Spiraling domains in dimension 2

Xavier Buff

Institut de Mathématiques de Toulouse

Work in progress with Jasmin Raissy

く 同 と く ヨ と く ヨ と

ъ

Theorem

For $a\in\mathbb{R\smallsetminus}\{0\},$ the polynomial endormorphism $F_a:\mathbb{C}^2\to\mathbb{C}^2$ defined by

$$F_a\left(egin{array}{c} x\\ y\end{array}
ight)=\left(egin{array}{c} x\\ y\end{array}
ight)+\left(egin{array}{c} y^2\\ x^2\end{array}
ight)+a\left(egin{array}{c} x(x-y)\\ y(x-y)\end{array}
ight)$$

has infinitely many spiraling domains contained in distinct Fatou components.

Tools

- homogeneous vector fields;
- affine surfaces;
- triangular billiards.

Maps tangent to the identity in dimension 1

• $f : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ is tangent to the identity and $f \neq id$: $f(z) = z + az^{k+1} + O(z^{k+2})$ with $a \in \mathbb{C} \setminus \{0\}$.

There are k = 3 parabolic petals/domains

通 とくほ とくほ とう

Maps tangent to the identity in dimension 2

Assumptions:

• \vec{v} is a homogeneous vector field of degree *k* on \mathbb{C}^2 :

$$\vec{\boldsymbol{v}} := \boldsymbol{U}\partial_{\boldsymbol{x}} + \boldsymbol{V}\partial_{\boldsymbol{y}}$$

with U and V homogeneous polynomials of degree k + 1;

 $\Phi := xV - yU$

vanishes on k + 2 characteristic directions, counting multiplicities;

۲

۲

$$F(\boldsymbol{x}) = \boldsymbol{x} + \vec{\boldsymbol{v}}(\boldsymbol{x}) + \mathrm{O}(\|\boldsymbol{x}\|^{k+2}).$$

Observation:

• Near **0**, orbits of *F* shadow real-time trajectories of \vec{v} .

くほう くほう

Proposition (Écalle, Hakim, Abate, ..., López-Hernanz, Rosas)

For any *F*, tangentially to each characteristic direction, there is either a curve of fixed points, or at least one *parabolic petal*.

 $F(x, y) = (x + y^2 + x^3, y + x^2)$

Proposition (Écalle, Hakim)

Existence of F which have *parabolic domains* on which orbits converge to **0** tangentially to a characteristic direction.

$$F(x,y) = (x + x^2, y + y^2)$$

> < 臣 > < 臣 > <</p>

э

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiraling* around a characteristic direction.

Spiraling domains in dimension 2

X. Buff

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiraling* around a characteristic direction.

$$F_a\left(\begin{array}{c}x\\y\end{array}
ight)=\left(\begin{array}{c}x\\y\end{array}
ight)+\left(\begin{array}{c}y^2\\x^2\end{array}
ight)+a\left(\begin{array}{c}x(x-y)\\y(x-y)\end{array}
ight)$$

ヘロン 人間 とくほど くほとう

э

Dynamics of homogeneous vector fields

• A trajectory for \vec{v} is a solution of the differential equation

$$\dot{\boldsymbol{\gamma}} = \vec{\boldsymbol{v}} \circ \boldsymbol{\gamma}.$$

- Complex-time trajectories are Riemann surfaces which cover CP¹ minus the characteristic directions.
- What does the projection to CP¹ of a real-time trajectory look-like?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Dynamics of homogeneous vector fields

• A trajectory for \vec{v} is a solution of the differential equation

$$\dot{\boldsymbol{\gamma}} = \vec{\boldsymbol{v}} \circ \boldsymbol{\gamma}.$$

- Complex-time trajectories are Riemann surfaces which cover CP¹ minus the characteristic directions.
- What does the projection to CP¹ of a real-time trajectory look-like?

Proposition (Abate)

We may equip \mathbb{CP}^1 with the structure of an affine surface $S_{\vec{v}}$ so that the projection to $S_{\vec{v}}$ of real-time trajectories of \vec{v} are geodesics.

→

Definition (Affine surface)

An *affine surface* **S** is a Riemann surface whose change of charts are affine maps $z \mapsto \lambda z + \mu$ with $\lambda \in \mathbb{C} \setminus \{0\}$ and $\mu \in \mathbb{C}$.

Example : \mathbf{C} is the complex plane with its canonical affine structure.

Definition (Affine map)

A map between affine surfaces is an *affine map* if its expression in affine charts is of the form $z \mapsto \lambda z + \mu$.

Definition (Geodesic)

A curve $\delta : I \to \mathbf{S}$ defined on an interval $I \subseteq \mathbb{R}$ is a *geodesic* if δ is the restriction of an affine map $\varphi : U \to \mathbf{S}$ defined on an open subset $U \subseteq \mathbf{C}$.

・ロト ・回 ト ・ ヨト ・ ヨトー

ъ

An example

• The dilation plane $\widetilde{\mathbf{C}}$ with underlying Riemann surface \mathbb{C} , whose affine charts are the restrictions of

$$\exp(z): \widetilde{\mathbf{C}}
ightarrow \mathbf{C} \smallsetminus \{\mathbf{0}\}.$$

A family of parallel geodesics in \tilde{C} .

프 🕨 🗆 프

The non linearity of a holomorphic map φ : S → T with non vanishing derivative is the 1-form N_φ defined on S by

$$\mathcal{N}_{arphi} := \mathrm{d}(\log arphi') = rac{\mathrm{d}arphi'}{arphi'}.$$

• $\mathcal{N}_{\varphi} = 0$ if and only if φ is an affine map.

• If $\varphi : \mathbf{S} \to \mathbf{T}$ and $\psi : \mathbf{T} \to \mathbf{U}$ are holomorphic maps, then

$$\mathcal{N}_{\psi \circ \varphi} = \mathcal{N}_{\varphi} + \varphi^*(\mathcal{N}_{\psi}).$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Affine surface of a homogeneous vector field

•
$$\vec{v} = U\partial_x + V\partial_y$$
 is homogeneous of degree k.

•
$$z : \mathbb{CP}^1 \ni [x : y] \mapsto \frac{x}{y} \in \widehat{\mathbb{C}}.$$

• $f\left(\frac{x}{y}\right) = \frac{U(x, y)}{V(x, y)}.$
• $p\left(\frac{x}{y}\right) = \frac{xU(x, y) - yV(x, y)}{y^{k+2}}.$

Proposition

The non linearity of $z: \mathbf{S}_{\vec{\mathbf{v}}} \to \mathbf{C}$ is

$$\nu := \left(\frac{p'(z)}{p(z)} - \frac{k}{z - f(z)}\right) \mathrm{d}z.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.

 $\operatorname{Re}(\rho) > 1$

 $\operatorname{Re}(\rho) < 1$

Proposition (Écalle, Hakim)

If ν has a simple pole and $\operatorname{Re}(\rho) > 1$, there is a parabolic domain on which orbits converge to **0** tangentially to the characteristic direction.

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.

$$\rho = 1 - 2i$$

 $\rho = 1 - 4i$

Proposition (Rivi,Rong)

If ν has a simple pole and $\text{Re}(\rho) = 1$, there is a parabolic domain on which orbits converge to **0** spiraling around the characteristic direction.

Closed geodesics

A geodesic δ : I → S is *closed* if there exists λ ∈ (0, +∞) and t₀ < t₁ in I such that

$$\delta(t_1) = \delta(t_0)$$
 and $\dot{\delta}(t_1) = \lambda \dot{\delta}(t_0)$.

• Such a geodesic is *attracting* if $\lambda \in (0, 1)$.

Spiraling domains

• If an affine surface contains an attracting closed geodesic, it contains an *attracting dilation cylinder* foliated by attracting closed geodesic.

Proposition (In progress)

Assume $F(\mathbf{x}) = \mathbf{x} + \vec{\mathbf{v}}(\mathbf{x})$ with $\vec{\mathbf{v}}$ homogeneous. If $\mathbf{S}_{\vec{\mathbf{v}}}$ contains an attracting dilation cylinder C, then F has a spiraling domain in which orbits converge to $\mathbf{0}$, spiraling towards an attracting closed geodesic of C.

Proposition

Assume $a \in \mathbb{R} \smallsetminus \{0\}$ and

$$ec{m{v}} := ig(m{y}^2 + m{a} m{x} (m{x} - m{y}) ig) \partial_{m{x}} + ig(m{x}^2 + m{a} m{y} (m{x} - m{y}) ig) \partial_{m{y}}.$$

Then, $\mathbf{S}_{\vec{v}}$ contains infinitely many non homotopic attracting dilation cylinders.

Proposition (Valdez)

If the residues of the 1-form $\frac{dz}{z-f(z)}$ are real and positive, the real-time dynamics of \vec{v} is controlled by the dynamics in a polygonal billiard.

Proposition (Valdez)

If the residues of the 1-form $\frac{dz}{z-f(z)}$ are real and positive, the real-time dynamics of \vec{v} is controlled by the dynamics in a polygonal billiard.

If

$$\vec{\mathbf{v}} = \mathbf{y}^2 \partial_{\mathbf{x}} + \mathbf{x}^2 \partial_{\mathbf{y}},$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing equilateral triangles.

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

ъ

★ E ► ★ E ►

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

∢ 🗗

æ

> < 三 > < 三 >

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If

$$\vec{\mathbf{v}} := (y^2 + ax(x-y))\partial_x + (x^2 + ay(x-y))\partial_y.$$

the affine surface ${\bf S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

One attracting cylinder

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

A second attracting cylinder

(ロ) (四) (注) (注) (注) (注)

A third attracting cylinder

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Three attracting cylinders

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Thank you for your attention

Special thanks to Dierk, Jasmin, Misha and Roland for organizing the conference

A E > A E >

ъ