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Random walks on weakly hyperbolic groups

Random walks, WPD actions, and the Cremona group
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Hyperbolic spaces

Let (X, d) be a geodesic, metric space, and let x, € X be a basepoint.
Define the Gromov product of x, y as :

(X ¥ = 5 (006.%) + dx0,y) — d(x.y))

If X is d-hyperbolic = (x - y)x, = d(xo, [X,¥]) + O(9)
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The Gromov boundary - Definition 1

Let X be a §-hyperbolic, non-proper, metric space.
Fix a base point x; € X. Two geodesic rays 1, v» based at x
are equivalent if

sup d(v1(t),72(1)) < oo.

Definition
We define the Gromov boundary of X as

0X := {~ quasi-geodesic rays based at xp}/ ~

Example
Examples of Gromov boundaries.
» X=Rand 0X = {—o0, +0o0}.
» X =ladder and 90X = {—o0, +00}.
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Theorem
0X is a metric space.
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Metric on the hyperbolic boundary

Theorem
0X is a metric space.

Proof.
Let n,& € 0X. Then n = [x,], £ = [yn] for two Gromov sequences (x,),
(¥n)- Then
(1-8)x = sup liminf(Xm - ¥n)x
Xp—=n.yp—E ™0
Pick e > 0, and set
p(€,n) = e~ <(n8)x

This is not yet a metric (no triangle inequality). To get an actual

metric,
n—1

d(&,m) = inf> " p(&, 1)

i=1

where the inf is among all finite chains £ = &,&1,- - ,&n_1,n =&, [
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Gromov boundary of non-proper spaces

X proper = 09X compact metric space

BUT

X not proper = 90X need NOT be compact

Example
X = N x R0 /(n, 0) ~ (m,0)- Then X ~ N is not compact.
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The horofunction boundary
Pick a base point xo € X. For any z € X we define p, : X — R:

p2(x) = d(x,2) — d(x0, 2).
Then p,(x) is 1-Lipschitz and pz(xp) = 0. Consider
Lipy(X) = {f: X > Rs.t. [f(x) - f(y)| < d(x, y),(x0) = 0}

with the topology of pointwise convergence.
Consider p : X — Lipy (X) given by

Z pg.

Definition
The horofunction compactification of (X, d) is the closure

X" = p(X) inLipl (X).
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Metrizability

Proposition ,
If X is separable, then the horofunction compactification X is a
compact metrizable space.

Proof.
If h € Lip, (X), then

[h(x)] < [h(x) = h(xo)| < d(X; %)

hence Lip;, (X) C ®@xex[—d(X, Xo), d(x, xo)] which is compact by
Tychonoff’s theorem.
Since X is separable, then C(X) is second countable,

henceﬁ?h is second countable.

Thus X is compact, Hausdorff, and second countable, hence
metrizable.

Definition .

Define the action of Gon X' as

g.h(x) = h(g~'x)— h(g-'x) forallge G,he X
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Examples of horofunctions - |

Example
X = R with the euclidean metric, and xo = 0. Then all
horofunctions for X are either:

» p(x)=|x—p|—|pl| for some p € R; or
> p(x) = £x.
hence "X = X"\ X = {—o0, +00}.
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Examples of horofunctions - ||

Example

In the hyperbolic plane X = H?, pick ¢ € OH? and consider a
geodesic ray v : [0, 00) — H? with 4(0) = xo and

lime 100 Y(t) = €. Then if z, := ~(n) we get for any x € H?

he(x) = im_pey(x) = fim (d(3(£),2) = 1

the usual definition of horofunction, and level sets are
horoballs.
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Examples of horofunctions - Il

Example
Let X = “infinite tree” defined as X = Z x RZ° /(n,O) ~ (m,0)-

» The Gromov boundary is 0X = Z.

» If z, = [(n, n)] then in the horofunction compactification
one has

Ilg] pzn — IOZO'

(Note: the set of infinite horofunctions is NOT closed.)
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Classification of horofunctions

Proposition ,
Let h be a horofunction in X, and let v be a geodesic in X. Then
there is p on ~ such that the restriction of h fo v is equal to:

» either
h(x) = h(p) + d(p, x) + O(5)
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Classification of horofunctions

Proposition ,
Let h be a horofunction in X, and let v be a geodesic in X. Then
there is p on ~ such that the restriction of h fo v is equal to:

» either
h(x) = h(p) + d(p, x) + O(5)

> or
h(x) = h(p) + dy (p. x) + O(0)

where d* is the oriented distance along the geodesic, for some
choice of orientation of ~.
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Finite and infinite horofunctions

For any horofunction h € Yh, let us consider

inf(h) .= ylg( h(y).

Definition

The set of finite horofunctions is the set
Xp:={heX" :infth> oo}

and the set of infinite horofunctions is the set

X) =theX" . inth=—o0}
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For each base point xo € X, each horofunction h € X and each
X,y € X we have:

min{—h(x), —h(y)} < (x - ¥)x + O(9)
Proof.
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X,y € X we have:
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Proof.
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Comparing the horofunction and Gromov boundaries

Lemma
For each base point xo € X, each horofunction h € X and each
X,y € X we have:

min{—h(x), —h(y)} < (x - ¥)x + O(9)
Proof.
By definition,

(x-2)y, = dx (X0, X) + dx(;(o,z) — dx(x, 2)

= —pz(X)
By J-hyperbolicity,
(X ¥)xy = mMin{(X - Z)xg; (¥ - Z)xo} = 6

hence
(X - ¥)x = min{—pz(x), —pz(y)} — 0.

Since every horofunction is the pointwise limit of functions p,, the
claim follows. OJ
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Lemma o
For each base point xo € X, each horofunction h € X and each
x,y € X we have:

min{—h(x), =h(y)} < (x- ¥)x, + O(9)

Corollary

Let (x,) C X be a sequence of points, and h € X" a horofunction.
If h(x,) — —o0, then (x,) converges in the Gromov boundary, and

lim x, € 0X

n—oo

does not depend on the choice of (xp) .
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The local minimum map

Lemma
There exists K, which depends only on §, such that for each finite
horofunction h,

diam p(h) < K.

Proof.

Let x,y € ¢(h), for some h € Yh, and consider the restriction of h
along a geodesic segment from x to y. By the Proposition, the
restriction has at most one coarse local minimum: hence, since x and
y are coarse local minima of h, the distance between x and y is
universally bounded in terms of ¢. O

Corollary

The local minimum map ¢ : X" - X U0X is well-defined and
G-equivariant.

Note: ¢ is not continuous but | is continuous.
E.g., in the “infinite tree” case, if z, := (n, n) then p,, — py, but
®(pz,) = 2n 7 Xo



Stationary measures

Definition
Let i be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms.



Stationary measures

Definition

Let i be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms. A
probability measure v on M is u-stationary



Stationary measures

Definition

Let i be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms. A
probability measure v on M is u-stationary (or just stationary)



Stationary measures

Definition

Let i be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms. A
probability measure v on M is u-stationary (or just stationary) if

/G gv du(g) =v



Stationary measures
Definition
Let i be a probability measure on a group G, and let M be a

metric space on which G acts by homeomorphisms. A
probability measure v on M is u-stationary (or just stationary) if

/G gv du(g) =v

The pair (M, v) is then called a (G, n)-space.



Stationary measures
Definition
Let i be a probability measure on a group G, and let M be a

metric space on which G acts by homeomorphisms. A
probability measure v on M is p-stationary (or just stationary) if

/ gv du(g) =v
G
The pair (M, v) is then called a (G, n)-space.

Problem: Since 09X need not be compact, you may not be able
to find a stationary measure in P(9X).



Stationary measures

Definition

Let i be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms. A
probability measure v on M is p-stationary (or just stationary) if

/ gv du(g) =v
G
The pair (M, v) is then called a (G, n)-space.

Problem: Since 09X need not be compact, you may not be able
to find a stationary measure in P(9X).

Trick: Consider the horofunction compactification (which is
always compact and metrizable).



Stationary measures

Definition

Let i be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms. A
probability measure v on M is p-stationary (or just stationary) if

/ gv du(g) =v
G
The pair (M, v) is then called a (G, n)-space.

Problem: Since 09X need not be compact, you may not be able
to find a stationary measure in P(9X).

Trick: Consider the horofunction compactification (which is
always compact and metrizable).

Lemma

(N . . .
P(X") is compact, so it contains a j.-stationary measure.
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Convergence in the space of measures

Proposition

Let M be a compact metric space on which G acts
continuously, and v a p-stationary probability measure on M.
Then for P-a.e. sequence (wj) the limit

Ve = lim g10o...gnv
n—oo
exists in the space P(M) of probability measures on M.

Proof.
Apply the martingale convergence theorem to

Xn = /Mf(an) dv(¢).
forany f € C(M).
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Convergence of horofunctions

Proposition
Let u be a non-elementary probability measure on G, and let v be a
u-stationary measure on X". Then

V(X}) = 0.

Proposition

ForP-a.e. (w,) there exists a subsequence (pw,x,) Which converges
to a horofunction in 7’;@.

As a corollary, for P-a.e. sample path (w,) there exists a
subsequence (wp, Xo) which converges to a point in the Gromov
boundary 0X.
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Boundary convergence: end of proof

Proof.
Let v € P(X") a u-stationary measure, and denote v := ¢.v € P(9X).

» By the martingale convergence theorem, for a.e. w,

(Wn)sv —> vy € P(X).

» Then by pushing forward by . one gets
(Wn)«(¥) — (¥)w € P(0X).

» By d-hyperbolicity, if wy,x — £ € 0X then w,v — 6.

» The sequence w,x has at least one limit point £ in 9X, and for
each limit point & , Wy, 7 — J¢,

» BUT there can be only one limit point, as nIi_}m Wy exists.

» Hence, lim,_, ., wpx = £ € 0X exists.

Corollary
The hitting measure is the only u-stationary measure on 0.X.



