au(g) := \lim_{n \to \infty} rac{d(g^n x, x)}{n}$$

Definition

Given an isometry g of X and $x \in X$, we define its <u>translation</u> length as

$$au(\boldsymbol{g}) := \lim_{n \to \infty} \frac{d(\boldsymbol{g}^n \boldsymbol{x}, \boldsymbol{x})}{n}$$

Exercise: the limit exists and is independent of the choice of *x*.

Definition

Given an isometry g of X and $x \in X$, we define its <u>translation</u> length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper).

Definition

Given an isometry g of X and $x \in X$, we define its <u>translation</u> length as

 $\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

Definition

Given an isometry g of X and $x \in X$, we define its <u>translation</u> length as

 $\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits.

Definition

Given an isometry g of X and $x \in X$, we define its <u>translation</u> length as

 $\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and $\tau(g) = 0$.

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and $\tau(g) = 0$. Then g is called parabolic.

Definition

Given an isometry g of X and $x \in X$, we define its <u>translation</u> length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

- 1. g has bounded orbits. Then g is called elliptic.
- 2. *g* has unbounded orbits and $\tau(g) = 0$. Then *g* is called *parabolic*.

3. *τ*(*g*) > 0.

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

 $\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and $\tau(g) = 0$. Then g is called parabolic.
- 3. $\tau(g) > 0$. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on ∂X , one attracting and one repelling.

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

 $\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a δ -hyperbolic metric space X (not necessarily proper). Then either:

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and $\tau(g) = 0$. Then g is called parabolic.
- 3. $\tau(g) > 0$. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on ∂X , one attracting and one repelling.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$
Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

G a relatively hyperbolic group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

G a relatively hyperbolic group, X = coned-off space

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

G a relatively hyperbolic group, X = coned-off space

G a mapping class group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

- G a relatively hyperbolic group, X = coned-off space
- *G* a mapping class group, X = curve complex

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

G a relatively hyperbolic group, X = coned-off space

G a mapping class group, X = curve complex

G a right-angled Artin group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

- G a relatively hyperbolic group, X = coned-off space
- *G* a mapping class group, X = curve complex
- G a right-angled Artin group, X = extension graph

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)*G* a relatively hyperbolic group, X = coned-off space

G a mapping class group, X = curve complex

G a right-angled Artin group, X = extension graph $G = \text{Out}(F_n)$,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)*G* a relatively hyperbolic group, X = coned-off space *G* a mapping class group, X = curve complex *G* a right-angled Artin group, X = extension graph $G = Out(F_n)$, X = free splitting/free factor complex

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

- G a relatively hyperbolic group, X = coned-off space
- *G* a mapping class group, X = curve complex
- G a right-angled Artin group, X = extension graph
- $G = Out(F_n), X = free splitting/free factor complex$
- G = Cremona group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is <u>weakly hyperbolic</u> if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, X = Cay(G, S)

- G a relatively hyperbolic group, X = coned-off space
- *G* a mapping class group, X = curve complex
- G a right-angled Artin group, X = extension graph
- $G = Out(F_n), X = free splitting/free factor complex$
- G = Cremona group, X = Picard-Manin hyperboloid

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X,

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary.

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

 $\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift) $\exists L > 0 \ s.t.$

$$\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.$$

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift) $\exists L > 0 \ s.t.$

$$\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.$$

If μ has finite 1st moment then

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0 \text{ exists a.s.}$$

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ -hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift) $\exists L > 0 \ s.t.$

$$\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.$$

If μ has finite 1st moment then

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0 \text{ exists a.s.}$$

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \ge n(L-\epsilon)) \to 1$$

as $n \to \infty$.

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L-\epsilon)) \to 1$$

as $n \to \infty$. Corollary.

 $\mathbb{P}(w_n \text{ is loxodromic }) \to 1$

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L-\epsilon)) \to 1$$

as $n \to \infty$. Corollary.

 $\mathbb{P}(w_n \text{ is loxodromic }) \to 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD),

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L-\epsilon)) \to 1$$

as $n \to \infty$. Corollary.

 $\mathbb{P}(w_n \text{ is loxodromic }) \to 1$

 (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy,

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L-\epsilon)) \to 1$$

as $n \to \infty$. Corollary.

 $\mathbb{P}(w_n \text{ is loxodromic }) \to 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the <u>Gromov</u> boundary $(\partial X, \nu)$

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L-\epsilon)) \to 1$$

as $n \to \infty$. Corollary.

 $\mathbb{P}(w_n \text{ is loxodromic }) \to 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the <u>Gromov</u> boundary $(\partial X, \nu)$ is a model for the <u>Poisson boundary</u> of (G, μ) .