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We’re an interdisciplinary team of researchers, engineers, and journalists that use 
technology to drive reform in criminal justice, education, healthcare, and beyond. 



Part I: Racial disparities in 
automated speech 

recognition
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Automated speech recognition [ ASR ]

Automated speech-to-text systems are now widespread, 
powering virtual assistants [ Siri, Alexa, Google Assistant ], 
dictation, translation, subtitling, and hands-free computing.



Racial disparities in ASR systems
We audited five leading ASR providers [ Amazon, Apple, 
Google, IBM, and Microsoft ] by comparing human and 
machine-generated transcripts for 20 hours of audio from 
Black and white speakers.



Racial disparities in ASR systems
Error rates were twice as large for Black speakers



Racial disparities in ASR systems
Me I mean, I know I'm knew I was kinda tall for asking high 
school. I didn't wanna play center. I didn’t because center 
send it don’t on have the ball that much. You get the ball 
occasionally when you in the post, I mean, but I didn't want to 
play it. 



Error rates and AAVE
● African American Vernacular English is spoken by nearly 

12% of all Americans



Error rates and AAVE
● African American Vernacular English is spoken by nearly 

12% of all Americans
● We counted hand-coded AAVE linguistic features in 

random sample of audio snippets



Error rates and AAVE
● African American Vernacular English is spoken by nearly 

12% of all Americans
● We counted hand-coded AAVE linguistic features in 

random sample of audio snippets
● Grammatical and phonological examples:

○ Zero copula: They gone
○ Future be: He be here tomorrow
○ Final consonant cluster reduction: band → ban’
○ Hapology: mississippi → misipi



Error rates and AAVE



The source of disparities

Modern ASR systems combine language models (that encode 
grammar) with acoustic models.
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The performance of a language model is often measured in 
terms of perplexity, which captures how well the model 
predicts the next word in a sequence.

The dog jumped over the  _____________

fence 5%

cup 2%

moon 1%



The source of disparities
Language models

The performance of a language model is often measured in 
terms of perplexity, which captures how well the model 
predicts the next word in a sequence.

We find language models perform better on our sample of 
Black speakers than on our sample of white speakers.
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The source of disparities
Acoustic models

● Find Black and white speakers saying identical phrases in 
our sample

● Match pairs of Black and white speakers (of the same 
gender and similar age) uttering 5 to 8 word n-grams
○ “and then a lot of the”
○ “and my mother was a”

● Compare error rates across the 206 matched phrases



The source of disparities
Acoustic models

On a subset of identical phrases spoken by Black and white 
individuals in our dataset, error rates were still about twice as 
large for Black speakers.
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Call to action
● More diverse data should be collected: both of AAVE 

speech and of other varieties of English

● The speech recognition community needs to invest 

resources to ensure ASR systems 一 and the 

institutions that build them 一 are broadly inclusive

● ASR developers should regularly assess and publicly 

report progress over time

● Learn from algorithmic & legislative progress made in 

other domains (e.g., computer vision)

Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. FAT.



Part II: A deontological 
approach to fairness



Risk assessment tools

Many high-stakes decisions are made by first estimating the 
likelihood of an adverse outcome based on the available 
information.

Lending is based on risk of default; pretrial detention is based 
on risk of recidivism.

Decisions guided by statistical risk assessments can, in theory, 
be more equitable than those made by intuition alone.



A mathematical definition of fairness
Classification parity

An algorithm is considered to be fair if error rates are 
[ approximately ] equal for white and Black defendants.



A mathematical definition of fairness
Proposed legislation in Idaho [ 2019 ]

“Pretrial risk assessment algorithms shall not be used … by the 
state until first shown to be free of bias, ...[meaning] that an 
algorithm has been formally tested and...the rate of error is 
balanced as between protected classes and those not in 
protected classes.”
[ This requirement was removed from the final bill. ]



A mathematical definition of fairness
False positive rate

A common mathematical definition of fairness is demanding 
equal false positive rates.

Did not reoffend

Did not reoffend & “high risk”
False positive rate   = 



Error rate disparities in Broward County
Via ProPublica

were deemed high risk of committing a violent crime

[ Higher false positive rates for Black defendants ]

31%  vs.  15%
of white defendants 

who did not reoffend
of Black defendants

who did not reoffend
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False positive rates

42% 
false positive rateDid not reoffend
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Broward County risk distributions

Black and white defendants have different risk distributions

0 Likelihood of violent recidivism 1

25%



Infra-marginality 

The false positive rate is an infra-marginal statistic—it depends 
not only on a group’s threshold but on its distribution of risk.
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Error rates in context

In traditional machine-learning settings, we compare multiple 
models on the same dataset.

Past fair ML work has often compared one model across 
multiple datasets, leading to hard-to-interpret results.



Error rates in context

In some settings, differences in error rates across groups can 
be a strong indicator of algorithmic problems and inequities.

In automated speech recognition — unlike for pretrial risk 
assessments — we have strong reason to believe that with 
more data and possibly better models, we should be able to 
obtain comparable error rates for Black and white speakers.



Part III: Consequentialist 
approach to fairness



Background

In many jurisdictions, people can be jailed for failing to appear 
at mandatory court dates.

As a result, it is possible to reduce incarceration by helping 
people appear in court.

One way to do this is to provide people with free door-to-door 
rideshare service to and from court.



Transportation assistance

Imagine we have enough money for 1,000 Lyft rides. Who 
should we give the rides to?
[ We’re preparing to give out rides starting this summer. ]



Fairness in algorithms

Optimize 
appearance 

Which approach do you prefer? 
Maybe somewhere in the middle?

1,000 new appearances
30% of one group gets 
rides, 10% of the other

800 new appearances
20% of each group gets rides

Equal allocation 
across groups
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The consequentialist approach

Traditional, deontological approaches do not consider the 
potential impacts of decisions on outcomes, and as a result, 
likely end in an allocation misaligned with stakeholder 
preferences.

We take a different approach: we aim for decisions that 
maximize stakeholder utility, including one’s preferences for 
parity.
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Competing priorities

Maximize 
appearances

Equal allocation 
across groups

C’s 
preferences?



The technical problem

In real-world settings, we want to quickly learn and use 
a policy that maximizes our utility subject to budget 
constraints.

But our utility depends on both individual-level outcomes 
(e.g., appearances) and policy-level outcomes (e.g., parity).
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Thompson sampling—to make estimates of potential 
outcomes.



Maximizing utility in practice

We use multi-armed bandit algorithms—including UCB and 
Thompson sampling—to make estimates of potential 
outcomes.

We use a linear program to identify the optimal policy, 
according to these estimates, our utility, and our budget.
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Algorithm 
outline

Step 1. Randomly treat a small warm-up population.

Step 2. Use the already-treated population to train a model 
that predicts outcomes for all available treatments.

Step 3. Generate optimistic estimates for the potential 
outcomes under all actions. 
[ These two steps are the bandit. ]

Step 4. Using these estimates, solve for the policy that 
maximizes utility. 
[ This is the linear program. ]

Step 5. Act according to this policy.

Repeat from Step 2.



Traditional fairness approaches vs. 
our approach
What happens when we force our policy to satisfy a particular 
mathematical fairness constraint, rather than directly 
deciding which outcomes we prefer?

For example, what happens when we insist on demographic 
parity or classification parity? Satisfying these mathematical 
constraints will result in sub-optimal outcomes.
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But you’d want 
to choose a 

point on this 
curve

These are out 
of budget!

All these points are 
within budget
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Principled 
trade-offs:
Different outcomes 
on the Pareto 
frontier

Maximize 
appearances

Equal allocation 
across groups

Actual 
Preference

??
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