Random walks on weakly hyperbolic groups

Giulio Tiozzo University of Toronto

Random and Arithmetic Structures in Topology MSRI - Fall 2020

> ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups

- ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary

- ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- **Lecture 3** (Sep 3, 9.00): Positive drift $+$ genericity of loxodromics

- ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- **Lecture 3** (Sep 3, 9.00): Positive drift $+$ genericity of loxodromics

Main references:

- ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- **Lecture 3** (Sep 3, 9.00): Positive drift $+$ genericity of loxodromics

Main references: J. Maher and G. T.,

- ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- **Lecture 3** (Sep 3, 9.00): Positive drift $+$ genericity of loxodromics

Main references:

J. Maher and G. T.,

Random walks on weakly hyperbolic groups Random walks, WPD actions, and the Cremona group

Introduction to random walks

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West:

Introduction to random walks

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

Answer. It depends on the topography (geometry) of the city.

Example 1: Squareville

Example 1: Squareville

In Squareville, blocks form a square grid.

Example 1: Squareville

In Squareville, blocks form a square grid. What is the probability of coming back to where you started?

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$
\mathbb{P}(w_n = x \text{ i.o.}) = 1
$$

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$
\mathbb{P}(w_n = x \text{ i.o.}) = 1
$$

Otherwise it is said to be transient.

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$
\mathbb{P}(w_n = x \text{ i.o.}) = 1
$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$
\mathbb{P}(w_n = x \text{ i.o.}) = 1
$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Lemma

Let $m = \sum_{n \geq 1} p^n(x, x)$ be the "average number of visits to x".

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$
\mathbb{P}(w_n = x \text{ i.o.}) = 1
$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Lemma

Let $m = \sum_{n \geq 1} p^n(x, x)$ be the "average number of visits to x". *Then the random walk is recurrent iff m* = ∞ .

Definition

A random walk (w_n) on *X* is recurrent if for any $x \in X$, the probability that $w_n = x$ infinitely often is 1:

$$
\mathbb{P}(w_n = x \text{ i.o.}) = 1
$$

Otherwise it is said to be transient.

Let $p^n(x, y) :=$ probability of being at *y* after *n* steps starting from *x*.

Lemma

Let $m = \sum_{n \geq 1} p^n(x, x)$ be the "average number of visits to x". *Then the random walk is recurrent iff m* $=$ ∞

Exercise. Prove the Lemma.

Let us first consider the easier case where your world is just a line.

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps?

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if $N = 2n$ you get

$$
p^{2n}(0,0)=\frac{1}{2^{2n}}\binom{2n}{n}
$$

(choose 2*n* ways to go right)

 ls

$$
\rho^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}
$$
 (choose 2n ways to go right)

$$
\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}
$$
 convergent?

$$
p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}
$$
 (choose 2n ways to go right)

Is
$$
\sum_{n\geq 1} \frac{1}{2^{2n}} {2n \choose n}
$$
 convergent?
Apply Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

$$
p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}
$$
 (choose 2n ways to go right)

Is
$$
\sum_{n\geq 1} \frac{1}{2^{2n}} {2n \choose n}
$$
 convergent?
Apply Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

$$
\frac{1}{2^{2n}}\binom{2n}{n}\sim\frac{1}{2^{2n}}\frac{\sqrt{n}\left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)^2}=\frac{1}{\sqrt{n}}
$$

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps? If *N* is odd, the probability is zero, but if $N = 2n$ you get

$$
p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}
$$
 (choose 2n ways to go right)

Is
$$
\sum_{n\geq 1} \frac{1}{2^{2n}} {2n \choose n}
$$
 convergent?
Apply Stirling's Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

$$
\frac{1}{2^{2n}}\binom{2n}{n}\sim\frac{1}{2^{2n}}\frac{\sqrt{n}\left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)^2}=\frac{1}{\sqrt{n}}
$$

∴ our RW is recurrent.

Now, let us go to Squareville, i.e. the 2-dimensional grid.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}}$ 2*n n* $\bigg\}^2 \sim \frac{1}{2}$ *n* (match left & right and match up and down)

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}}$ 2*n n* $\bigg\}^2 \sim \frac{1}{2}$ *n* (match left & right and match up and down)

hence the random walk is recurrent.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}}$ 2*n n* $\bigg\}^2 \sim \frac{1}{2}$ *n* (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff $d = 1, 2$.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}}$ 2*n n* $\bigg\}^2 \sim \frac{1}{2}$ *n* (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff $d = 1, 2$.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}}$ 2*n n* $\bigg\}^2 \sim \frac{1}{2}$ *n* (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff $d = 1, 2$.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Exercise. Prove Polya's theorem for $d = 3$.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

 $p^{2n}(0,0) = \frac{1}{4^{2n}}$ 2*n n* $\bigg\}^2 \sim \frac{1}{2}$ *n* (match left & right and match up and down)

hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \mathbb{Z}^d is recurrent iff $d = 1, 2$.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Exercise. Prove Polya's theorem for $d = 3$. Moreover, for the simple random walk on \mathbb{Z}^d , show that $p^{2n}(0,0) \approx n^{-\frac{d}{2}}.$
Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin".

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the *n th* step, then:

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

$$
d_{n+1}=d_n+1
$$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

$$
d_{n+1}=d_n+1
$$

∴ $\mathbb{E}(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$ 2

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

$$
d_{n+1} = d_n + 1
$$

$$
\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}
$$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

$$
d_{n+1} = d_n + 1
$$

\n
$$
\therefore \mathbb{E}(d_{n+1} - d_n) \ge \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}
$$

\nThen $\mathbb{E}\left(\frac{d_n}{n}\right) \ge \frac{1}{2}$

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

 $d_{n+1} = d_n + 1$ ∴ $\mathbb{E}(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$ $\frac{1}{2}$ \therefore $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2}$ 2 Then $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \Rightarrow {\sf RW}$ is transient

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4*-valent tree is transient.*

 d_n = "distance of the n^{th} step of the RW from the origin". If you give the position of the n^{th} step, then: if $d_n > 0$

$$
d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}
$$

and if $d_n = 0$ then

 $d_{n+1} = d_n + 1$ ∴ $\mathbb{E}(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$ $\frac{1}{2}$ \therefore $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2}$ 2 Then $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \Rightarrow {\sf RW}$ is transient (do we know lim_{*n→*∞ $\frac{d_n}{n}$ exist?)}

Exercise (P. Lessa)

Exercise (P. Lessa)

A radially symmetric tree of valence (a_1, a_2, \ldots) is a tree where all vertices at distance *n* from the base point have exactly *an*−¹ children.

Exercise (P. Lessa)

A radially symmetric tree of valence (a_1, a_2, \ldots) is a tree where all vertices at distance *n* from the base point have exactly *an*−¹ children. Prove that the simple random walk on a radially symmetric tree (a_1, a_2, \ldots) is transient

Exercise (P. Lessa)

A radially symmetric tree of valence (a_1, a_2, \ldots) is a tree where all vertices at distance *n* from the base point have exactly *an*−¹ children. Prove that the simple random walk on a radially symmetric tree (a_1, a_2, \ldots) is transient iff

$$
\sum_{n\geq 1}\frac{1}{a_1\cdot a_2\cdots a_n}<\infty
$$

Exercise (P. Lessa)

A radially symmetric tree of valence (a_1, a_2, \ldots) is a tree where all vertices at distance *n* from the base point have exactly *an*−¹ children. Prove that the simple random walk on a radially symmetric tree (a_1, a_2, \ldots) is transient iff

$$
\sum_{n\geq 1}\frac{1}{a_1\cdot a_2\cdots a_n}<\infty
$$

Let G be a group and (X, d) a metric space.

Let *G* be a group and (*X*, *d*) a metric space. The isometry group of *X* is the group of elements which preserve distance:

Let *G* be a group and (*X*, *d*) a metric space. The isometry group of *X* is the group of elements which preserve distance:

Isom(*X*) = {*f* : *X* → *X* : *d*(*x*, *y*) = *d*(*f*(*x*), *f*(*y*)) for all *x*, *y* ∈ *X*}

Let *G* be a group and (*X*, *d*) a metric space. The isometry group of *X* is the group of elements which preserve distance:

Isom(*X*) = {*f* : *X* → *X* : *d*(*x*, *y*) = *d*(*f*(*x*), *f*(*y*)) for all *x*, *y* ∈ *X*}

Definition A group action of *G* on *X* is a homomorphism

 $\rho: G \to \text{Isom}(X)$.

Let *G* be a group and (*X*, *d*) a metric space. The isometry group of *X* is the group of elements which preserve distance:

Isom(*X*) = {*f* : *X* → *X* : *d*(*x*, *y*) = *d*(*f*(*x*), *f*(*y*)) for all *x*, *y* ∈ *X*}

Definition A group action of *G* on *X* is a homomorphism

 $\rho: G \to \text{Isom}(X)$.

Example: the group of reals acting on itself by translations:

Let *G* be a group and (*X*, *d*) a metric space. The isometry group of *X* is the group of elements which preserve distance:

Isom(*X*) = {*f* : *X* → *X* : *d*(*x*, *y*) = *d*(*f*(*x*), *f*(*y*)) for all *x*, *y* ∈ *X*}

Definition A group action of *G* on *X* is a homomorphism

 $\rho: G \to \text{Isom}(X)$.

Example: the group of reals acting on itself by translations: $X = \mathbb{R}, G = \mathbb{R}$ and the action $\rho : \mathbb{R} \to \text{Isom}(\mathbb{R})$ is given by $\rho(t)$: $x \mapsto x + t$.

Let μ be a probability measure on G .

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*,

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of *G*, independently

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of G , independently and with distribution μ .

Let µ be a probability measure on *G*. Draw a sequence (*gn*) of elements of G , independently and with distribution μ .

The sequence (*gn*) is the sequence of increments, and we are interested in the products

$$
w_n:=g_1\ldots g_n
$$

Let µ be a probability measure on *G*. Draw a sequence (*gn*) of elements of G , independently and with distribution μ . The sequence (*gn*) is the sequence of increments, and we are interested in the products

$$
w_n:=g_1\ldots g_n
$$

The sequence (*wn*) is called a sample path for the random walk.

Let µ be a probability measure on *G*. Draw a sequence (*gn*) of elements of G , independently and with distribution μ . The sequence (*gn*) is the sequence of increments, and we are interested in the products

$$
w_n:=g_1\ldots g_n
$$

The sequence (w_n) is called a sample path for the random walk. More formally, the space of increments (or step space) is the product space $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$.

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of G , independently and with distribution μ . The sequence (*gn*) is the sequence of increments, and we are interested in the products

$$
w_n:=g_1\ldots g_n
$$

The sequence (*wn*) is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$. Consider the map $\Phi: G^{\mathbb{N}} \to G^{\mathbb{N}}$

$$
\Phi:(g_n)\mapsto(w_n)
$$

Let μ be a probability measure on *G*. Draw a sequence (g_n) of elements of G , independently and with distribution μ . The sequence (*gn*) is the sequence of increments, and we are interested in the products

$$
w_n:=g_1\ldots g_n
$$

The sequence (w_n) is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$. Consider the map $\Phi: G^{\mathbb{N}} \to G^{\mathbb{N}}$

$$
\Phi:(g_n)\mapsto(w_n)
$$

and define the sample space as the space (Ω, \mathbb{P}) where $\Omega = G^{\mathbb{N}}$ and $\mathbb{P} \overset{=}{=} \Phi_{\star} \mu^{\mathbb{N}}$ is the pushforward.

Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$.

Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$.

Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and

$$
\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)
$$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and

 $\mu=\frac{1}{4}$ $\frac{1}{4}\left(\delta_{(1,0)}+\delta_{(-1,0)}+\delta_{(0,1)}+\delta_{(0,-1)}\right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and $\mu=\frac{1}{4}$ $\frac{1}{4}\left(\delta_{(1,0)}+\delta_{(-1,0)}+\delta_{(0,1)}+\delta_{(0,-1)}\right)$ you get the simple

random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).

 $3 \times Z = 4$ -valent tree

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and $\mu=\frac{1}{4}$ $\frac{1}{4}\left(\delta_{(1,0)}+\delta_{(-1,0)}+\delta_{(0,1)}+\delta_{(0,-1)}\right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- $3 \times Z = 4$ -valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and $\mu=\frac{1}{4}$ $\frac{1}{4}\left(\delta_{(1,0)}+\delta_{(-1,0)}+\delta_{(0,1)}+\delta_{(0,-1)}\right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- $3 \times Z = 4$ -valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$ Reduced := there are no redundant pairs, i.e. there is no *a* after a^{-1} , no a^{-1} after a , no b after b^{-1} , and no b^{-1} after b .

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and $\mu=\frac{1}{4}$ $\frac{1}{4}\left(\delta_{(1,0)}+\delta_{(-1,0)}+\delta_{(0,1)}+\delta_{(0,-1)}\right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- $3 \times Z = 4$ -valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$ Reduced := there are no redundant pairs, i.e. there is no *a* after a^{-1} , no a^{-1} after a , no b after b^{-1} , and no b^{-1} after b .

$$
\mu = \frac{1}{4}(\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})
$$

- 1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ $\frac{+0.1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on $\mathbb Z$.
- 2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X=\mathbb{R}^d.$ For $d=2$ and $\mu=\frac{1}{4}$ $\frac{1}{4}\left(\delta_{(1,0)}+\delta_{(-1,0)}+\delta_{(0,1)}+\delta_{(0,-1)}\right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk on Squareville).
- $3 \times Z = 4$ -valent tree

 $G = \mathbb{F}_2 = \{$ reduced words in the alphabet $\{a, b, a^{-1}, b^{-1}\}\}$ Reduced := there are no redundant pairs, i.e. there is no *a* after a^{-1} , no a^{-1} after a , no b after b^{-1} , and no b^{-1} after b .

$$
\mu = \frac{1}{4}(\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})
$$

 \Rightarrow RW in Tree City

Definition Given a group *G* finitely generated by a set *S*,

Definition

Given a group *G* finitely generated by a set *S*, the Cayley graph $\Gamma = \text{Cay}(G, S)$ is a graph

Definition

Given a group *G* finitely generated by a set *S*, the Cayley graph Γ = Cay(*G*, *S*) is a graph whose vertices are the elements of *G*

Definition

Given a group *G* finitely generated by a set *S*, the Cayley graph Γ = Cay(*G*, *S*) is a graph whose vertices are the elements of *G* and there is an edge $g \to h$ ($g, h \in G$) if $h = gs$ where $s \in S$.

Definition

Given a group *G* finitely generated by a set *S*, the Cayley graph Γ = Cay(*G*, *S*) is a graph whose vertices are the elements of *G* and there is an edge $q \to h$ ($q, h \in G$) if $h = qs$ where $s \in S$.

Definition

Given a finitely generated group *G* and a finite generating set *S*, we define the word length of $g \in G$ as

$$
\|g\|:=\text{min}\{k\ :\ g=s_1s_2\ldots s_k, s_i\in S\cup S^{-1}\}.
$$

Definition

Given a group *G* finitely generated by a set *S*, the Cayley graph Γ = Cay(*G*, *S*) is a graph whose vertices are the elements of *G* and there is an edge $q \to h$ ($q, h \in G$) if $h = qs$ where $s \in S$.

Definition

Given a finitely generated group *G* and a finite generating set *S*, we define the word length of $g \in G$ as

$$
\|g\|:=\text{min}\{k\ :\ g=s_1s_2\ldots s_k, s_i\in S\cup S^{-1}\}.
$$

Moreover, we define the word metric or word distance between $g, h \in G$ as

$$
d(g, h) := ||g^{-1}h||.
$$

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree.

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

$$
4. \;\; G=SL_2(\mathbb{R})=\{A\in M_2: \text{det}\,A=1\}
$$

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

The group *G* acts by isometries for the hyperbolic metric $ds = \frac{dx}{v}$ *y* .

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

The group *G* acts by isometries for the hyperbolic metric $ds = \frac{dx}{v}$ $\frac{d\chi}{\chi}$. Let $A,B\in SL_2(\mathbb{R}),\mu=\frac{1}{4}$ $\frac{1}{4}(\delta_{\mathcal{A}} + \delta_{\mathcal{A}^{-1}} + \delta_{\mathcal{B}} + \delta_{\mathcal{B}^{-1}}).$

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

The group *G* acts by isometries for the hyperbolic metric $ds = \frac{dx}{v}$ $\frac{d\chi}{\chi}$. Let $A,B\in SL_2(\mathbb{R}),\mu=\frac{1}{4}$ $\frac{1}{4}(\delta_{\mathcal{A}} + \delta_{\mathcal{A}^{-1}} + \delta_{\mathcal{B}} + \delta_{\mathcal{B}^{-1}}).$ The boundary of $\mathbb H$ is $\partial \mathbb H = \mathbb R \cup \{\infty\}.$

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

The group *G* acts by isometries for the hyperbolic metric $ds = \frac{dx}{v}$ $\frac{d\chi}{\chi}$. Let $A,B\in SL_2(\mathbb{R}),\mu=\frac{1}{4}$ $\frac{1}{4}(\delta_{\mathcal{A}} + \delta_{\mathcal{A}^{-1}} + \delta_{\mathcal{B}} + \delta_{\mathcal{B}^{-1}}).$ The boundary of H is $\partial H = \mathbb{R} \cup \{\infty\}$. Random walks of this type converge almost surely to the boundary.

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

The group *G* acts by isometries for the hyperbolic metric $ds = \frac{dx}{v}$ $\frac{d\chi}{\chi}$. Let $A,B\in SL_2(\mathbb{R}),\mu=\frac{1}{4}$ $\frac{1}{4}(\delta_{\mathcal{A}} + \delta_{\mathcal{A}^{-1}} + \delta_{\mathcal{B}} + \delta_{\mathcal{B}^{-1}}).$ The boundary of H is $\partial H = \mathbb{R} \cup \{\infty\}$. Random walks of this type converge almost surely to the boundary. Equivalently, one can also use the Poincaré disc model.

$$
d(gh_1, gh_2) = d(h_1, h_2) \qquad \forall h \in G.
$$

If $G = \mathbb{F}_2$, $S = \{a, b\}$, then Cay(\mathbb{F}_2 , S) is the 4-valent tree. If $G = \mathbb{Z}^2$, $S = \{(1, 0), (0, 1)\}$ then Cay(\mathbb{Z}^2 , S) is the square grid.

4. $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ by Möbius transformations:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.
$$

The group *G* acts by isometries for the hyperbolic metric $ds = \frac{dx}{v}$ $\frac{d\chi}{\chi}$. Let $A,B\in SL_2(\mathbb{R}),\mu=\frac{1}{4}$ $\frac{1}{4}(\delta_{\mathcal{A}} + \delta_{\mathcal{A}^{-1}} + \delta_{\mathcal{B}} + \delta_{\mathcal{B}^{-1}}).$ The boundary of H is $\partial H = \mathbb{R} \cup \{\infty\}$. Random walks of this type converge almost surely to the boundary. Equivalently, one can also use the Poincaré disc model. The disc has a natural topological boundary, i.e. the circle.

1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?

- 1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

- 1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$
L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n}
$$
 (if it exists)

- 1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$
L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n}
$$
 (if it exists)

A measure μ on *G* has finite first moment on *X* if for some (equivalently, any) $x \in X$

$$
\int_G d(x,gx)\ d\mu(g)<+\infty.
$$

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Proof. For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle,

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$
d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =
$$

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$
d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =
$$

and since *wⁿ* is an isometry

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$
d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =
$$

and since *wⁿ* is an isometry

$$
= d(x, w_n(\omega)x)+d(x, g_{n+1}\dots g_{n+m}x) = d(x, w_n(\omega)x)+d(x, w_m(T^n\omega)x)
$$

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$
d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =
$$

and since *wⁿ* is an isometry

$$
= d(x, w_n(\omega)x)+d(x, g_{n+1}\dots g_{n+m}x) = d(x, w_n(\omega)x)+d(x, w_m(T^n\omega)x)
$$

where *T* is the shift on the space of increments,

Lemma

If μ *has finite first moment, then there exists a constant* $L \in \mathbb{R}$ *such that for a.e. sample path*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.
$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$
d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =
$$

and since *wⁿ* is an isometry

$$
= d(x, w_n(\omega)x)+d(x, g_{n+1}\dots g_{n+m}x) = d(x, w_n(\omega)x)+d(x, w_m(T^n\omega)x)
$$

where *T* is the shift on the space of increments, hence the claim follows by Kingman's subadditive ergodic theorem.
3. Does a sample path track geodesics in *X*?

3. Does a sample path track geodesics in *X*? How closely?

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

Definition

If so, define the hitting measure ν on ∂*X* as

$$
\nu(A)=\mathbb{P}(\lim_{n\to\infty}g_nx\in A)
$$

for any $A \subset \partial X$.

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

Definition

If so, define the hitting measure ν on ∂*X* as

$$
\nu(A)=\mathbb{P}(\lim_{n\to\infty}g_nx\in A)
$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure?

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

Definition

If so, define the hitting measure ν on ∂*X* as

$$
\nu(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)
$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure?

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

Definition

If so, define the hitting measure ν on ∂*X* as

$$
\nu(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)
$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

Definition

If so, define the hitting measure ν on ∂*X* as

$$
\nu(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)
$$

for any $A \subset \partial X$.

- 5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
- 6. Is $(\partial X, \nu)$ a model for the Poisson boundary of (G, μ) ?

- 3. Does a sample path track geodesics in *X*? How closely?
- 4. If *X* has a topological boundary ∂*X*, does a typical sample path converge to ∂*X*?

Definition

If so, define the hitting measure ν on ∂*X* as

$$
\nu(A) = \mathbb{P}(\lim_{n \to \infty} g_n x \in A)
$$

for any $A \subset \partial X$.

- 5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
- 6. Is $(\partial X, \nu)$ a model for the Poisson boundary of (G, μ) ? That is, do you have a representation formula for bounded harmonic functions?

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces:

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R}\sqrt{2}$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2 !)

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2 !) $X =$ tree $\sqrt{ }$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2 !) $X = \text{tree } \checkmark$ $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces: $X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2 !) $X = \text{tree } \checkmark$ $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$ $X =$ locally infinite tree

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces:

$$
X=\mathbb{R}\checkmark\ \ (\text{NOT }\mathbb{R}^2\text{!})
$$

$$
X = \text{tree } \checkmark
$$

$$
G=\mathbb{F}_2, X=Cay(\mathbb{F}_2,S)\checkmark
$$

 $X =$ locally infinite tree (not proper!)

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Definition

The geodesic metric space X is δ -hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ -thin.

Example

The following are δ -hyperbolic spaces:

$$
X=\mathbb{R}\checkmark\ \ (\text{NOT}\ \mathbb{R}^2!)
$$

$$
X = \text{tree } \checkmark
$$

$$
G=\mathbb{F}_2, X=Cay(\mathbb{F}_2,S)\checkmark
$$

 $X =$ locally infinite tree (not proper!)

Recall a space is proper if metric balls $\{z \in X : d(x, z) \leq R\}$ are compact.

Definition Given an isometry g of X and $x \in X$, we define its translation length as

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Definition

Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) *Let g be an isometry of a* δ*-hyperbolic metric space X (not necessarily proper). Then either:*

1. *g has bounded orbits.*

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

Lemma (Classification of isometries of hyperbolic spaces) *Let g be an isometry of a* δ*-hyperbolic metric space X (not necessarily proper). Then either:*

1. *g has bounded orbits. Then g is called elliptic.*

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

- 1. *g has bounded orbits. Then g is called elliptic.*
- 2. *g* has unbounded orbits and $\tau(g) = 0$.

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

- 1. *g has bounded orbits. Then g is called elliptic.*
- 2. *g* has unbounded orbits and $\tau(g) = 0$. Then g is called *parabolic.*

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

- 1. *g has bounded orbits. Then g is called elliptic.*
- 2. *g* has unbounded orbits and $\tau(g) = 0$. Then g is called *parabolic.*
- 3. $\tau(g) > 0$.

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

- 1. *g has bounded orbits. Then g is called elliptic.*
- 2. *g* has unbounded orbits and $\tau(g) = 0$. Then g is called *parabolic.*
- 3. τ (*g*) > 0*. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on* ∂*X, one attracting and one repelling.*

Definition

Given an isometry *g* of *X* and $x \in X$, we define its translation length as

$$
\tau(g):=\lim_{n\to\infty}\frac{d(g^nx,x)}{n}
$$

Exercise: the limit exists and is independent of the choice of *x*.

- 1. *g has bounded orbits. Then g is called elliptic.*
- 2. *g* has unbounded orbits and $\tau(g) = 0$. Then g is called *parabolic.*
- 3. τ (*g*) > 0*. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on* ∂*X, one attracting and one repelling.*

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

G a relatively hyperbolic group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = Cay(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

G a mapping class group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

G a mapping class group, $X =$ curve complex

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

G a mapping class group, $X =$ curve complex

G a right-angled Artin group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

G a mapping class group, $X =$ curve complex

G a right-angled Artin group, $X =$ extension graph

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

G a mapping class group, $X =$ curve complex

G a right-angled Artin group, $X =$ extension graph $G = Out(F_n),$

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$ *G* a relatively hyperbolic group, $X =$ coned-off space *G* a mapping class group, $X =$ curve complex *G* a right-angled Artin group, $X =$ extension graph $G = Out(F_n)$, $X =$ free splitting/free factor complex

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = \text{Cay}(G, S)$

- *G* a relatively hyperbolic group, $X =$ coned-off space
- *G* a mapping class group, $X =$ curve complex
- *G* a right-angled Artin group, $X =$ extension graph
- $G = Out(F_n)$, $X =$ free splitting/free factor complex
- $G =$ Cremona group,

Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

The following are weakly hyperbolic groups:

 $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$

G a word hyperbolic group, $X = Cay(G, S)$

G a relatively hyperbolic group, $X =$ coned-off space

G a mapping class group, $X =$ curve complex

G a right-angled Artin group, $X =$ extension graph

 $G = Out(F_n)$, $X =$ free splitting/free factor complex

 $G =$ Cremona group, $X =$ Picard-Manin hyperboloid

-
- - - -
		-
	- - - -
				-
			-
			-
- -
-
- - -
- -
-
-
- -
-
-
-
-
-
- - -
-
-
-

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X,*

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X, such that the semigroup generated by the support of* μ *is non-elementary.*

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X, such that the semigroup generated by the support of* µ *is non-elementary. Then:*

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X, such that the semigroup generated by the support of* µ *is non-elementary. Then:*

1. (Boundary convergence) *For a.e.* (w_n) *and every* $x \in X$

$$
\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}
$$

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X, such that the semigroup generated by the support of* µ *is non-elementary. Then:*

1. (Boundary convergence) *For a.e.* (w_n) *and every* $x \in X$

$$
\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}
$$

2. (Positive drift) ∃*L* > 0 *s.t.*

$$
\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.
$$

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X, such that the semigroup generated by the support of* µ *is non-elementary. Then:*

1. (Boundary convergence) *For a.e.* (w_n) *and every* $x \in X$

$$
\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}
$$

2. (Positive drift) ∃*L* > 0 *s.t.*

$$
\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.
$$

If µ *has finite* 1 *st moment then*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0 \text{ exists a.s.}
$$

Theorem (Maher-Tiozzo '18)

Let G be a countable group of isometries of a δ*-hyperbolic metric space X, such that the semigroup generated by the support of* µ *is non-elementary. Then:*

1. (Boundary convergence) *For a.e.* (w_n) *and every* $x \in X$

$$
\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}
$$

2. (Positive drift) ∃*L* > 0 *s.t.*

$$
\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.
$$

If µ *has finite* 1 *st moment then*

$$
\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0 \text{ exists a.s.}
$$

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n)\geq n(L-\epsilon))\to 1
$$

as $n \to \infty$.

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n)\geq n(L-\epsilon))\to 1
$$

as $n \to \infty$. **Corollary.**

 $\mathbb{P}(w_n)$ is loxodromic $) \rightarrow 1$

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n)\geq n(L-\epsilon))\to 1
$$

as $n \to \infty$. **Corollary.**

 $\mathbb{P}(w_n)$ is loxodromic $) \rightarrow 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD),

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n)\geq n(L-\epsilon))\to 1
$$

as $n \to \infty$. **Corollary.**

 $\mathbb{P}(w_n)$ is loxodromic $) \rightarrow 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy,

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n)\geq n(L-\epsilon))\to 1
$$

as $n \to \infty$. **Corollary.**

 $\mathbb{P}(w_n)$ is loxodromic $) \rightarrow 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the Gromov boundary $(\partial X, \nu)$

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n)\geq n(L-\epsilon))\to 1
$$

as $n \to \infty$. **Corollary.**

 $\mathbb{P}(w_n)$ is loxodromic $) \rightarrow 1$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the Gromov boundary (∂*X*, ν) is a model for the Poisson boundary of $(G, \mu).$