Quantitative Questions in spectral Geometry Lola Thompson

Recall from yesterday:

Our motivating Question: If two arithmetic hyperbolic 2. or 3. manifolds have many overlapping geodesic lengths, are they necessarily connersuable?
La MD. "Lots of p-w

Key Idea: Slengths of
Prodesics on
arithmetic hypedolic
a- 93-manifilds S Maximal Subfields
J of quattenion algebras) number theory glowetry

Today's plan: ^① Introduce quaternion algs . ② Show how to construct ^a Dirichlet series whose coeffs. Count quaternion algebras ③ Apply ^a Tauberian Thm to obtain an asymptotic for the Count of quaternion algs w/ $|disc| \leq x$ (w/ certain geometricallymotivated conditions) . ④ Derive geometric consequences!

J. Quaternion algebras & orders

Theorem (Hamilton, 1843)

The $\mathbb R$ -algebra $\mathbb H$ with basis $\{1, i, j, ij\}$ and defining relations

$$
i^2 = -1
$$
 $j^2 = -1$ $ij = -ji$

is a four-dimensional division algebra.

Brougham Bridge:

Notation:	Write $(-1, -1, R)$ instead of the $(-1, -1, R)$ instead of the $(-1, -1, R)$
Can be replaced with other units	
Our replace or the units of the 0	

$$
E_X \t(1,1, \tR) \text{ has } i^2 = j^2 = 1 \t d
$$

$$
Observe:\n
$$
(1,1, \mathbb{R}) \cong M_{a}(\mathbb{R})
$$
\n
$$
i \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$
\n
$$
j \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$
$$

In general:
\n(a, b, R)
$$
\cong
$$
 $\left\{\begin{array}{l}\nH & \text{if } a, b < 0 \\
M_{2}(\mathbb{R}) & \text{if } \mathbb{R}\n\end{array}\right\}$
\nThus, (a, b, R) is either a division
\nalgebra or isomorphism by M_{2}(\mathbb{R})

 $*$ If we replace $\mathbb R$ w/ other fields:

Theorem (Wedderburn)

For any field F, if the F-algebra (a, b, F) is not a division algebra then $(a, b, F) \cong M_2(F)$.

^P In general , there won't be a unique division alg/F.

Exhensson of Scalars

\nLet
$$
K
$$
 be a field, k^{\prime}/k a field ext.

\nIf $B = (a, b, k)$ is a gradient of the form

\n $B \otimes_{k} k^{\prime} = (a, b, k^{\prime}) \left(\begin{array}{c} \text{Impotential} \\ \text{for initial conditions} \end{array} \right)$

Def If B is a guakmin of B/K, let
\n
$$
B_{p} := B \otimes_{k} K_{p}
$$
\nwe say B is ramified at P
\nif B_p is the unique division
\n
$$
A_{p} \wedge K_{p}
$$
Ofw, B splits in P.

Def Let Ram(B) denote the (finite) Set of primes at which $\mathcal B$ is ramified. The discriminant of B is the ideal defined by $\Delta(B) := \prod_{i=1}^{n} P_i$ $\mathcal{P} \in \mathsf{Ram}(\mathcal{B})$ number
figld Def Let B be a guaternion alg/k. The reduced norm of B is the Composite map $B\hookrightarrow M_2(\mathbb{C})\xrightarrow{\text{det}}\mathbb{C}$

Let K be a number field with
ring of integers Or.
Def An order of a K-alg is a substring
which is also a f.g. Or-module
Containing an K-basis of the algebra.
Def An order is maximal if it is not
properly contained in any other
order.

Ex
$$
M_{\alpha}(\mathbb{Z})
$$
 is a maximal order
of $M_{\alpha}(\mathbb{Q})$

 Ex Θ_k is a maximal order of K.

How arithmetic Surfaces
$arise$ from Buaternizon algebras
Elementary results from geometric group theory:
• Isom+(H ²) $\cong PSL_2(\mathbb{R})$.
• Every orientable hyperbolic 2-manifold is of the form
H^2/Γ for some discrete subgroup Γ of $PSL_2(\mathbb{R})$.
$W = W$ with the following
$Constiv$ from the Bola (X) \rightarrow SL ₂ (X) \rightarrow SL ₂ (X)
$M_2(\mathbb{Q})$ and $\mathbb{Q}(X) \rightarrow S\mathbb{L}_2(\mathbb{Z}) \rightarrow \mathbb{Z}_2(\mathbb{Z})$
$M_2(\mathbb{Q})$ and $\mathbb{Q}(X) \rightarrow S\mathbb{L}_2(\mathbb{Z}) \rightarrow \mathbb{Z}_2(\mathbb{Z})$
Q place
W γ where γ is the problem of the <i>unstable</i> γ is the <i>unstable</i> <math< td=""></math<>

Restricting β to \mathcal{O}^1 \in ^eIts of O w/ reduced & projecting onto PSL,HR) Ω o $/m$ 1 gives an embedding: \overline{S} : O¹ \rightarrow PSL $_{2}(\mathbb{R}).$ Notice $Votice:$
 $* \overline{g}(0)$ \rightarrow is a discrete s. $\hat{\mathbf{\partial}}$ of isometries w/ finite covolume $*$ If B is a division alg, then \overline{g} (O¹) is cocompact.

* If $\overline{g}(0^{\alpha})$ is torsion-free then
 $(\overline{H}^{\alpha}/\overline{g}(0^{\alpha}))$ is a hyperbolic $2 - m$ anifold. hyperbolic surfaces commensurable We things of this form are arithmetic

I Counting Quaternion Algebras us Prescribed Embeddings

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k , and fix quadratic extensions L_1, L_2, \ldots, L_r of k. Let L be the compositum of the L_i , and suppose that $(L : k] = 2^r$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_i is

 $\sim \delta \cdot x^{1/2} / (\log x)^{1 - \frac{1}{2^r}}$

as $x \to \infty$. Here δ is a positive constant depending only on the L_i and k.

g without this condition, it's possible that no gratemion alg. will admit embeddings of

$$
xwe sketch a post of the special\nCase where r=1, i.e., depends on\n
$$
\#\begin{cases}\nB/k & w/ |discB| < x:\n\end{cases}
$$
\n
$$
\pi \begin{cases}\nB/x < x \text{ and } x \text{ is odd} \\
B \text{ admits an embedding}\n\end{cases}
$$
\n
$$
\pi \begin{cases}\n\pi \begin{
$$
$$

 $x \rightarrow \infty$

Useful results from algebraic number theory:

- (1) $p | \Delta \iff p$ ramifies in $B \iff B \otimes K_p$ is a division algebra.
- The total number of primes that ramify in \bar{B} is even. (2)
- (3) For $\{p_1, ..., p_\ell\}$ in K with even cardinality, there exists a unique quaternion algebra B/K that ramifies at those primes (and hence has $\Delta = p_1 \cdots p_\ell$).
- (4) L embeds into $B \iff$ no prime of K that divides Δ splits in L/K (hence, Δ is squarefree).

Sletech of Pf (r=1)
Let
$$
J = \{p_i | \triangle : p_i \text{ find } k\}
$$
 (r=1)
 $Q = \{q_i | \triangle : p_i \text{ find } k\}$ (ranhif is B.

From Black Box :

 $\frac{D}{a}$ Δ = \prod pi $\prod_{i=1}^{n} \hat{b}_{i}$ where : $\frac{9}{2}$ 1 \leq i $\leq n$ 1 \leq j $\leq m$ $\frac{1}{2}$ $\frac{1}{2}$ \leq $\frac{1}{2}$ \leq $\frac{1}{2}$ \leq \le From \bigcirc PIED gj $\in\bigcirc$ From distinct om aistinct
¹ (i.e., AB-free) \bigcirc n +m is even T From ②

Thus, our task is to Count: $\#\{|{\triangle}|\leq \times :{\triangle} \text{ sati sfier } \oplus \}$

Let
$$
F_1(s) = \pi (1 + \frac{1}{|p|s})
$$

\n ρ finite or infinite
\n ρ does not split in L
\nCan rewrite $F_1(s)$ as:
\n
$$
\sum_{\Delta \text{ as in } \mathcal{D}} \frac{1}{|\Delta|s}
$$
\n
$$
\Delta
$$
 as in \mathcal{D}
\nexcept $\underline{w/\omega t}$
\n $\frac{1}{\sqrt{10}}$
\n $\frac{1}{\sqrt{10}}$ make up for this:
\n $\frac{1}{\sqrt{10}}$ make up for this:
\n $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}(s) = \pi (1 - \frac{1}{\sqrt{10}}s)$
\n $\frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt{10$

Let
$$
F(s) = \frac{1}{a} (F_1(s) + F_2(s))
$$

Then F(s) has $a/(m+n) \forall \Delta$, so

$$
F(s) = \sum_{\Delta \text{ as in } \mathcal{D}} \frac{1}{\log s}
$$

upshot: use Con estimate
\n
$$
\# \int Bx \ w1\triangle | x \cdot 2
$$
\n
$$
\int B \text{ a} \text{d}m \cdot 3 \text{ } \text{d}x
$$
\n
$$
\frac{1}{2} \left(\text{partial sums of ceffs of } F_1(s) \right) +
$$
\n
$$
\frac{1}{2} \left(\text{partial sums of ceffs of } F_2(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial sums of ceffs of } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial sums of ceffs of } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3(s) \right)
$$
\n
$$
\frac{1}{3} \left(\text{partial } F_3(s) \right) = \frac{1}{3} \left(\text{partial } F_3
$$

So
$$
F_1(s) = 2 \int_{1}^{s} \sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \int_{h\nu(t)}^{h\nu(t)} f(x) dx
$$

\n $f(x) = 2 \int_{1}^{s} \int_{1}^{h\nu(t)} f(x) dx$

$$
f(n) = \begin{cases} 1 & \text{if } n \text{ satisfy } p \text{ with } n \neq 0 \\ 0 & \text{otherwise} \end{cases}
$$

$$
+\text{Similar for }F_{\mathfrak{a}}(s):
$$
\n
$$
F_{\mathfrak{a}}(s) = \begin{pmatrix} \text{Constant} \\ \text{factor } \text{Cmin} \\ \text{from inf } \text{inif } \text{inif } s \end{pmatrix} \cdot \sum_{n=1}^{\infty} \frac{b(n)}{n^{s}}
$$

$$
\angle
$$
 Use Wising's Thm + Partial Summation
\n $\frac{1}{2} \text{ show:}$
\n $\sum_{n \le x} b(n) = O(\sum_{n \le x} \alpha(n))$

wheat Remains : ^① Check analytic conditions ^② Apply Delange's Tauberan Th^m

Theorem (Delange's Tauberian Theorem)

Let $G(s) = \sum_{N} \frac{a_N}{N}$ be a Dirichlet series satisfying:

- \bullet $a_N > 0$ for all N and $G(s)$ converges for $\Re e(s) > \rho$.
- \bullet $G(s)$ can be continued to an analytic function in the closed half-plane $\Re e(s) \geq \rho$ except possibly for a singularity at $s = \rho$.
- **3** There is an open neighborhood of ρ and functions $A(s)$, $B(s)$ analytic at $s = \rho$ with $G(s) = A(s)/(s - \rho)^{\beta} + B(s)$ at every point in this neighborhood having $\Re e(s) > \rho$. M orall h_3 this is

Then as $x \to \infty$ we have

$$
\sum_{N \le x} a_N = \left(\frac{A(\rho)}{\rho \Gamma(\beta)} + o(1)\right) x^{\rho} \log(x)^{\beta - 1}.
$$

89 obtain an asymptotic
$$
\frac{thst}{up}
$$
 is $\frac{1}{he}$

\n(this proves the case where $1:1$) of $\frac{1}{s-1}$.

Morally, this is
7 the order of a

 s_i

"Pole" but

can be any

 $*$ In our toy example, $9 = k$ $4 \beta = k$.

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k , and fix quadratic extensions $\langle L_1, L_2, \ldots, L_r \rangle$ of k. Let L be the compositum of the L_i , and suppose that $[L : k] = 2^r$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_i is

 $\sim \delta \cdot x^{1/2} / (\log x)^{1 - \frac{1}{2^r}}$.

as $x \to \infty$. Here δ is a positive constant depending only on the L_i and k_i .

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2-orbifolds derived from quaternion algebras, each of which has volume less than V and geodesic length spectrum containing S , \mathbf{f}_{in}

Set

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If $\pi(V, S) \to \infty$ as $V \to \infty$, then there are integers $1 \leq r, s \leq |S|$ and constants $c_1, c_2 > 0$ such that $\label{eq:convexity} \begin{cases} \textbf{Q}_{\text{sym}} \text{,} \end{cases} \begin{minipage}{0.5\textwidth} \begin{minipage}{0.5\textwidth} \begin{minipage}{0.5\textwidth} \begin{itemize} \mathcal{M} \end{itemize} \end{minipage} } \begin{minipage}{0.5\textwidth} \begin{minipage}{0.5\textwidth} \begin{minipage}{0.5\textwidth} \begin{itemize} \mathcal{M} \end{itemize} \end{minipage} } \begin{minipage}{0.5\textwidth} \begin{minipage}{0.5\textwidth} \begin{itemize} \mathcal{M} \end{itemize} \end{$ for all sufficiently large V .

→ The 3- manifold pf is the PI sketch same but we PS lack) instead Let ^M be an arithmetic hyperbolic 2- manifold arising from CK, B) w/ fundamental group ^T s PSLa CIR). There is a bijection : -

Geodesic lengths lCcs) are given by

 $\begin{vmatrix} \cosh \frac{\ell(C_8)}{2} = \pm \frac{\tau_C(s)}{2} \end{vmatrix}$

Let λ $y :=$ Uni gue eigenvalue of y \sim $| \lambda_3 | > 1$. Unique bit det = ± 1 , $|tr \tfrac{1}{2}\rangle$
So one eigenvalue is >1 q une is <1 * Each closed geodesic Cy determines a maximal subfield $k_{\mathcal{S}}$ of the guaternion algebra B . $k_{3} = k(\lambda_{3})$

(That's now la, fr geoderic lengths in the gesmetric result Correspond to $L_{1,-,L_{r}}$ in the number theoretic result)

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2-orbifolds derived from quaternion algebras, each of which has volume less than V and geodesic length spectrum containing S .

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If $\pi(V, S) \to \infty$ as $V \to \infty$, then there are integers $1 \leq r, s \leq |S|$ and constants $c_1, c_2 > 0$ such that

$$
\frac{c_1 V}{\log(V)^{1-\frac{1}{2^r}}} \le \pi(V, S) \le \frac{c_2 V}{\log(V)^{1-\frac{1}{2^s}}}
$$

$$
\log(V)^{1-\frac{1}{2^{s}}}\log(V)^{1-\frac{1}{2^{s}}}
$$
\nfor all sufficiently large V.\n
\n**Corollations:**\n
\n
$$
\boxed{Onclusions:}
$$
\n
\n
$$
A on - Conmen surable 3-manifolds
$$
\n
$$
W / a \text{ great deal of overlap in the image.
$$
\n
\n
$$
Q = J
$$
\n