CUBICAL DIMENSION OF GROUPS

Kasia Jankiewicz

University of Chicago

MSRI Introductory Workshop September 10, 2020

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 GOAL :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Dimensions of G $\hat{\cdot}$

▲□▶▲□▶▲壹▶▲壹▶ 壹 釣�?

C

othennise

For the rest of the talk: G is finitely generated and torsion-free

 $cdG = inf\{k | \mathbb{Z} \text{ admits a projective resolution over } \mathbb{Z}G \text{ of length } k\}$ $dim G = inf\{k | G \text{ has a } k\text{-dimensional } K(G,1)\text{-complex}\}$ $CAT(0)dim_{ss}G = inf\{k | G \text{ acts properly by semi-simple isometries on a}$ $CAT(0) \text{ complex of dim } k\}$

cubdim $G = \inf\{k \mid G \text{ acts properly on a CAT}(0) \text{ cube complex of dim } k\}$

 $\operatorname{cd} G \leq \operatorname{dim} G \leq \operatorname{CAT}(0) \operatorname{dim}_{ss} G \leq \operatorname{cubdim} G$

Question: Can these inequalities be strict? 1) (Stallings '57): If cdG=1, then G is free. Le all dimensions are equal 1. 2) There are many groups that don't act properly on CAT(0) whe complexes/CAT(0) spaces so cubolim $G = \infty$ or $CAT(0) dim G = \infty$. La infinite gaps e.g. BS(1,2)

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

↓□▶ < □▶ < 三▶ < 三▶ < □▶ < □▶</p>

 $cdG \leq dim G \leq CAT(0)dim_{ss}G \leq cubdim G$

Without cocompactness: open.

 $\operatorname{cd} G \leq \operatorname{dim} G \leq \operatorname{CAT}(0) \operatorname{dim}_{ss} G \leq \operatorname{cubdim} G$

5) (Bridson, 2001)

 $G = J_1 X$

Bridson: 1) \times is asphenical $=> \dim G = 2$ 2) $\pi_1 X$ does not act properly by semi-simple isometries on any 2-dim CAT(0) complex X ° 3-dim CAT(0) cube Complex => CAT(0)dim G = cubdim G = 3 $3) \times \rightarrow \times$ $\hat{X} \cong 2$ - dim NPC pieceurise Eeuclidean double coven Complex <u>▲□▶ ▲□ ▶ ▲ = ▶ ▲ = ▶</u> $\mathcal{O} \mathcal{Q} \mathcal{O}$ Ξ

 $cdG \leq dim G \leq CAT(0)dim_{ss}G \leq cubdim G$

G= is C'(t) if
in Cay(G,S):
Tr, Prz) ipi <
$$\frac{1}{6}$$
 iri
pieces = single edges
i < $\frac{1}{6} \cdot 8$
• ('(t) groups are byperbolic, dim 2.
• (Gromon, S. Brown 2016): For uniformly C'(t) group
Cayley complex can be folded into a
CAT(-1) complex. => CAT(0) dim G = d
• (Wise, 2004): C'(t) groups act properly and cocomputy on
CAT(0) whe complexes => ubdim G < 00

▲□▶
 ▲□▶
 4 =>
 ▲ =>
 ● <
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Wise's construction:

but
$$\pi, \Xi_2 \cap \mathbb{H}^2$$

chual CAT(O) square structure => cubdim $T_1 \ge_2 = 2$

One consequence: Example (J.-Wise, 2020) generated G such that There exists finitely · dim G=2 • cubdim G = 00 · G acts properly on a locally finite CAT(0) cube complex

<u>◀□▶◀@▶◀≧▶◀콜▶</u>

 \mathcal{A}

Thank you.

