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1. Introduction to random walks

1.1. Basic examples. Consider a drunkard who moves in a city by tossing
coins to decide whether to go North, South, East or West: can he/she get
back home?

It depends on the topography of the city.

Example 1: Squareville

In Squareville, blocks form a square grid. What is the probability of coming
back to where you start? Let us first consider the easier case where your
world is just a line, and you can only go in two directions: left or right.

Definition 1.1. A random walk (wn) on X is recurrent if for any x ∈ X,
the probability that wn = x infinitely often is 1:

P(wn = x i.o.) = 1

Otherwise it is said to be transient.

Let us denote as pn(x, y) the probability of being at y after n steps starting
from x.

Lemma 1.2. Let m = ∑
n≥1

pn(0,0) be the “average number of visits to 0”.

Then the random walk is recurrent iff m =∞ .

Exercise. Prove the Lemma.

Now, what is the probability of going back to where you start after N steps?
If N is odd, the probability is zero, but if N = 2n you get

p2n(0,0) = 1

22n
(2n
n

) (choose 2n ways to go right)

Is ∑
n≥1

1

22n
(2n
n

) convergent?

Apply Stirling’s Formula: n! ∼
√

2πn(n
e
)
n

1

22n
(2n
n

) ∼ 1

22n

√
n (2n

e
)2n

(
√
n (n

e
)n)2

= 1√
n

∴ our RW is recurrent.

Now, let us go to Squareville, i.e. the case of the 2-dimensional grid. Now
we have 4 directions to choose from. One can check that
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p2n(0,0) = 1

42n
(2n
n

)
2

∼ 1

n
(match left & right and match up and down)

hence the random walk is recurrent.

In general, one has the following.

Theorem 1.3 (Polya). The simple random walk on Zd is recurrent iff d =
1,2.

That is, “a drunk man will get back home, but a drunk bird will get lost”.

Exercise. Prove Polya’s theorem for d = 3. Moreover, for the simple random

walk on Zd one can show that p2n(0,0) ≈ n−
d
2 .

Example 2: Tree City

In Tree City, the map has the shape of a 4-valent tree.

Theorem 1.4. The simple random walk on a 4-valent tree is transient.

We want to look at dn = “distance of the nth step of the RW from the origin”.

If you give the position of the nth step, then finding dn+1 is as follows: if
dn > 0 then

dn+1 =
⎧⎪⎪⎨⎪⎪⎩

dn + 1 with P = 3
4

dn − 1 with P = 1
4

and if dn = 0 then
dn+1 = dn + 1

∴ E(dn+1 − dn) ≥ 3
4 −

1
4 =

1
2

∴ E (dn
n
) ≥ 1

2

If we know that limn→∞
dn
n exists almost surely and is constant, then limn→∞

dn
n ≥

1
2 a.s. as E (dn

n
) ≥ 1

2 ⇒ RW is transient

Exercise. A radially symmetric tree of valence (a1, a2, . . .) is a tree where
all vertices at distance n from the base point have exactly an−1 children.
Prove that the simple random walk on a radially symmetric tree (a1, a2, . . .)
is transient iff

∑
n≥1

1

a1 ⋅ a2⋯an
<∞

1.2. General setup. Let G be a group and (X,d) a metric space. The
isometry group of X is the group of elements which preserve distance:

Isom(X) = {f ∶X →X ∶ d(x, y) = d(f(x), f(y)) for all x, y ∈X}

Definition 1.5. A group action of G on X is a homomorphism

ρ ∶ G→ Isom(X).
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The first example is the group of reals acting on themselves by translations:
here X = R, G = R and the action ρ ∶ R→ Isom(R) is given by ρ(t) ∶ x↦ x+t.

Let us now consider a probability measure µ on G. Then we can draw a
sequence (gn) of elements of G, independently and with distribution µ. The
sequence (gn) is called the sequence of increments, and we are interested in
the products

wn ∶= g1 . . . gn
The sequence (wn) is called a sample path for the random walk.

More formally, the space of increments is the infinite product space (GN, µN),
and its elements are sequences (gn) of elements of G. Then consider the map
GN → GN

(gn)↦ (wn)
defined as wn = g1g2 . . . gn and define the sample space as the space (Ω,P)
where Ω = GN and P is the pushforward of µN by the above map. Elements
of Ω are denoted as (wn) and are called sample paths.

If you fix a basepoint x ∈ X (where X is the metric space) you can look at
the sequence (wn ⋅ x) ⊆X.

Examples

(1) The group G = Z acts by translations on X = R. Let us take µ =
δ+1+δ−1

2 , i.e. one moves forward by 1 with probability 1
2 and moves

backward by 1 with probability 1
2 . This is the simple random walk

on Z as previously discussed.

(2) The same holds for G = Rd or G = Zd acting by translations on
X = Rd. For d = 2 and µ = 1

4
(δ(1,0) + δ(−1,0) + δ(0,1) + δ(0,−1)) you get

the simple random walk on Z2 (i.e. the random walk on Squareville).

(3) X = 4-valent tree

G = F2 = { reduced words in the alphabet {a, b, a−1, b−1}}

Here, reduced means that there are no redundant pairs, i.e. there is
no a after a−1, no a−1 after a, no b after b−1, and no b−1 after b.

µ = 1
4(δa + δa−1 + δb + δb−1)

More generally, given a finitely generated group we can define its
Cayley graph:

Definition 1.6. Given a group G finitely generated by a set S, the
Cayley graph Γ = Cay(G,S) is a graph whose vertices are the ele-
ments of G and there is an edge g → h (g, h ∈ G) if h = gs where
s ∈ S.

Often one takes S = S−1, so that Cay(G,S) is an undirected graph.
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Definition 1.7. Given a finitely generated group G and a finite
generating set S, we define the word length of g ∈ G as

∥g∥ ∶= min{k ∶ g = s1s2 . . . sk, si ∈ S ∪ S−1}.
Moreover, we define the word metric or word distance between g, h ∈
G as

d(g, h) ∶= ∥g−1h∥.

Note that with this definition left-multiplication by an element of
G is an isometry for the word metric: for any h ∈ G, d(gh1, gh2) =
d(h1, h2).

If we let G = F2, S = {a, b}, then Cay(F2, S) is the 4-valent tree. On
the other hand, if G = Z2, S = {(1,0), (0,1)} then Cay(Z2, S) is the
square grid.

Note that Cay(Z2, S) has loops, since e.g. (0,1)+ (−1,0)+ (0,−1)+
(1,0) = (0,0), while we do not have a corresponding loop in F2 as
the element in F2 that would correspond to the loop is ab−1a−1b and
is not trivial.

(4) Consider G = SL2(R) = {A ∈ M2 ∶ detA = 1} which acts on the
hyperbolic plane X = H = {z ∈ C ∶ Im(z) > 0} by Möbius transforma-
tions:

(a b
c d

)(z) = az + b
cz + d

.

The group G acts by isometries for the hyperbolic metric ds = dx
y .

Let A,B ∈ SL2(R), µ = 1
4(δA + δA−1 + δB + δB−1). The boundary of

H is ∂H = R ∪ {∞}. As we will see later, random walks of this
type converge almost surely to the boundary. Equivalently, one can
also use the Poincaré disc model. The disc has a natural topological
boundary, i.e. the circle.

Questions

(1) Does a typical sample path escape to ∞ or it comes back to the
origin infinitely often?

(2) If it escapes, does it escape with “positive speed”?

Definition 1.8. We define the drift or speed or rate of escape of
the random walk to be the limit

L ∶= lim
n→∞

d(wnx,x)
n

(if it exists)

A measure µ on G has finite first moment on X if for some (equiv-
alently, any) x ∈X

∫
G
d(x, gx) dµ(g) < +∞.



6 GIULIO TIOZZO

Lemma 1.9. If µ has finite first moment, then there exists a con-
stant L ∈ R such that for a.e. sample path

lim
n→∞

d(wnx,x)
n

= L.

Proof. For any x ∈ X, the function a(n,ω) ∶= d(x,wn(ω)x) is a
subadditive cocycle, because

d(x,wn+m(ω)x) ≤ d(x,wn(ω)x) + d(wn(ω)x,wn+m(ω)x) =

and since wn is an isometry

= d(x,wn(ω)x) + d(x, gn+1 . . . gn+mx) = d(x,wn(ω)x) + d(x,wm(Tnω)x)

where T is the shift on the space of increments, hence the claim
follows by Kingman’s subadditive ergodic theorem (Theorem 6.3).

�

(3) Does a sample path track geodesics in X? How closely?

(4) If X has a topological boundary ∂X, does a typical sample path
converge to ∂X?

Definition 1.10. If so, define the hitting measure ν on ∂X as

ν(A) = P( lim
n→∞

gnx ∈ A)

for any A ⊂ ∂X .

(5) What are the properties of hitting measure? Is it the same as the
geometric measure? For example, is it the same as the Lebesgue
measure?

(6) Is (∂X, ν) a model for the Poisson boundary of (G,µ)? That is, do
you have a representation formula for bounded harmonic functions?

2. Gromov hyperbolic spaces

Hyperbolic spaces.

Let (X,d) be a geodesic, metric space, and let x0 ∈X be a basepoint.

Define the Gromov product of x, y as :

(x, y)x0 ∶=
1

2
(d(x0, x) + d(x0, y) − d(x, y))

Definition 2.1. The geodesic metric space X is δ-hyperbolic if ∃δ > 0 such
that geodesic triangles are δ-thin.
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Example 2.2. The following are δ-hyperbolic spaces:

X = R✓

X = tree ✓

G = F2,X = Cay(F2, S)✓

Definition 2.3. A group G is word hyperbolic if there is a finite set S of
generators such that Cay(G,S) is δ-hyperbolic.

Note: The fact that G is word hyperbolic does not depend on the choice of
S (Exercise: why?).

Definition 2.4. The action of G on X is properly discontinuous if for any
x ∈X,∃U ∋ x such that #{g ∈ G ∶ gU ∩U ≠ ∅} is finite.

Let us now consider

G
countable

< Isom(Hn) (where Hn is an n-dimensional hyperbolic space)

If the action of G on Hn is properly discontinuous and cocompact, then G
is word hyperbolic. This is a special case of the following:

Lemma 2.5 (Švarc-Milnor). If G acts properly discontinuously and cocom-
pactly on a δ-hyperbolic space, then G is word hyperbolic.

Example 2.6. Let S = surface of genus g ≥ 2. Then π1(S) is word hyper-

bolic. In fact, S̃ ≃ D ≃ H2, and there is a regular 4g-gon in H2 with angles
2π

4g
. Then H2 /G = S where G = ⟨a1, b1, . . . ag, bg ∣ [a1, b1] ⋅ ⋅ ⋅ ⋅ ⋅ [ag, bg] = 1⟩ =

π1(S), and the action of G on H2 is properly discontinuous and cocompact.

Note: if G < Isom(H3) which acts properly discontinuously but not cocom-
pactly, then G need not be word hyperbolic (it may contain Z2). The same
is true for n ≥ 3 (how about n = 2?)

The mapping class group.

Let S be a closed, orientable, surface of genus g ≥ 2. The mapping class
group of S is

Mod(S) ∶= Homeo+(S) /isotopy

and is a countable, finitely generated group.

Note that Mod(S) is not word hyperbolic. In fact, if you fix a curve α on
S, you can define a Dehn twist Dα around this curve. Then, if α, β are
disjoint then ⟨Dα,Dβ⟩ = Z2.

However, the mapping class group does act on a δ-hyperbolic space (but
this space is not proper!).
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If S is a topological surface of finite genus g, possibly with finitely many
boundary components, then the curve graph C(S) is a graph whose vertices
are isotopy classes of essential1 , simple closed curves on S, and there is an
edge α → β if α and β have disjoint representatives.

Theorem 2.7 (Masur-Minsky [MM99]). The curve graph is δ-hyperbolic.

In fact, one can also define the curve complex by considering the simplicial
complex where every k-simplex represents a set of k disjoint curves on the
surface. The curve graph is the 1-skeleton of the curve complex, and it is
quasi-isometric to it. Thus, for most purposes, it is enough to work with
the curve graph.

Exercise. Consider a closed surface of genus g ≥ 2. Prove that the curve
graph has diameter ≥ 2. In fact, prove that it has infinite diameter.

Exercise. Consider a surface of genus g with n punctures. Figure out for
what values of g, n the curve graph is empty, and for what values of n it is
disconnected. In the latter case, think of how to modify the definition in
order to obtain a connected space.

Outer automorphisms of the free group.

Let Fn be a free group of rank n, and let G = Out(Fn) = Aut(Fn)/Inn(Fn)
the group of outer automorphisms of Fn. Then for n ≥ 2, G is not a word
hyperbolic group but it acts on several non-proper hyperbolic spaces.

In particular, the free factor complex FF(Fn) is a countable graph whose
vertices are conjugacy classes of proper free factors of Fn, and simplices are
determined by chains of nested free factors. (A free factor is a subgroup
H of Fn such that there exists another subgroup K so that Fn = H ⋆K).
The graph F is hyperbolic by Bestvina-Feighn [BF14]. Another hyperbolic
space on which Out(Fn) acts is the free splitting complex FS(Fn).

An element of Out(Fn) is fully irreducible if for all proper free factors F of
Fn and all k > 0, fk(F ) is not conjugate to F . An element is loxodromic on
FF(Fn) if and only if it is fully irreducible, and all fully irreducible elements
satisfy the WPD property.

Exercise. What is Out(F2)? How about its corresponding free factor
complex?

Right-angled Artin groups.

Let Γ be a finite graph. Define the right-angled Artin group A(Γ) as

A(Γ) = ⟨v ∈ V (Γ) ∶ vw = wv if (v,w) ∈ E(Γ)⟩

1Recall that a curve on a surface is essential if it is not homotopic to either a point or
a boundary component.
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Right-angled Artin groups act on X = extension graph where vertices are
conjugacy classes of elements of V (Γ), and there is an edge between vg and
uh iff they commute. Acylindricality of the action is due to Kim-Koberda.

Relatively hyperbolic groups.

Let H be a finitely generated subgroup of a finitely generated group G,
and fix a finite generated set S for G. Then consider the Cayley graph
X = Cay(G,S), and construct a new graph X̂ as follows. For each left coset

gH of H in G, add a vertex v(gH) to X̂, and add an edge from v(gH) to
each vertex representing an element of gH.

The group G is hyperbolic relative to H if the coned-off space X̂ is a δ-
hyperbolic space; X̂ is not proper as long as H is infinite.

The Cremona group.

The Cremona group is the group of birational transformations of the complex
projective plane CP2. That is, every element is given by

f([x ∶ y ∶ z]) ∶= [P (x, y, z) ∶ Q(x, y, z) ∶ R(x, y, z)]

where P,Q,R are three homogenous polynomials of the same degree, without
common factors. The common degree of P,Q,R is called the degree of f .

The Cremona group acts on the Picard-Manin space, which is given by taking
the cohomology of all possible blowups of P2, and preserves a quadratic
form of signature (1,∞). Hence, the Cremona group acts by isometries on
a hyperboloid HP2 in the Picard-Manin space, which is indeed a non-proper
δ-hyperbolic space. For details, see [CL13], [MT2].

Moreover, an element is WPD if it is not conjugate to a monomial map,
i.e. a map which is in affine coordinates of the form f(x, y) ∶= (xayb, xcyd)
where ad − bc ≠ 0.

Exercise. Read the definition of the Picard-Manin space in the appendix.

Exercise. Find an example of two Cremona transformations f, g such that
deg f ○ g ≠ deg f ⋅ deg g.

2.1. The Gromov boundary.

Definition 2.8. A metric space is proper if closed balls (i.e. sets of the
form {y ∈X ∶ d(x, y) ≤ r}) are compact.

Let X be a δ-hyperbolic metric space. If X is proper then we can give the fol-
lowing definition of the boundary of X. Fix a base point x0 ∈X. We declare
two geodesic rays γ1, γ2 based at x0 to be equivalent if supt≥0 d(γ1(t), γ2(t)) <
∞ and we denote this as γ1 ∼ γ2.



10 GIULIO TIOZZO

We define the Gromov boundary of X as

∂X ∶= {γ geodesic rays based at x0}/ ∼

Example 2.9. Examples of Gromov boundaries.

● X = R and ∂X = {−∞,+∞}.

● X = ladder and ∂X = {−∞,+∞}.

In general (if X is not necessarily proper) we define the boundary using
sequences.

A sequence (xn) ⊂ X is a Gromov sequence if lim inf
m,n→∞

(xn ⋅ xm)x0 = ∞. Two

Gromov sequences (xn), (yn) are equivalent if lim inf
n→∞

(xn, yn)x0 = ∞. In

general we define the boundary of X as

∂X ∶= {(xn) Gromov sequence }/ ∼

where ∼ denotes equivalence of Gromov sequences.

Theorem 2.10. ∂X is a metric space.

In order to define the metric, let η, ξ ∈ ∂X. Then η = [xn], ξ = [yn] for two
Gromov sequences (xn), (yn). Then one defines

(η ⋅ ξ)x0 ∶= sup
xn→η,yn→ξ

lim inf
m,n

(xm ⋅ yn)x0

Pick ε > 0, and set ρ(ξ, η) ∶= e−ε(η⋅ξ)x0 . This is not yet a metric (no triangle
inequality). To get an actual metric, you need to take

d(ξ, η) ∶= inf
n−1
∑
i=1

ρ(ξi, ξi+1)

where the inf is taken along all finite chains ξ = ξ0, ξ1,⋯, ξn−1, η = ξn.

Lemma 2.11. ∃C = C(ε) such that

Cρ(ξ, η) ≤ d(ξ, η) ≤ ρ(ξ, η) ∀ξ, η ∈ ∂X

If X is proper, then ∂X is a compact metric space, but if X is not proper,
then ∂X need not be compact.

Example 2.12. X = N ×R≥0 /(n,0) ∼ (m,0) . Then ∂X ≃ N is not compact.

2.2. Random walks on weakly hyperbolic groups. Let (X,d) be a
geodesic, δ-hyperbolic, separable metric space, and let G be a countable
group of isometries of X.
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Definition 2.13. Given an isometry g of X and x ∈X, we define its trans-
lation length of g as

τ(g) ∶= lim
n→∞

d(gnx,x)
n

where the limit is independent of the choice of x (why?).

Lemma 2.14 (Classification of isometries of hyperbolic spaces). Let g be
an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then
either:

(1) g has bounded orbits. Then g is called elliptic.

(2) g has unbounded orbits and τ(g) = 0. Then g is called parabolic.

(3) τ(g) > 0. Then g is called hyperbolic or loxodromic, and has pre-
cisely two fixed points on ∂X, one attracting and one repelling.

Given a measure µ on a countable group, its support is the set of elements
g ∈ G with µ(g) > 0. We will denote as Γµ or sgr(µ) the semigroup generated
by the support of µ.

Definition 2.15. Two loxodromic elements are independent if their fixed
point sets are disjoint. A probability measure µ ∈ P (G) is non-elementary
if sgr(µ) contains 2 independent hyperbolic elements.

The main results we are going to discuss in these lectures are the following.

Theorem 2.16 (Maher-Tiozzo [MT]). Let G be a countable group of isome-
tries of a δ-hyperbolic metric space X, such that the semigroup generated by
the support of µ is non-elementary. Then:

(1) For a.e. (wn) and every x ∈X

lim
n→∞

wnx = ξ ∈ ∂X exists

(2) ∃L > 0 s.t.

lim inf
n→∞

d(wnx,x)
n

= L > 0

If µ has finite 1st moment then

lim
n→∞

d(wnx,x)
n

= L > 0 exists a.s.

(3) For any ε > 0 we have

P(τ(wn) ≥ n(L − ε))→ 1

as n→∞.
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2.3. The Poisson boundary. The well-known Poisson representation for-
mula expresses a duality between bounded harmonic functions on the unit
disk and bounded functions on its boundary circle. Indeed, bounded har-
monic functions admit radial limit values almost surely, while integrating a
boundary function against the Poisson kernel gives a harmonic function on
the interior of the disk. This picture is deeply connected with the geometry
of SL2(R); then in the 1960’s Furstenberg and others extended this duality
to more general groups.

Definition 2.17. A function f ∶ G → R is µ-harmonic if it satisfies the
mean value property with respect to averaging using µ; that is, if

f(g) = ∑
h∈G

f(gh) µ(h) ∀g ∈ G.

We denote the space of bounded, µ-harmonic functions as H∞(G,µ).

Following Furstenberg [Fu1,Fu2], a measure space (M,ν) on which G acts is
then a boundary if there is a duality between bounded, µ-harmonic functions
on G and L∞ functions on M .

Definition 2.18. Given a (G,µ)-space (B,ν) one defines the Poisson trans-
form as

Φ(f)(g) ∶= ∫
B
f dgν

and the space (B,ν) is called the Poisson boundary if the Poisson transform
is an isomorphism between H∞(G,µ) and L∞(B,ν).

If ν is the hitting measure for a random walk, then a fundamental ques-
tion in the field is then whether the pair (∂X, ν) equals indeed the Poisson
boundary of the random walk (G,µ), i.e. if all harmonic functions on G can
be obtained by integrating a bounded, measurable function on ∂X.

The WPD condition. In order to obtain the Poisson boundary in the non-
proper case, we need a weak notion of properness introduced by Bestvina
and Fujiwara weak proper discontinuity (WPD). Intuitively, an element is
WPD if it acts properly on its axis. In formulas, an element g ∈ G is WPD
if for any x ∈X and any K ≥ 0 there exists N > 0 such that

(1) #{h ∈ G ∶ d(x,hx) ≤K and d(gNx,hgNx) ≤K} < +∞.
In other words, the finiteness condition is not required of all pairs of points
in the space, but only of points along the axis of a given loxodromic element.

Theorem 2.19 (Poisson boundary for WPD actions, [MT2]). Let G be
a countable group which acts by isometries on a δ-hyperbolic metric space
(X,d), and let µ be a non-elementary probability measure on G with finite
logarithmic moment and finite entropy. Suppose that there exists at least one
WPD element h in the semigroup generated by the support of µ. Then the
Gromov boundary of X with the hitting measure is a model for the Poisson
boundary of the random walk (G,µ).
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The WPD condition also has a consequence for the normal closure.

Theorem 2.20 (Normal closure, [MT2]). Let G be a group of isometries of
δ-hyperbolic metric space (X,d), and let µ be a non-elementary, bounded,
reversible probability measure on G such that Γµ contains at least one WPD
element. Then there exists k ≥ 1 such that:

(1)

P(⟨⟨wkn⟩⟩ is free)→ 1

(2) For almost every sample path, the sequence

(⟨⟨wk1⟩⟩, ⟨⟨wk2⟩⟩, . . . , ⟨⟨wkn⟩⟩, . . . )

contains infinitely many different normal subgroups of G.

Applications

(1) word hyperbolic groups

(2) relatively hyperbolic groups

(3) right-angled Artin groups

(4) mapping class groups

(5) Out(Fn)

(6) Cremona group

3. The horofunction boundary

3.1. The horofunction boundary. Pick a base point x0 ∈ X. For any
z ∈X we define the function ρz ∶X → R:

ρz(x) ∶= d(x, z) − d(x0, z).

Then ρz(x) is 1-Lipschitz and ρz(x0) = 0.

Consider space Lip1
x0(X) = {f ∶X → R s.t. ∣f(x)−f(y)∣ ≤ d(x, y), f(x0) = 0}

with the topology of pointwise convergence. Let us consider the map ρ ∶
X → Lip1

x0(X) given by

z ↦ ρz.

Definition 3.1. The horofunction compactification of (X,d) is the closure

X
h ∶= ρ(X) in Lip1x0(X).

Proposition 3.2. If X is separable, then the horofunction compactification

X
h

is a compact metrizable space.
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Proof. If one picks h ∈ Lip1
x0(X), then

∣h(x)∣ ≤ ∣h(x) − h(x0)∣ ≤ d(x,x0)

hence Lip1
x0(X) ⊂ ⊗x∈X[−d(x,x0), d(x,x0)]

which is compact by Tychonoff’s theorem. Since X is separable, then C(X)
is second countable, hence X

h
is second countable. Thus X

h
is compact,

Hausdorff, and second countable, hence metrizable.

�

Exercise. Prove that C(X) is second countable and Hausdorff if X is
separable. Prove that a Hausdorff, second countable, compact topological
space is metrizable.

Define the action of G on X
h

as

g.h(z) ∶= h(g−1z) − h(g−1z0)

for all g ∈ G and h ∈Xh
.

The action of G on X extends to an action by homeomorphisms on X
h
.

Example 3.3. X = R with the euclidean metric, and x0 = 0. Then all
horofunctions for X are either:

● ρ(x) = ∣x − p∣ − ∣p∣ for some p ∈ R;

or

● ρ(x) = ±x.

hence ∂hX =Xh ∖X = {−∞,+∞}.

Example 3.4. In the hyperbolic plane X = H2, pick ξ ∈ ∂H2 and consider
a geodesic ray γ ∶ [0,∞) → H2 with γ(0) = x0 and limt→+∞ γ(t) = ξ. Then if
zn ∶= γ(n) we get for any x ∈ H2

hξ(x) = lim
zn→ξ

ρzn(x) = lim
t→∞

(d(γ(t), x) − t)

is the usual definition of horofunction, and level sets are horoballs.

Example 3.5. Let X = “infinite tree” defined as X = Z ×R≥0 /(n,0) ∼ (m,0) .

Then the Gromov boundary is ∂X = Z.

On the other hand, if zn = [(n,n)] then in the horofunction compactification
one has limn ρzn = ρz0. If you think about it, this is related to the fact that
the set of infinite horofunctions is not closed.
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Proposition 3.6 (Classification of horunctions). Let h be a horofunction in

X
h
, and let γ be a geodesic in X. Then there is a point p on γ such that the

restriction of h to γ is equal to exactly one of the following two functions,
up to bounded additive error:

● either
h(x) = h(p) + d(p, x) +O(δ)

● or
h(x) = h(p) + d+γ(p, x) +O(δ)

where d+ is the oriented distance along the geodesic, for some choice
of orientation of γ.

For any horofunction h ∈Xh
, let us consider

inf(h) ∶= inf
y∈X

h(y).

Definition 3.7. The set of finite horofunctions is the set

X
h
F ∶= {h ∈Xh ∶ inf h > −∞}

and the set of infinite horofunctions is the set

X
h
∞ ∶= {h ∈Xh ∶ inf h = −∞}

The key geometric lemma relating the geometry of the horofunction bound-
ary and the Gromov boundary is the following.

Lemma 3.8. For each base point x0 ∈ X, each horofunction h ∈ Xh
and

each pair of points x, y ∈X the following inequality holds:

min{−h(x),−h(y)} ≤ (x, y)x0 +O(δ)

Proof. Let z ∈X. Then one has, by the triangle inequality

(x ⋅ z)x0 =
dX(x0, x) + dX(x0, z) − dX(x, z)

2
,

which implies

(x ⋅ z)x0 ⩾ dX(x0, z) − dX(x, z),

and by definition, the right hand side is equal to −ρz(x), which gives

(x ⋅ z)x0 ≥ −ρz(x).
Now, by δ-hyperbolicity one has

(x ⋅ y)x0 ⩾ min{(x ⋅ z)x0 , (y ⋅ z)x0} − δ,

hence, by combining it with the previous estimate,

(x ⋅ y)x0 ⩾ min{−ρz(x),−ρz(y)} − δ.
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Since every horofunction is the pointwise limit of functions of type ρz, the
claim follows. �

This has the following consequence.

Lemma 3.9. Let (xn) ⊆ X be a sequence of points, and h ∈ Xh
a horo-

function. If h(xn) → −∞, then (xn) converges in the Gromov boundary,
and

lim
n→∞

xn ∈ ∂X

does not depend on choice of (xn) .

Definition 3.10. The local minimum map ϕ ∶ Xh → X ∪ ∂X is defined as
follows.

● If h ∈Xh
F , then define

ϕ(h) ∶= {x ∈X ∶ h(x) ≤ inf h + 1}

● If h ∈Xh
∞, then choose a sequence (yn) with h(yn)→ −∞ and set

ϕ(h) ∶= lim
n→∞

yn

be the limit point in the Gromov boundary.

Lemma 3.11. There exists K, which depends only on δ, such that for each
finite horofunction h we have

diam ϕ(h) ≤K.

Proof. Let x, y ∈ φ(h), for some h ∈ Xh
, and consider the restriction of h

along a geodesic segment from x to y. By Proposition 3.6, the restriction
has at most one coarse local minimum: hence, since x and y are coarse local
minima of h, the distance between x and y is universally bounded in terms
of δ. �

Corollary 3.12. The local minimum map ϕ ∶Xh →X ∪ ∂X is well-defined
and G-equivariant.

Note: ϕ is not continuous but ϕ∣
X

h
∞

is continuous. For instance, in the

“infinite tree” case of Example 3.5, if zn ∶= (n,n) then ρzn → ρx0 but φ(ρzn) =
zn /→ x0.

4. Boundary measures and convergence

The goal of this lecture is to prove the following convergence result.



RANDOM WALKS ON HYPERBOLIC SPACES 17

Theorem 4.1 ([MT], Theorem 4.1). Let G be a countable group of isome-
tries of a geodesic, separable, δ-hyperbolic space X (not necessarily proper),
and let µ be a non-elementary probability measure on G. Then for each
x0 ∈X, almost every sample path (wnx0) converges in X ∪ ∂X to a point of
the Gromov boundary ∂X.

4.1. Stationary measures.

Definition 4.2. Let µ be a probability measure on a group G, and let M be
a metric space on which G acts by homeomorphisms. A probability measure
ν on M is µ-stationary (or just stationary) if

∫
G
gν dµ(g) = ν

The pair (M,ν) is then called a (G,µ)-space.

Problem: Since ∂X need not be compact, you may not be able to find a
stationary measure in P (∂X). Trick: Consider the horofunction compacti-
fication (which is always compact and metrizable).

Lemma 4.3. P (Xh) is compact, so it contains a µ-stationary measure.

Proposition 4.4. Let M be a compact metric space on which the countable
group G acts continuously, and ν a µ-stationary Borel probability measure
on M . Then for P-a.e. sequence (wn) the limit

νω ∶= lim
n→∞

g1g2 . . . gnν

exists in the space P (M) of probability measures on M .

Proof. Apply the martingale convergence theorem. �

Proposition 4.5. Let µ be a non-elementary probability measure on G, and

let ν be a µ-stationary measure on X
h
. Then

ν(Xh
F ) = 0.

4.2. End of proof of convergence.

Proposition 4.6. For P-a.e. sample path (wn) there exists a subsequence

(ρwnx0) which converges to a horofunction in X
h
.

As a corollary, P-a.e. sample path (wn) there exists a subsequence (wnk
x0)

which converges to a point in the Gromov boundary ∂X.

Proposition 4.7. Let ν̃ be a µ-stationary measure on ∂X, and suppose
that the sequence (wnν̃) converges to a δ-measure δλ on ∂X. Then (wnx0)
converges to λ in X ∪ ∂X.
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Proof of Theorem 4.1. Let ν ∈ P (Xh) a µ-stationary measure, and denote
ν̃ ∶= φ∗ν ∈ P (∂X). By the martingale convergence theorem, for a.e. wn we

have (wn)∗ν Ð→ νw ∈ P (Xh). Then by pushing forward by ϕ∗ one gets
(wn)∗(ν̃) Ð→ (ν̃)w ∈ P (∂X). By δ-hyperbolicity, if wnx Ð→ ξ ∈ ∂X then
wnν̃ Ð→ δξ. The sequence wnx has at least one limit point ξ in ∂X, and for
each limit point ξ , wnk

ν Ð→ δξ, but there can be only one limit point, as
lim
n→∞

wnν exists. �

5. The Poisson boundary

The well-known Poisson representation formula expresses a duality between
bounded harmonic functions on the unit disk and bounded functions on its
boundary circle. Indeed, bounded harmonic functions admit radial limit val-
ues almost surely, while integrating a boundary function against the Poisson
kernel gives a harmonic function on the interior of the disk. This picture is
deeply connected with the geometry of SL2(R); then in the 1960’s Fursten-
berg and others extended this duality to more general groups.

The classical Poisson representation formula. If f ∶ R/Z→ R is essen-
tially bounded, then define its harmonic extension as

(2) u(reiθ) = 1

2π
∫

π

−π
f(eit)Pr(t − θ) dt

where

Pr(t) ∶=
1 − r2

1 + r2 − 2r cos t
is the Poisson kernel. Then u satisfies ∆u = 0. This establishes a correspon-
dence

(3) h∞(D)↔ L∞(S1, λ)

where h∞(D) ∶= {u ∶ D→ R ∶ ∆u = 0, sup ∣u∣ < +∞}. The direction ← is the
representation formula, while → is by taking radial limits (which exist a.e.).

This formula is deeply connected with the geometry of SL2(R). Indeed, let
a = reiθ, and choose g ∈ Aut D with g(0) = a. For instance, take

g(z) = a − z
1 − az

so

∣g′(z)∣ = 1 − ∣a∣2

∣1 − az∣2

and if z = eit,

∣g′(eit)∣ = 1 − r2

∣1 − rei(t−θ)∣2
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so (2) becomes

u(reiθ) = ∫
π

−π
f(eit)∣g′(eit)∣ dt

2π

= ∫
∂D
f(ξ)dgλ

dλ
(ξ) dλ(ξ)

= ∫
∂D
f(ξ) dgλ(ξ)

where λ is the Lebesgue measure.

Definition 5.1. A function f ∶ G→ R is µ-harmonic if it satisfies the mean
value property with respect to averaging using µ; that is, if

f(g) = ∑
h∈G

f(gh) µ(h) ∀g ∈ G.

We denote the space of bounded, µ-harmonic functions as H∞(G,µ).

Following Furstenberg [Fu1,Fu2], a measure space (M,ν) on which G acts is
then a boundary if there is a duality between bounded, µ-harmonic functions
on G and L∞ functions on M .

Let σ ∶ Ω = GN → Ω be the shift map in the space of sample paths, i.e.
(σ(wn))n = wn+1.

Definition 5.2. A µ-boundary of (G,µ) is a measure space (B,ν) such that
there exists a σ-invariant map π ∶ (Ω,P)→ (B,ν), i.e. such that π ○ σ = π.

Note that as a consequence, the measure ν is µ-stationary; that is,

ν = ∫
G
g⋆ν dµ(g).

The most important example of µ-boundary for our purpose arises if we
know that the random walk converges a.s. to some point in ∂X. Then we
can set

π((wn)) ∶= lim
n→∞

wnx

and ν as the hitting measure.

Definition 5.3. Given a µ-boundary (B,ν), one defines the Poisson trans-
form as

Φ(f)(g) ∶= ∫
B
f dgν.

This is a G-equivariant map Φ ∶ L∞(B,ν)→H∞(G,µ).

Definition 5.4. A G-space B with a µ-stationary measure ν is the Pois-
son boundary if the Poisson transform is a bijection (hence, an isometric
isomorphism).

Remark 5.5. The Poisson boundary is trivial (i.e., a point) if and only if
every bounded µ-harmonic function is constant.
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Other interpretations:

(1) The universal property. Every σ-invariant map (Ω,P) → (M,λ),
where (M,λ) is a µ-boundary, factors through (Ω,P) → (B,ν) →
(M,λ). Thus, the Poisson boundary is the maximal µ-boundary.

(2) The stationary boundary. Let us consider the relation ∼ on Ω = GN

defined by (wn) ∼ (w′
n) if there exists k, k′ such that wn+k = w′

n+k′
for all n ≥ 0. Now, the measurable quotient of (Ω,P) by this relation
is the Poisson boundary.

(3) The space of ergodic components. Let σ ∶ Ω → Ω the shift in the
space of sample paths, so that (σ((wn)))n = wn+1. Then (B,ν) is
the space of ergodic components of (Ω,P) with respect to σ.

Examples.

(1) If G is abelian, then the Poisson boundary is trivial for any measure
(Blackwell).

For instance, for (Z, 12(δ+1 + δ−1) the simple random walk, it is easy
to see that any harmonic function f ∶ Z→ R satisfies

f(n) = f(n − 1) + f(n + 1)
2

which implies f(n) = αn + β for some α,β ∈ R, hence in order for it
to be bounded we need α = 0, hence f is constant.

(2) Same if G is nilpotent (Dynkin-Malyutov).

(3) If G is a semisimple Lie group, then the Poisson boundary is the quo-
tient G/P of G by a minimal parabolic subgroup P (Furstenberg).

(4) G is non-amenable if and only if the Poisson boundary is non-trivial
for any generating measure (Kaimanovich-Vershik; Rosenblatt).

(5) If G is a hyperbolic group, then for any (finite entropy + finite log
moment) measure the Poisson boundary is the Gromov boundary
(∂G, ν) (Kaimanovich).

(6) If G is the mapping class group, then the Poisson boundary is the
(Thurston-)boundary of Teichmüller space (Kaimanovich-Masur).

(7) If G = Out(Fn), then the Poisson boundary is the boundary of Outer
space (Horbez).

If ν is the hitting measure for a random walk, then a fundamental question in
the field is whether the pair (∂X, ν) equals indeed the Poisson boundary of
the random walk (G,µ), i.e. if all harmonic functions on G can be obtained
by integrating a bounded, measurable function on ∂X.
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The main theorem of this section is the following identification of the Poisson
boundary for groups of isometries of δ-hyperbolic spaces containing at least
one WPD element.

Theorem 5.6 (Poisson boundary for WPD actions, [MT2]). Let G be a
countable group which acts by isometries on a δ-hyperbolic metric space
(X,d), and let µ be a non-elementary probability measure on G with fi-
nite logarithmic moment and finite entropy. Suppose that there exists at
least one WPD element h in the semigroup generated by the support of µ.
Then the Gromov boundary of X with the hitting measure is a model for the
Poisson boundary of the random walk (G,µ).

5.1. Entropy criterion. Given a measure µ on G, define its entropy as

H(µ) ∶= −∫
G

logµ(g) dµ(g).

Moreover, for any n denote as µn the nth step convolution of µ, which is the
distribution of the nth step of the random walk:

µn(A) ∶= P(wn ∈ A).

If H(µ) < +∞, we define the asymptotic entropy as the limit

h(µ) ∶= lim
n→∞

H(µn)
n

.

We have the fundamental entropy criterion.

Theorem 5.7 (Derriennic; Kaimanovich-Vershik). If H(µ) < +∞, then the
Poisson boundary of (G,µ) is trivial if and only if

h(µ) = 0.

Exercise. Compute h(µ) for the simple random walk on Z.

Example. We compute for any 0 ≤ k ≤ 2n,

P(w2n = 2k − 2n) = (2n

k
)2−2n

so

H(µn) = −
2n

∑
k=0

(2n

k
)2−2n log ((2n

k
)2−2n)

Conditional random walks. Suppose that the random walk converges
almost surely to ∂X, and ν is the hitting measure. Then for almost every
ξ ∈ ∂X we can define the conditional random walk, which is the process
obtained by conditioning the random walk to hit ξ at infinity.
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Consider the boundary map (Ω,P) → (∂X, ν). Then we can disintegrate
with respect to this map, that is for a.e. ξ ∈ ∂X we have a conditional
measure Pξ on Ω such that

P = ∫
∂X

Pξ dν(ξ).

Now, for any n let us consider the projection to the nth coordinate πn ∶
(Ω,P)→ G given by πn((wi)) = wn, and define

h(Pξ) = lim
n→∞

1

n
H((πn)⋆Pξ).

Note moreover that Pξ is the measure on Ω induced by the stochastic process
on G defined by transition probabilities (for g, h ∈ G)

pξ(g, h) = µ(g−1h)dhν
dgν

(ξ).

We call this process the conditional random walk associated to ξ (even
though it is not quite a random walk, as the transition probabilities are
not G-invariant).

Theorem 5.8 (Entropy criterion, conditional version; Kaimanovich). Sup-
pose H(µ) < +∞. Then a µ-boundary (B,ν) is the Poisson boundary if
and only if the entropy h(Pξ) of the conditional random walk associated to
ξ satisfies

h(Pξ) = 0

for ν-almost every ξ ∈ ∂X.

The strip criterion. Recall that a measure µ has finite logarithmic mo-
ment if ∫G log+ d(x, gx) dµ(g) <∞. Let us denote as

BG(g) ∶= {h ∈ G ∶ d(x,hx) ≤ d(x, gx)}.
We shall use the following strip criterion by Kaimanovich. Let us denote as
µ̌(g) ∶= µ(g−1) the reverse measure, and let ν̌ be the hitting measure of the
random walk driven by µ̌.

Theorem 5.9 (Strip criterion). Let µ be a probability measure with finite
entropy on G, and let (∂X, ν) and (∂X, ν̌) be µ- and µ̌-boundaries, respec-
tively. If there exists a measurable G-equivariant map S assigning to almost
every pair of points (α,β) ∈ ∂X×∂X a non-empty “strip” S(α,β) ⊂ G, such
that

1

n
log ∣S(α,β) ∩BG(wn)∣→ 0 as n→∞,

for ν × ν̌-almost every (α,β) ∈ ∂X × ∂X, then (∂X, ν) and (∂X, ν̌) are the
Poisson boundaries of the random walks (G,µ) and (G, µ̌), respectively.

Sketch of the proof of the criterion. If wn belongs to the strip S(α,β) ∩
BG(wn), we have by Jensen’s inequality

H((πn)⋆Pξ) ≤ log #∣S(α,β) ∩BG(wn)∣
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hence, since strips grow subexponentially,

h(Pξ) = lim
n

Hξ(µn)
n

= 0.

5.2. Proof of identification of Poisson boundary for WPD actions.

Lemma 5.10. Let G be a group acting on a Gromov hyperbolic space X,
and let h be a WPD element in G. Then there are functions M ∶R≥0 → N
and N ∶R≥0 → N such that for any x ∈ X, any K ≥ 0, and for any f ∈ G one
has

#∣StabK(fx, fhM(K)x)∣ ≤ N(K).

Proof. By definition, note that

StabK(fx, fy) = fStabK(x, y)f−1

hence the cardinality

#∣StabK(fx, fhMx)∣ = #∣f(StabK(x,hMx))f−1∣ = #∣StabK(x,hMx)∣
is finite and independent of f , proving the claim. �

Elements of bounded geometry. Recall that we define a shadow as

Sx(y,R) ∶= {z ∈X ∶ d(x, [y, z]) ≥ d(x, y) −R}.

We use the following.

Proposition 5.11. Let G be a non-elementary, countable group acting by
isometries on a Gromov hyperbolic space X, and let µ be a non-elementary
probability distribution on G. Then there is a number R0 such that if g, h ∈ G
are group elements such that h and h−1g lie in the semigroup generated by
the support of µ, then

ν(Shx(gx,R0)) > 0,

where A denotes the closure in X ∪ ∂X.

Now, for any pair (α,β) ∈ ∂X × ∂X, with α ≠ β, define the set of bounded
geometry elements as

O(α,β) ∶= {g ∈ G ∶ α ∈ Sgvx(gx,K) and β ∈ Sgx(gvx,K)}.

Note that for any g ∈ G we have O(gα, gβ) = gO(α,β). Moreover, we define
the ball in the group with respect to the metric on X as

B(y, r) ∶= {g ∈ G ∶ d(y, gx) ≤ r}
where y ∈X and r ≥ 0.

The most crucial property of bounded geometry elements is that their num-
ber in a ball grows linearly with the radius of the ball.
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Proposition 5.12. There exists a constant C such that for any radius r > 0
and any pair of distinct boundary points α,β ∈ ∂X one has

∣B(x, r) ∩O(α,β)∣ ≤ Cr.

This fact follows from the next lemma, which uses the WPD property in a
crucial way.

Lemma 5.13. For any K ≥ 0 there exists a constant N such that

∣B(z,4K) ∩O(α,β)∣ ≤ N
for any z ∈X and any pair of distinct boundary points α,β.

Proof. Let us consider two elements g, h which belong to O(α,β)∩B(z,4K).
Then if we let f = hg−1, then

(4) d(gx, fgx) ≤ 8K.

Let γ be a quasigeodesic which joins α and β, and denote S1 ∶= Sgvx(gx,K),
S2 ∶= Sgx(gvx,K). By construction, α belongs to both S1 and fS1 hence
both α and fα belong to fS1; similarly, β and fβ belong to fS2. Hence,
the two quasigeodesics γ and fγ have endpoints in fS1 and fS2, hence they
must fellow travel in their middle: more precisely, they must pass within
distance 2K from both fgx and y ∶= fgvx. Hence, if we call q a closest
point to fγ to fgx, we have d(fgx, q) ≤ 2K. Moreover, if we call p a closest
point on γ to y, and p′ a closest point on fγ to y, we have

d(p, p′) ≤ d(p, y) + d(y, p′) ≤ 4K

Combining this with eq. (4) we get

∣d(gx, p) − d(fgx, p′)∣ ≤ 12K

Moreover, since f is an isometry we have d(fgx, fp) = d(gx, p), hence

(5) ∣d(fgx, fp) − d(fgx, p′)∣ ≤ 12K

Now, the points q, p′ and fp both lie on the quasigeodesic fγ; let us assume
that fp lies in between q and p′, and draw a geodesic segment γ′ between q
and p′, and let p′′ be a closest point projection of fp to γ′ (the case where
p′ lies between q and fp is completely analogous). By fellow traveling, we
have d(fp, p′′) ≤ L. Then, since p′, p′′ and q lie on a geodesic, we have

d(p′, p′′) = ∣d(q, p′) − d(q, p′′)∣ ≤
and by using eq. (5)

≤ ∣d(fgx, p′)−d(fgx, fp)∣+d(fgx, q)+d(fgx, q)+d(fp, p′′) ≤ 12K+2K+2K+L
hence

d(fp, p′) ≤ 16K + 2L

and finally

d(y, fy) ≤ d(y, p′) + d(p′, fp) + d(fp, fy) ≤ 20K + 2L
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Thus, if we choose K large enough so that L ≤ K we have d(gvx, fgvx) =
d(fgvx, f2gvx) ≤ 22K hence

f ∈ Stab22K(gx, gvx)

so by Lemma 5.10 there are only N possible choices of f , as claimed. �

Proof of Proposition 5.12. Let γ be a quasi-geodesic in X which joins α and
β. By definition, if g belongs to O(α,β), then gx lies within distance ≤ 2K
of γ. Then one can pick points (zn)n∈Z along γ such that any point of γ is
within distance ≤ 2K of some zn. Then, any ball of radius r contains at most
cr of such zn, where c depends only on K and the quasigeodesic constant of
γ. The claim then follows from Lemma 5.13. �

We now turn to the proof of Theorem 2.19. By Theorem 2.16, we know
that since both µ and its reflected measure µ̌ are non-elementary, both the
forward random walk and the backward random walk converge almost surely
to points on the boundary of X. Thus, one defines the two boundary maps
∂± ∶ (GZ, µZ) → ∂X as follows. Let ω = (gn)n∈Z be a bi-infinite sequence of
increments, and define

∂+(ω) ∶= lim
n→∞

g1 . . . gnx, ∂−(ω) ∶= lim
n→∞

g−10 g−1−1 . . . g
−1
−nx

the two endpoints of, respectively, the forward random walk and the back-
ward random walk. Then define

O(ω) ∶= O(∂+(ω), ∂−(ω))

the set of bounded geometry elements along the “geodesic” which joins ∂+(ω)
and ∂−(ω). Note that, if T ∶ GZ → GZ is the shift in the space of increments,
we have

O(Tnω) = O(w−1
n ∂+,w

−1
n ∂−) = w−1

n O(ω).
Now we will show that for almost every bi-infinite sample path ω the set
O(ω) is non-empty and has at most linear growth. In fact, by definition of
bounded geometry

P(1 ∈ O(ω)) = p = ν(S)ν̌(S′) > 0

where S = Svx(x,K) and S′ = Sx(vx,K), and their measures are positive by
Proposition 5.11. Moreover, since the shift map T preserves the measure in
the space of increments, we also have for any n

P(wn ∈ O(ω)) = P(1 ∈ O(Tnω)) = p > 0.

Thus, by the ergodic theorem, the number of times wn belongs to O(ω)
grows almost surely linearly with n: namely, for a.e. ω

lim
n→∞

#∣{1 ≤ i ≤ n ∶ wi ∈ O(ω)}∣
n

= p > 0.
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Hence the set O(ω) is almost surely non-empty (in fact, it contains infinitely
many elements). On the other hand, by Proposition 5.12 the set O(ω) has
at most linear growth, i.e. there exists C > 0 such that

(6) #∣O(ω) ∩BG(z, r)∣ ≤ Cr ∀r > 0.

The Poisson boundary result now follows from the strip criterion (Theorem
5.9). Let P (G) denote the set of subsets of G. Then, we define the strip
map S ∶ ∂X × ∂X → P (G) as S(α,β) ∶= O(α,β); hence, by equation (6)

∣S(α,β)g ∩BG(wn)∣ ≤ Cd(wnx,x).
Then, since µ has finite logarithmic moment, one has almost surely

lim
n→∞

1

n
log d(wnx,x)→ 0

which verifies the criterion of Theorem 5.9, establishing that the Gromov
boundary of X is a model for the Poisson boundary of the random walk.

6. Appendix

6.1. Ergodic theorems. In order to talk about asymptotic properties of
random walks we need to have tools which assure us of the existence of
various averages. Ergodic theorems provide such averages.

The most classical ergodic theorem is the pointwise ergodic theorem of
Birkhoff.

Definition 6.1. A transformation T ∶ (X,µ) → (X,µ) of a measure space
(X,µ) is measure-preserving if µ(A) = µ(T−1(A)) for any measurable set
A.

Theorem 6.2 (Birkhoff). Let (X,µ) be a measure space with µ(X) = 1,
f ∶ X → R be a measurable function, and T ∶ X → X a measure-preserving
transformation. If f ∈ L1(X,µ), then the limit

f(x) ∶= lim
n→∞

f(x) + f(T (x)) + ⋅ ⋅ ⋅ + f(Tn−1(x))
n

exists for µ-almost every x ∈X.

We will derive Birkhoff’s theorem from the more general subadditive ergodic
theorem of Kingman.

A function a ∶ N ×X → R is a subadditive cocycle if

a(n +m,x) ≤ a(n,x) + a(m,Tnx) for any n,m ∈ N, x ∈X.
The cocycle is integrable if for any n, the function a(n, ⋅) belongs to L1(X,µ).
Assume moreover that

inf
1

n
∫
X
a(n,x) dµ(x) > −∞.

Then the following theorem holds.
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Theorem 6.3 (Kingman). Under the previous assumptions, there is an
integrable, a.t. T -invariant function a such that

lim
n→∞

1

n
a(n,x) = a(x)

for almost every x ∈X. Moreover, the convergence also takes place in L1.

Proof of Birhkoff’s theorem. We now see that Birkhoff’s ergodic theorem
follows as a corollary. In fact, if we let a(n,x) ∶= ∑n−1k=0 f(T kx) then

a(n +m,x) =
n+m−1
∑
k=0

f(T kx) = a(n,x) + a(m,Tnx)

is actually an additive cocycle, thus it is subadditive. �

6.2. Conditional expectation.

Theorem 6.4 (Radon-Nikodym). Let (X,A, µ) be a probability space, and
let ν be a probability measure on A which is absolutely continuous with re-
spect to µ. Then there exists a function f ∈ L1(X,A, µ) such that

ν(A) = ∫
A
f dµ.

Let us now consider a probability space (X,A, µ), and B ⊂ A a smaller σ-
algebra. Then the conditional expectation of a function f ∈ L1(X,A, µ) with
respect to B is a function g ∈ L1(X,B, µ) (in particular, g is B-measurable)
such that

∫
B
f dµ = ∫

B
g dµ for all B ∈ B.

Usually one denotes such a g as E(f ∣ B).

Proof. To prove the existence of conditional expectation, one considers the
measure ν on B defined as

ν(B) ∶= ∫
B
f dµ

Then, by the Radon-Nikodym theorem, the measure ν is abs.cont. with
respect to µ, hence the Radon-Nikodym derivative g = dν

dµ is a function in

L1(X,B, µ) which satisfies

∫
B
f dµ = ∫

B
g dµ for all B ∈ B

as claimed. The uniqueness follows from the fact that two functions whose
integrals agree on any set of the σ-algebra must agree almost everywhere
(check this!). �
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Given a set F of functions, we denote as σ(F) the smallest σ-algebra for
which all functions are measurable (i.e. the σ-algebra generated by all preim-
ages of measurable sets) and denote

E(f ∣ F)
the conditional expectation of f with respect to σ(F).

This has the intuitive interpretation of the expectation of f once you know
the values of the variables F . Consider the toin coss (Xn) ∶ {0,1}N →
{+1,−1} where each Xn is i.i.d. and is +1 with prob. 1/2, and −1 with prob.
1/2. Then the σ-algebra σ(X1, . . . ,Xn) is the set of functions on Ω which
only depend on the first n coordinates. Note that:

(1) If f is independent of F , then E(f ∣ F) = E(f).

(2) If f is F-measurable, then E(f ∣ F) = f .

Note that in particular if T ∶ X → X is a measure-preserving system, then
one can define the σ-algebra FT of all T -invariant sets, and then the condi-
tional expectation E(f ∣ FT ) = f is precisely the time average given by the
ergodic theorem.

6.3. Martingales.

Definition 6.5. A sequence (Xn) ∶ Ω → R of measurable functions is a
martingale if for any n we have

E(Xn+1 ∣ X1, . . . ,Xn) =Xn.

A way to think of a martingale is that Xn is the payoff after n steps in a fair
(i.e., zero-sum) game. That is, once you know the outcomes of the first n
draws, the expected value of the payoff at step Xn+1 is the previous payoff
Xn.

In the example of the toin coss, Yn ∶=X1 + ⋅ ⋅ ⋅ +Xn is a martingale. In fact

E(Yn+1 ∣ Y1, . . . , Yn) = E(Yn +Xn+1 ∣ Y1, . . . , Yn) = Yn +E(Xn+1) = Yn.

6.4. A bit of functional analysis. Let M be a compact metric space.
Then P (M) is the space of probability measures on M . We define conver-
gence in the space of measure by saying that (νn) converges to ν in the
weak-* topology if for any continuous f ∶M → R, we have

∫ f dνn → ∫ f dν.

Theorem 6.6 (Riesz-Markov-Kakutani). The dual to the space C(M) of
continuous functions on the compact metric space M is the space of signed
Borel measures on M .

Theorem 6.7. The space P (M) is compact with respect to the weak-⋆ topol-
ogy.
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Proof. It is a closed subspace in the unit ball of the dual space of C(M), in
particular

P (M) ∶= {ϕ ∈ C(M)⋆ ∶ ϕ ≥ 0, ϕ(1) = 1}
We say a functional is positive if ϕ(f) ≥ 0 whenever f is a non-negative
function. �

Theorem 6.8 (Alaoglu-Banach). Let V be a normed vector space. Then
the unit ball in its dual V ⋆ is compact with respect to the weak-⋆ topology.

Proof. Recall that if ϕ ∈ V ⋆ belongs to the unit ball, then ∣ϕ(v)∣ ≤ ∥v∥ for
any v ∈ V . Denote as B the unit ball in V , and B⋆ the unit ball in the dual,
and consider the map F ∶ B⋆ → [−1,1]B defined as

F (ϕ) ∶= (φ(v))v∈B
The map is injective as a functional is determined by its values on the unit
ball. Moreover, by Tychonoff’s theorem the cube [−1,1]B is compact as it
is a product of compact spaces, and the image F (B⋆) is closed in [−1,1]B,
hence it is also compact. �

6.5. Stationary measures. A metric space M is called a G-space if there
exists an action of G on M by homeomorphisms, i.e. a homomorphism
ρ ∶ G→Homeo(M).

Lemma 6.9. Let M be a compact, metric G-space, and µ a probability
measure on G. Then there exists a µ-stationary measure ν on M .

Lemma 6.10. Let ν be a µ-stationary measure on a (G,µ)-space M . Then
for any f ∈ L1(M,ν), the sequence

Xn ∶= ∫
M
f d(gnν)

is a martingale.

6.6. The Picard-Manin space. If X is a smooth, projective, rational
surface the group

N1(X) ∶=H2(X,Z) ∩H1,1(X,R)
is called the Néron-Severi group. Its elements are Cartier divisors on X
modulo numerical equivalence. The intersection form defines an integral
quadratic form on N1(X). We denote N1(X)R ∶= N1(X)⊗R.

If f ∶X → Y is a birational morphism, then the pullback map f⋆ ∶ N1(Y )→
N1(X) is injective and preserves the intersection form, so N1(Y )R can be
thought of as a subspace of N1(X)R.

A model for CP2 is a smooth projective surfaceX with a birational morphism
X → CP2. We say that a model π′ ∶X ′ → CP2 dominates the model π ∶X →
CP2 if the induced birational map π−1 ○ π′ ∶ X ′ ⇢ X is a morphism. By
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considering the set BX of all models which dominate X, one defines the
space of finite Picard-Manin classes as the injective limit

Z(X) ∶= lim
X′∈BX

N1(X ′)R.

In order to find a basis for Z(X), one defines an equivalence relation on the
set of pairs (p, Y ) where Y is a model of X and p a point in Y , as follows.
One declares (p, Y ) ∼ (p′, Y ′) if the induced birational map Y ⇢ Y ′ maps p
to p′ and is an isomorphism in a neighbourhood of p. We denote the quotient
space as VX . Finally, the Picard-Manin space of X is the L2-completion

Z(X) ∶=
⎧⎪⎪⎨⎪⎪⎩
[D] + ∑

p∈VX
ap[Ep] ∶ [D] ∈ N1(X)R, ap ∈ R,∑a2p < +∞

⎫⎪⎪⎬⎪⎪⎭
.

In this paper, we will only focus on the case X = P2(C). Then the Néron-
Severi group of CP2 is generated by the class [H] of a line, with self-
intersection +1. Thus, the Picard-Manin space is

Z(P2) ∶=
⎧⎪⎪⎨⎪⎪⎩
a0[H] + ∑

p∈VCP2
ap[Ep], ∑

p

a2p < +∞
⎫⎪⎪⎬⎪⎪⎭
.

It is well-known that if one blows up a point in the plane, then the corre-
sponding exceptional divisor has self-intersection −1, and intersection zero
with divisors on the original surface.

Thus, the classes [Ep] have self-intersection −1, are mutually orthogonal,

and are orthogonal to N1(X). Hence, the space Z(P2) is naturally equipped
with a quadratic form of signature (1,∞), thus making it a Minkowski space
of uncountably infinite dimension. Thus, just as classical hyperbolic space
can be realized as one sheet of a hyperboloid inside a Minkowski space,
inside the Picard-Manin space one defines

HCP2 ∶= {[D] ∈ Z ∶ [D]2 = 1, [H] ⋅ [D] > 0}

which is one sheet of a two-sheeted hyperboloid. The restriction of the qua-
dratic intersection form to HCP2 defines a Riemannian metric of constant cur-
vature −1, thus making HCP2 into an infinite-dimensional hyperbolic space.
More precisely, the induced distance dist satisfies the formula

cosh dist([D1], [D2]) = [D1] ⋅ [D2].

Each birational map f acts on Z by orthogonal transformations. To define
the action, recall that for any rational map f ∶ CP2 ⇢ CP2 there exist a
surface X and morphisms π,σ ∶ X → CP2 such that f = σ ○ π−1. Then
we define f⋆ = (π⋆)−1 ○ σ⋆, and f⋆ = (f−1)⋆. Moreover, f⋆ preserves the
intersection form, hence it acts as an isometry of HP2 : in other words, the
map f ↦ f⋆ is a group homomorphism

Bir CP2 → Isom(HP2)
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hence one can apply to the Cremona group the theory of random walks on
groups acting on non-proper δ-hyperbolic spaces.

Definition 6.11. The dynamical degree of a birational transformation f ∶
X ⇢X is defined as

λ(f) ∶= lim
n→∞

∥(fn)⋆∥1/n

where ∥ ⋅∥ is an operator norm on the space of endomorphisms of H⋆(X,R).

Note that λ(f) = λ(gfg−1) is invariant by conjugacy. Moreover, if f is
represented by three homogeneous polynomials of degree d without common
factors, then the action of f⋆ on the class [H] of a line is f⋆([H]) = d[H],
hence

λ(f) = lim
n→∞

deg(fn)1/n.

Moreover, the degree is related to the displacement in the hyperbolic space
HP2 : in fact,

deg(f) = f⋆[H] ⋅ [H] = [H] ⋅ f⋆[H] = coshd(x, fx)
if x = [H] ∈ HP2 . As a consequence, the dynamical degree λ(f) of a transfor-
mation f is related to its translation length τ(f) by the equation ([CL13],
Remark 4.5):

τ(f) = lim
n→∞

d(x, fnx)
n

= lim
n→∞

cosh−1 deg(fn)
n

= logλ(f).

Hence, a Cremona transformation f is loxodromic if and only if λ(f) > 1.
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