Quantitative Questions in Spectral Geometry Lola Thompson

Recall from yesterday:

Our motivating Question: If two arithmetic hyperbolic 2 - or 3 -Manifolds have many overlapping geodesic lengths, are they necessarily commensurable? Ly NO. "Lots" of p-w non-commensurable.

Key Idea: S Maximal Subfields of quaternion algebras T Number theory S lengths of geodesics on arithmetic hyperbolic 2 - A 3- manifolds geometry

Today's plan: D In troduce quaternion algs. D Show how to Construct a Dirichlet series whose Geffs. Count quaternion algebras (3) Apply a Tauberian Thm to obtain an asymptotic for the Count of quaternion algs w/ Idiscl < x (w/ certain gesmetricallymotivated Conditions). (4) Derive geometric Consequences!

I. Quaternion algebras & orders

Theorem (Hamilton, 1843)

The \mathbb{R} -algebra \mathbb{H} with basis $\{1, i, j, ij\}$ and defining relations

$$i^2 = -1$$
 $j^2 = -1$ $ij = -ji$

is a four-dimensional division algebra.

Broughan Bridge:

$$E_{x}$$
 (1,1, R) has $i^{2}=j^{2}=1$ t

observe:

$$(1, 1, \mathbb{R}) \cong M_2(\mathbb{R})$$

 $i \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 $j \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

In General:

$$(a,b,R) \cong \begin{cases} HI & \text{if } a,b<0 \\ M_2(R) & \text{otw} \end{cases}$$
Thus, $(a,b,R) & \text{is either a division}$
algebra or isomorphic to $M_2(R)$.

* If we replace IR w/other fields:

Theorem (Wedderburn)

For any field F, if the F-algebra (a, b, F) is not a division algebra then $(a, b, F) \cong M_2(F).$

(In general, there won't be a unique division alg/F.

Extension of Scalars
Let K be a field, K'/k a field ext.
If
$$B = (a,b,K)$$
 is a guaternion alg/K,
then
 $B \otimes_{k} k' = (a,b,k') \begin{pmatrix} important \\ for \\ arithmetic \\ applications \end{pmatrix}$

Def Let Ram (B) denote the (finite) Set of primes at which Bis ramified. The discriminant of B is the ideal defined by $\Delta(B) := TT \mathcal{P}$ ype Ram(B) number Def Let B be a guaternion alg/K. The reduced norm of B is the Composite map $B \hookrightarrow M_{2}(\mathbb{C}) \xrightarrow{det} \mathbb{C}$

Ex Ok is a maximal order of K.

How arithmetic Surfaces
arise from guaternion algebras
Elementary results from geometric group theory:
•
$$Isom^+(H^2) \cong PSL_2(\mathbb{R})$$
.
• Every orientable hyperbolic 2-manifold is of the form
 H^2/Γ for some discrete subgroup Γ of $PSL_2(\mathbb{R})$.
We want to generalize the following
Gonstruction of $PSL_2(\mathbb{R})$:
 $M_2(\Phi) > M_2(\mathbb{R}) \rightarrow SL_2(\mathbb{R}) \Rightarrow PSL_2(\mathbb{R})$
 $M_2(\Phi) > M_2(\mathbb{R}) \rightarrow SL_2(\mathbb{R}) \Rightarrow PSL_2(\mathbb{R})$

elts of O Kestricting & to O² = w/ reduced 101m 1 & Projecting onto PSL2(R) gives an embedding: $\overline{g}: O^1 \rightarrow PSL_2(\mathbb{R}).$ Notice : * § (0¹) is a discrete s.g. of isometries w/finite covolume

* If B is a division alg, then
\$\overline{g}(O^{\perp})\$ is Cocompact.
* If \$\overline{g}(O^{\perp})\$ is the then
\$\overline{H}^2/\overline{g}(O^{\perp})\$ is a hyperbolic
\$\overline{L} = manifold.
\$\overline{L}\$ this form are arithmetic

IT. Counting Quaternion Algebras w/ Prescribed Embeddings

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k, and fix quadratic extensions L_1, L_2, \ldots, L_r of k. Let L be the compositum of the L_i , and suppose that $(L:k] = 2^r$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_i is

 $\sim \delta \cdot x^{1/2} / (\log x)^{1 - \frac{1}{2^r}},$

as $x \to \infty$. Here δ is a positive constant depending only on the L_i and k.

y without this condition, it's possible that no graternion alg. will admit embeddings of all the Li's.

twe Sketch a proof of the special
Case where
$$r=1$$
, i.e.,
 $\# \sum_{k=0}^{k} B/k w/ | disc B| < x: l$,
 $\lim_{k \to 0} \sum_{k=0}^{k} L/k$,
of L/k ,
 $\lim_{k \to 0} \sum_{k=0}^{k} \frac{1}{2} \int_{k=0}^{k} \frac{1}{2} \int_{k=0}^{k}$

: 00

Useful results from algebraic number theory:

- (1) $p \mid \Delta \iff p$ ramifies in $B \iff B \otimes K_p$ is a division algebra.
- The total number of primes that ramify in B is even. (2)
- (3) For $\{p_1, ..., p_\ell\}$ in K with even cardinality, there exists a unique quaternion algebra B/K that ramifies at those primes (and hence has $\Delta = p_1 \cdots p_\ell$).
- L embeds into $B\iff$ no prime of K that divides Δ (4)splits in L/K (hence, Δ is squarefree).

Sketch of Pf (r=1)
Let
$$P = \frac{2}{pi} |\Delta|$$
: $pi finite^2$ (ramify in B.
 $Q = \frac{2}{qi} |\Delta|$: $qj infinite^2$ (

From Black Box:

Thus, our task is to Count: # $\{|\Delta| \le \times : \Delta \text{ satisfies } \}$

Let
$$F_1(s) = TT \left(1 + \frac{1}{|p|^s}\right)$$

Pfinike or infinike
P obses not split in L
Can rewrite $F_1(s)$ as:
 $\sum \frac{1}{|\Delta|^s}$
 Δ as in \textcircled{P}
except w out
Condition that
 htm is even
Ly TD make up for this:
Let $F_a(s) = TT \left(1 - \frac{1}{|p|^s}\right)$
P finike or infinite
P does not split in L

Let
$$F(s) := \frac{1}{2} (F_1(s) + F_2(s))$$

Then $F(s)$ has $2(m+n) \forall \Delta$, so

$$F(s) = \sum_{\Delta as in \otimes a} \frac{1}{1\Delta 1s}$$

Upshot: We can estimate

$$\int B/k = 1/\Delta | \le x : \int by taking$$

 $\int B a \partial m t s an \int by taking$
 $\int B a \partial m t s an \int by taking$
 $\int B a \partial m t s an \int by taking$
 $\int B a \partial m t s an \int by taking$
 $\int B a \partial m t s an \int by taking$
 $\int (Partial Sums of Creffs of Fa(s)) +$
 $\int (Partial Sums of Creffs of Fa(s))$

How to take partial <u>Sums</u> of <u>Geffs</u>: * First, reformulate $F_2(s)$ So that we only need to Sum over finite primes <u>Note</u>: If p is an infinite prime, then $1 + \frac{1}{1p|s} = 1 + \frac{1}{1s} = 2$.

So
$$F_1(s) = 2n \cdot \sum_{n=1}^{\infty} \frac{a(n)}{n^s} + \frac{hon}{holdson}$$

of infinite primes
that do not split in K

f(n) =
$$\begin{cases} 1 & \text{if } n \text{ satisfies } w/out \\ even # of \\ prime factors \\ Condition \end{cases}$$

* Similar for
$$F_3(s)$$
:
 $F_a(s) = \begin{pmatrix} constant \\ factor Gming \\ from infinite \\ Primes \end{pmatrix} \cdot \sum_{n=1}^{\infty} \frac{b(n)}{n^s}$

* Use Wirsing's Thm + Partial Summation
to show:
$$\sum_{n \le x} b(n) = O(\sum_{n \le x} a(n))$$

What Remains:
(D) Check analytic Conditions
(E) Apply Delange's Tauberian Thm
rem (Delange's Tauberian Theorem)

$$T(s) = \sum \frac{a_N}{N^s}$$
 be a Dirichlet series satisfying:

• $a_N \ge 0$ for all N and G(s) converges for $\Re e(s) > \rho$.

- G(s) can be continued to an analytic function in the closed half-plane ℜe(s) ≥ ρ except possibly for a singularity at s = ρ.
- There is an open neighborhood of ρ and functions A(s), B(s) analytic at $s = \rho$ with $G(s) = A(s)/(s - \rho)^{\beta} + B(s)$ at every point in this neighborhood having $\Re e(s) > \rho$. Morally, this is

Then as $x \to \infty$ we have

Theo

Let G

$$\sum_{N \le x} a_N = \left(\frac{A(\rho)}{\rho \Gamma(\beta)} + o(1)\right) x^{\rho} \log(x)^{\beta-1}.$$

3 Obtain an asymptotic that blows
(this proves the case where (=1) of
$$\frac{1}{S-1}$$

7 the order of

Pole but

Singu

* In our toy example, S=1/2 & B=1/2.

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k, and fix quadratic extensions L_1, L_2, \ldots, L_r of k. Let L be the compositum of the L_i , and suppose that $[L:k] = 2^r$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_i is

 $\sim \delta \cdot x^{1/2}/(\log x)^{1-\frac{1}{2^r}},$

as $x \to \infty$. Here δ is a positive constant depending only on the L_i and k.

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2-orbifolds **derived from quaternion algebras**, each of which has volume less than V and geodesic length spectrum containing S.

set

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If $\pi(V, S) \to \infty$ as $V \to \infty$, then there are integers $1 \le r, s \le |S|$ and constants $c_1, c_2 > 0$ such that c_1V $\frac{c_1V}{\log(V)^{1-\frac{1}{2^r}}} \le \pi(V, S) \le \frac{c_2V}{\log(V)^{1-\frac{1}{2^s}}}$ for all sufficiently large V.

Pf Sketch The 3-manifold pf is the
Same but w/pSL2(0) instead
Let M be an arithmetic hyperbolic
2-manifold arising from
$$(K,B)$$
 w/
fundamental group $\Gamma < PSL_2(IP)$.
There is a bijection:

Geodesic lengths L(Cx) are given by

 $\cosh \frac{l(C_{\delta})}{2} = \pm \frac{T_{r}(\delta)}{2}$

Let $\lambda_{\mathcal{X}} := Unique eigenvalue of \mathcal{X}$ $/ w/ |\lambda_{8}| > 1.$ Unique bre det=±1, tr X>2 So one eigenvalue is >1 & one is <1 (in abs. value) * Each closed geodesic C& determines a maximal subfield ky of the quaternion algebra B. $k_{\vartheta} = k(\lambda_{\vartheta})$

(That's now las..., le geodesic lengths in the geometric result Correspond to La,..., Le in the number theoretic result) Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2-orbifolds **derived from quaternion algebras**, each of which has volume less than V and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If $\pi(V, S) \to \infty$ as $V \to \infty$, then there are integers $1 \le r, s \le |S|$ and constants $c_1, c_2 > 0$ such that

$$\frac{c_1 V}{\log(V)^{1-\frac{1}{2^r}}} \le \pi(V, S) \le \frac{c_2 V}{\log(V)^{1-\frac{1}{2^s}}}$$

for all sufficiently large V.