A spectral gap for the transfer operator on complex projective spaces

Fabrizio Bianchi (joint work with Tien-Cuong Dinh)

CNRS and Université de Lille

MSRI, May 5, 2022

- $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$, f endomorphism (k = 1: rational map)
- for simplicity, no critical periodic points (generic condition)

Goal

Given $\varphi\colon \mathbb{P}^k \to \mathbb{R}$ (or \mathbb{C}), understand the Perron-Frobenius (transfer) operator

$$\mathcal{L}_{\Phi}(g)(y) = \sum_{f(x)=y} \mathrm{e}^{\Phi(x)} g(x) \quad \text{ for } \quad g \colon \mathbb{P}^k o \mathbb{R} \text{ or } \mathbb{C}$$

- $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$, f endomorphism (k = 1: rational map)
- for simplicity, no critical periodic points (generic condition)

Goal

Given $\phi \colon \mathbb{P}^k \to \mathbb{R}$ (or \mathbb{C}), understand the Perron-Frobenius (transfer) operator

$$\mathcal{L}_{\varphi}(g)(y) = \sum_{f(x) = y} \mathrm{e}^{\varphi(x)} g(x) \quad \text{ for } \quad g \colon \mathbb{P}^k \to \mathbb{R} \text{ or } \mathbb{C}$$

More precise goal (A)

Find a Banach space $(E, \|\cdot\|)$ such that $\mathcal{L}_{\Phi} \colon E \to E$

- has a spectral gap
- ullet is analytic in ullet $(t\mapsto \mathcal{L}_{\Phi+t\psi}$ is analytic in t, as operators E o E)

- $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$, f endomorphism (k = 1: rational map)
- for simplicity, no *critical periodic points* (generic condition)

Goal

Given $\phi \colon \mathbb{P}^k \to \mathbb{R}$ (or \mathbb{C}), understand the *Perron-Frobenius (transfer) operator*

$$\mathcal{L}_{\varphi}(g)(y) = \sum_{f(x) = y} \mathrm{e}^{\varphi(x)} g(x) \quad \text{ for } \quad g \colon \mathbb{P}^k \to \mathbb{R} \text{ or } \mathbb{C}$$

More precise goal (A)

Find a Banach space $(E, \|\cdot\|)$ such that $\mathcal{L}_{\Phi} \colon E \to E$

- has a spectral gap
- ullet is analytic in ullet $(t\mapsto \mathcal{L}_{\Phi+t\psi}$ is analytic in t, as operators E o E)

$$\lambda^{-n}\mathcal{L}^n(g) \to c_g$$
fast $(\sim (r/\lambda)^n)$

- $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$, f endomorphism (k = 1: rational map)
- for simplicity, no critical periodic points (generic condition)

Goal

Given $\phi \colon \mathbb{P}^k \to \mathbb{R}$ (or \mathbb{C}), understand the *Perron-Frobenius* (transfer) operator

$$\mathcal{L}_{\Phi}(g)(y) = \sum_{f(x)=y} \mathrm{e}^{\Phi(x)} g(x) \quad \text{ for } \quad g \colon \mathbb{P}^k o \mathbb{R} \text{ or } \mathbb{C}$$

More precise goal (A)

Find a Banach space $(E, \|\cdot\|)$ such that $\mathcal{L}_{\Phi} \colon E \to E$

- has a spectral gap
- ullet is analytic in ullet $(t\mapsto \mathcal{L}_{\Phi+t\psi}$ is analytic in t, as operators E o E)

$$\mathcal{L}_{\Phi}^{n}(g)(y) = \sum_{f^{n}(x)=y} e^{\Phi(x)+\Phi(f(x))+\cdots+\Phi(f^{n-1}(x))}g(x)$$

(One) motivation

Problem

Describe orbits of points (in the Julia set)

Deterministic point of view: essentially impossible!

Probabilistic point of view

Given a measure ν , study the sequence of $\emph{random variables}$

$$u, u \circ f, u \circ f^2, \dots$$

for $u \colon \mathbb{P}^k \to \mathbb{R}$ (observable) of some regularity

(One) motivation

Problem

Describe orbits of points (in the Julia set)

Deterministic point of view: essentially impossible!

Probabilistic point of view

Given a measure ν , study the sequence of random variables

$$u, u \circ f, u \circ f^2, \dots$$

for $u: \mathbb{P}^k \to \mathbb{R}$ (observable) of some regularity

- ν invariant $\Leftrightarrow U_i := u \circ f^i$ are identically distributed
- \bullet The U_i 's are not independent, but how close are they to a sequence of independent random variables?

Goal

Prove that U_i 's are essentially independent for many natural invariant measures: central limit theorem, deviation theorems...

The equilibrium measure μ ($\phi = 0$; $\mathcal{L} = f_*$)

Lyubich, Freire-Lopes-Mañé '83 for k=1, Fornaess-Sibony '94, Briend-Duval '00

 \exists ! measure μ of maximal *entropy*, and μ is such that $f^*\mu = d^k\mu$

Statistical properties for u Hölder continuous

Exponential mixing/decay of correlation, Central Limit Theorem (Dinh-Sibony '02-'10) Almost Sure Invariant Principle, law of Iterated Logarithms, ASCLT (Dupont '10) Local CLT for k=1, Large Deviation Theorem (Dinh-Nguyen-Sibony '06, '10)

The equilibrium measure μ ($\phi = 0$; $\mathcal{L} = f_*$)

Lyubich, Freire-Lopes-Mañé '83 for k = 1, Fornaess-Sibony '94, Briend-Duval '00

 \exists ! measure μ of maximal *entropy*, and μ is such that $f^*\mu = d^k\mu$

Statistical properties for *u* Hölder continuous

Exponential mixing/decay of correlation, Central Limit Theorem (Dinh-Sibony '02-'10) Almost Sure Invariant Principle, law of Iterated Logarithms, ASCLT (Dupont '10) Local CLT for k=1, Large Deviation Theorem (Dinh-Nguyen-Sibony '06, '10) ...

Essentially ad hoc proofs for the statistical properties

More precise goal (B)

- Obtain these (and other) properties for more general measures, and
- Obtain this by a single approach

(B)

- $\bullet \mbox{ Statistical properties for more } \\ \mbox{ general measures than } \mu$
- Unified approach

(B)

- $\bullet \mbox{ Statistical properties for more } \\ \mbox{ general measures than } \mu$
- Unified approach

Statistical properties of a random variable \boldsymbol{X} with respect to an invariant measure $\boldsymbol{\nu}$

$$\Leftrightarrow \quad t \mapsto \mathbb{E}(e^{tX}) \text{ with respect to } \nu,$$
 i.e., $t \mapsto \left\langle e^{tX}, \nu \right\rangle$

(B)

- $\bullet \mbox{ Statistical properties for more } \\ \mbox{ general measures than } \mu$
- Unified approach

Statistical properties of a random variable \boldsymbol{X} with respect to an invariant measure $\boldsymbol{\nu}$

$$\Leftrightarrow \quad t \mapsto \mathbb{E}(e^{tX}) \text{ with respect to } \nu, \\ \text{i.e., } t \mapsto \left\langle e^{tX}, \nu \right\rangle$$

$$X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j$$

Nagaev, Guivarc'h; Baladi, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t\mapsto \mathbb{E}(e^{tX})$

(B)

- $\bullet \mbox{ Statistical properties for more } \\ \mbox{ general measures than } \mu$
- Unified approach

Statistical properties of a random variable \boldsymbol{X} with respect to an invariant measure $\boldsymbol{\nu}$

$$\Leftrightarrow \quad \begin{array}{ll} t \mapsto \mathbb{E}(\mathrm{e}^{tX}) \text{ with respect to } \nu, \\ \mathrm{i.e., } \ t \mapsto \left\langle \mathrm{e}^{tX}, \nu \right\rangle \end{array}$$

$$X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j$$

Nagaev, Guivarc'h; Baladi, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t\mapsto \mathbb{E}(e^{tX})$

$$e^{tX} = e^{tu+tu\circ f+\cdots+tu\circ f^{n-1}} \sim \mathcal{L}_{0+tu}^{n}$$

(B)

- $\bullet \mbox{ Statistical properties for more } \\ \mbox{ general measures than } \mu$
- Unified approach

Statistical properties of a random variable \boldsymbol{X} with respect to an invariant measure $\boldsymbol{\nu}$

$$\Leftrightarrow$$
 $t\mapsto \mathbb{E}(e^{tX})$ with respect to ν , i.e., $t\mapsto \left\langle e^{tX},\nu\right\rangle$

$$X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j$$

Nagaev, Guivarc'h; Baladi, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t\mapsto \mathbb{E}(e^{tX})$

$$e^{tX} = e^{tu + tu \circ f + \dots + tu \circ f^{n-1}} \sim \mathcal{L}^n_{0 + tu} \qquad \left\langle e^{tS_n(u)}, \mu \right\rangle = \left\langle \frac{f_*^n e^{tS_n(u)}}{d^{kn}}, \mu \right\rangle = \left\langle \frac{\mathcal{L}^n_{0 + tu}(\mathbb{1})}{\underline{d}^{kn}}, \mu \right\rangle$$

(B)

- Statistical properties for more general measures than μ
- Unified approach

(A)

Find a Banach space $(E, \|\cdot\|)$ such that \Leftarrow $\mathcal{L}_{\Phi} \colon E \to E$

- has a spectral gap
- is analytic in φ

Statistical properties of a random variable X with respect to an invariant measure ν

$$\Leftrightarrow t \mapsto \mathbb{E}(e^{tX}) \text{ with respect to } \nu, \\ \text{i.e., } t \mapsto \left\langle e^{tX}, \nu \right\rangle$$

$$X = S_n(u) = \sum_{j=1}^{n-1} u \circ f^j$$

Nagaev, Guivarc'h; Baladi, Gouëzel, Liverani...

Statistical properties of X are encoded in the coefficients of the Taylor expansion of $t \mapsto \mathbb{E}(e^{tX})$

$$e^{tX} = e^{tu + tu \circ f + \dots + tu \circ f^{n-1}} \sim \mathcal{L}_{0+tu}^{n} \qquad \left\langle e^{tS_{n}(u)}, \mu \right\rangle = \left\langle \frac{f_{*}^{n} e^{tS_{n}(u)}}{d^{kn}}, \mu \right\rangle = \left\langle \frac{\mathcal{L}_{0+tu}^{n}(\mathbb{1})}{d^{kn}}, \mu \right\rangle$$

$$\left\langle e^{tS_{n}(u)},\mu\right\rangle =\langle$$

$$\left\langle \frac{\mathcal{L}_{0+tu}^{n}(\mathbb{1})}{d^{kn}}, \mu \right\rangle = \left\langle \frac{\mathcal{L}_{0+tu}^{n}(\mathbb{1})}{d^{kn}} \right\rangle$$

A larger class of invariant measures

$$\varphi = 0 \quad : \qquad \qquad f^* \mu = d^k \mu \quad \Rightarrow \quad f_* \mu = \mu$$

A larger class of invariant measures

$$\varphi = 0 :
\varphi \colon \mathbb{P}^k \to \mathbb{R}$$

$$f^*\mu = d^k\mu \quad \Rightarrow \quad f_*\mu = \mu$$

Conformal measure(s)

 m_{Φ} is a *conformal measure* if it is an eigenvalue for \mathcal{L}^* : $\exists \lambda$ such that $\mathcal{L}^*m_{\Phi}=\lambda m_{\Phi}$

$$\exists \lambda \in \mathbb{R}, \rho \colon \mathbb{P}^k \to \mathbb{R} \, \colon \, \forall g \in \mathfrak{C}^0 \colon \, \frac{\mathcal{L}^n g(y)}{\lambda^n} \to c_g \rho \Leftrightarrow \forall \nu \colon \quad \frac{\mathcal{L}^{*n} \nu}{\lambda^n} \to m_{\Phi}$$

Then

- ullet m_{Φ} is a conformal measure, $c_{m{g}}=\langle m_{\Phi}, m{g}
 angle$, and $\mathcal{L}(
 ho)=\lambda
 ho$
- $\mu_{\varphi} := \rho \textit{m}_{\varphi}$ is an invariant measure.

A larger class of invariant measures

$$\begin{aligned}
\phi &= 0 &: \\
\phi &: \mathbb{P}^k \to \mathbb{R}
\end{aligned}$$

$$f^*\mu=d^k\mu\quad\Rightarrow\quad f_*\mu=\mu$$

Conformal measure(s)

 m_{Φ} is a conformal measure if it is an eigenvalue for \mathcal{L}^* : $\exists \lambda$ such that $\mathcal{L}^*m_{\Phi}=\lambda m_{\Phi}$

$$\exists \lambda \in \mathbb{R}, \rho \colon \mathbb{P}^k \to \mathbb{R} \ \colon \ \forall g \in \mathbb{C}^0 \colon \ \frac{\mathcal{L}^n g(y)}{\lambda^n} \to c_g \rho \Leftrightarrow \forall \nu \colon \quad \frac{\mathcal{L}^{*n} \nu}{\lambda^n} \to m_{\Phi}$$

Then

- m_{Φ} is a conformal measure, $c_g = \langle m_{\Phi}, g \rangle$, and $\mathcal{L}(\rho) = \lambda \rho$
- $\mu_{\Phi}:=\rho m_{\Phi}$ is an invariant measure. More precisely, an equilibrium state

Equilibrium state(s)

- Pressure $P(\phi) = \max_{\nu} \{h_{\nu} + \int \phi \nu\}$, where h_{ν} is the metric entropy of the invariant measure ν .
- μ_{φ} is an equilibrium state for φ if $P(\varphi) = h_{\mu_{\varphi}} + \int \varphi \mu_{\varphi}$.

Statistical properties for equilibrium states

$$\begin{split} \boxed{ \left\langle e^{t\mathcal{S}_n(u)} h, \mu_{\varphi} \right\rangle } &= \left\langle e^{t\mathcal{S}_n(u)} h, \rho m_{\varphi} \right\rangle = \left\langle \lambda^{-n} \mathcal{L}_{\varphi}^n (\rho e^{t\mathcal{S}_n(u)} h), m_{\varphi} \right\rangle \\ &= \left\langle \rho \lambda^{-n} \mathcal{L}_{\varphi+tu}^n(h), m_{\varphi} \right\rangle = \left\langle \lambda^{-n} \mathcal{L}_{\varphi+tu}^n(h), \rho m_{\varphi} \right\rangle = \boxed{ \left\langle \lambda^{-n} \mathcal{L}_{\varphi+tu}^n(h), \mu_{\varphi} \right\rangle } \end{aligned}$$

Statistical properties of a random variable u with respect to the invariant measure μ_{Φ} (when this exists...)

(if they exist...)

 $\Leftrightarrow \begin{array}{l} \text{raylor coefficients of} \\ t \mapsto \left\langle \lambda^{-n} \mathcal{L}_{\Phi + tu}^n h, \mu_{\Phi} \right\rangle \end{array} \iff \begin{array}{l} t \mapsto \mathcal{L}_{\Phi + tu} \text{ analytic} \\ \text{and has a spectral gap} \\ \end{array}$ on some $(E, \|\cdot\|)$

Statistical properties for equilibrium states

$$\begin{split} \boxed{ \left\langle e^{tS_n(u)} h, \mu_{\Phi} \right\rangle } &= \left\langle e^{tS_n(u)} h, \rho m_{\Phi} \right\rangle = \left\langle \lambda^{-n} \mathcal{L}_{\Phi}^n (\rho e^{tS_n(u)} h), m_{\Phi} \right\rangle \\ &= \left\langle \rho \lambda^{-n} \mathcal{L}_{\Phi+tu}^n(h), m_{\Phi} \right\rangle = \left\langle \lambda^{-n} \mathcal{L}_{\Phi+tu}^n(h), \rho m_{\Phi} \right\rangle = \boxed{ \left\langle \lambda^{-n} \mathcal{L}_{\Phi+tu}^n(h), \mu_{\Phi} \right\rangle } \end{aligned}$$

Statistical properties of a random variable u with respect to the invariant measure μ_{Φ} (when this exists...)

$$\Leftrightarrow \begin{array}{l} \text{Taylor coefficients of} \\ t \mapsto \left\langle \lambda^{-n} \mathcal{L}_{\varphi+tu}^n h, \mu_{\varphi} \right\rangle \\ \text{(if they exist...)} \end{array} \Leftarrow \begin{array}{l} t \mapsto \mathcal{L}_{\varphi+tu} \text{ analytic} \\ \text{and has a spectral gap} \\ \text{on some} \ (E, \| \cdot \|) \end{array}$$

on some $(E, \|\cdot\|)$

- what is λ ? What is the regularity of ρ ?
- How do they depend on φ?
- $\|\lambda^{-n}\mathcal{L}^n g c_{\sigma}\rho\|_2 \to 0$
- $\lambda^{-1}\mathcal{L}$ contraction for $\|\cdot\|_{22}$

Theorem 1 (B.-Dinh)

 $\phi \colon \mathbb{P}^k \to \mathbb{R}$, \log^p -continuous for some p > 2, $\Omega(\phi) < \log d$. $\exists \lambda \in \mathbb{R}$, $\rho \colon \mathbb{P}^k \to \mathbb{R}$ such that

$$rac{\mathcal{L}_{\Phi}^{n}g}{\lambda^{n}}
ightarrow c_{g}
ho \qquad orall g\colon \mathbb{P}^{k}
ightarrow \mathbb{R}$$

In particular, $\exists !$ conformal measure $m_{\varphi} = \lambda^{-1} \mathcal{L}^* m_{\varphi}$, equilibrium state $\mu_{\varphi} = \rho m_{\varphi}$

- ullet ullet Holder: Denker-Urbanski, Przytycki '90-'91 (k=1), Urbanski-Zdunik '13 ($k\geqslant 1$)
- $\phi \log^q$ -continuous $\Leftrightarrow \Omega(\phi, r) \lesssim |\log r|^{-q}$

Theorem 1 (B.-Dinh)

 $\phi \colon \mathbb{P}^k \to \mathbb{R}$, \log^p -continuous for some p > 2, $\Omega(\phi) < \log d$. $\exists \lambda \in \mathbb{R}$, $\rho \colon \mathbb{P}^k \to \mathbb{R}$ such that

$$rac{\mathcal{L}_{\Phi}^{n}g}{\lambda^{n}}
ightarrow c_{g}
ho \qquad orall g\colon \mathbb{P}^{k}
ightarrow \mathbb{R}$$

In particular, $\exists !$ conformal measure $m_{\varphi}=\lambda^{-1}\mathcal{L}^*m_{\varphi}$, equilibrium state $\mu_{\varphi}=
ho m_{\varphi}$

- ullet ullet Holder: Denker-Urbanski, Przytycki '90-'91 (k=1), Urbanski-Zdunik '13 ($k\geqslant 1$)
- $\phi \log^q$ -continuous $\Leftrightarrow \Omega(\phi, r) \lesssim |\log r|^{-q}$

Classical method

- ullet find λ as an eigenvalue of \mathcal{L}^* (Schauder-Tikhonov Theorem)
- ullet study the sequence \mathcal{L}^n/λ^n and prove almost periodicity
- converging subsequences $\Rightarrow \rho \Rightarrow m_{\Phi}$, μ_{Φ}

Here

- We want to find λ intrinsically, as part of our method
- More flexible approach: replace all distortion estimates by a unique, global estimate

Theorem 2 (B.-Dinh) - New for all $k \geqslant 1$, even for φ smooth

For all $q>0, \gamma\leqslant 2$ there exist norms $\|\cdot\|_{\infty}+\|\cdot\|_{\log^q}\leqslant \|\cdot\|_{\diamond_1}\simeq \|\cdot\|_{\diamond_2}\leqslant \|\cdot\|_{\mathcal{C}^{\gamma}}$ depending on f such that when $\|\varphi\|_{\diamond_2}<\infty$

 $\textbf{ 1} \text{ there exists } \beta = \beta(\|\varphi\|_{\diamond_{\textbf{2}}}) < 1 \text{ such that: }$

$$\left\|\lambda^{-1}\mathcal{L}_{\Phi}g-\left\langle m_{\Phi},g\right\rangle \rho\right\|_{\diamond_{\mathbf{1}}}\leqslant\beta\left\|g-\left\langle m_{\Phi},g\right\rangle \rho\right\|_{\diamond_{\mathbf{1}}}$$

 \bullet $t\mapsto \mathcal{L}_{\Phi+t\psi}$ is analytic in t

Theorem 2 (B.-Dinh) - New for all $k \geqslant 1$, even for φ smooth

For all $q>0, \gamma\leqslant 2$ there exist norms $\|\cdot\|_{\infty}+\|\cdot\|_{\log^q}\leqslant \|\cdot\|_{\diamond_1}\simeq \|\cdot\|_{\diamond_2}\leqslant \|\cdot\|_{\mathcal{C}^{\gamma}}$ depending on f such that when $\|\varphi\|_{\diamond_2}<\infty$

• there exists $\beta = \beta(\|\phi\|_{\diamond_2}) < 1$ such that:

$$\left\|\lambda^{-1}\mathcal{L}_{\Phi}g-\left\langle m_{\Phi},g\right\rangle \rho\right\|_{\diamond_{\mathbf{1}}}\leqslant\beta\left\|g-\left\langle m_{\Phi},g\right\rangle \rho\right\|_{\diamond_{\mathbf{1}}}$$

 $m{e}$ $t\mapsto \mathcal{L}_{\Phi+t\psi}$ is analytic in t

Consequence $(A \Rightarrow B)$

When $\|\phi\|$, $\|u\|_{\circ_2} < \infty$, the sequence $u \circ f^n$ is almost like iid random variables on $(\mathbb{P}^k, \mu_{\Phi})$: strong ergodic properties (exponential mixing, mixing of all orders, Kmixing), Central Limit Theorem, Berry-Esseen Theorem, local Central Limit Theorem, Almost Sure Central Limit Theorem, Large Deviation Theorem and Principle, Almost Sure Invariant Principle, Law of iterated logarithms.

- Related results: Denker-Przytycki-Urbanski, Haydn, Smirnov, Makarov, Ruelle, Rivera-Letelier, Li... (k=1); Fornaess-Sibony, Dinh-Nguyen-Sibony, Szostakiewicz-Urbanski-Zdunik... ($k \ge 1$)
- Almost all statistical properties new for k > 1, many already for k = 1 and/or $\phi = 0$. All new for all $k \ge 1$ for non-Hölder continuous u or ϕ .

Theorem 1

 $\phi \colon \mathbb{P}^k \to \mathbb{R}$, \log^p -continuous for some p > 2, $\Omega(\phi) < \log d$. $\exists \lambda \in \mathbb{R}$, $\rho \colon \mathbb{P}^k \to \mathbb{R}$ such that

$$\frac{\mathcal{L}_{\varphi}^{n}g}{\lambda^{n}} \to c_{g}\rho \qquad \forall g \colon \mathbb{P}^{k} \to \mathbb{R}$$

In particular, $\exists !$ conformal measure $m_{\varphi}=\lambda^{-1}\mathcal{L}^*m_{\varphi}$, equilibrium state $\mu_{\varphi}=
ho m_{\varphi}$

Theorem 2

For all $q>0, \gamma\leqslant 2$ there exist norms $\|\cdot\|_{\infty}+\|\cdot\|_{\log^q}\leqslant \|\cdot\|_{\diamond_1}\simeq \|\cdot\|_{\diamond_2}\leqslant \|\cdot\|_{\mathcal{C}^{\gamma}}$ depending on f such that when $\|\varphi\|_{\diamond_2}<\infty$

• there exists $\beta = \beta(\|\phi\|_{\diamond 2}) < 1$ such that:

$$\left\| \lambda^{-1} \mathcal{L}_{\Phi} g - \left\langle m_{\Phi}, g \right\rangle \rho \right\|_{\diamond_{\mathbf{1}}} \leqslant \beta \left\| g - \left\langle m_{\Phi}, g \right\rangle \rho \right\|_{\diamond_{\mathbf{1}}}$$

 $2 t \mapsto \mathcal{L}_{\Phi + t\psi}$ is analytic in t

Hölder and log^q-continuous functions

$$\begin{split} \varphi \in \mathfrak{C}^{\gamma} &\Leftrightarrow & \Omega(\varphi, r) \lesssim r^{\gamma} \\ \varphi &\in \log^q &\Leftrightarrow & \Omega(\varphi, r) \lesssim |\log r|^{-q} \end{split}$$

Viewpoint from interpolation theory:

$$\begin{split} \varphi &= \varphi_{\varepsilon}^1 + \varphi_{\varepsilon}^2, \quad \left\| \varphi_{\varepsilon}^2 \right\|_{\infty} < \varepsilon, \quad \boxed{ \left\| \varphi_{\varepsilon}^1 \right\|_{\mathbb{C}^2} ? } \\ \varphi &\in \mathbb{C}^{\gamma} \iff \left\| \varphi_{\varepsilon}^1 \right\|_{\mathbb{C}^2} \lesssim (1/\varepsilon)^{2/\gamma} \\ \varphi &\in \mathsf{log}^q \iff \left\| \varphi_{\varepsilon}^1 \right\|_{\mathbb{C}^2} \lesssim e^{(1/\varepsilon)^{1/q}} \end{split}</math$$

We will need $\emph{summable errors} \Rightarrow \varepsilon = 1/j^2$

 \Rightarrow q>2: φ can be approximated with functions $\varphi_j:=\varphi_{1/j}^1$ whose \mathbb{C}^2 norms diverge sub-exponentially in j

Idea of the method

Classical

- ullet find λ as an eigenvalue of \mathcal{L}^* (Schauder-Tikhonov Theorem)
- study the sequence \mathcal{L}^n/λ^n and prove almost periodicity
- converging subsequences $\Rightarrow \rho \Rightarrow m_{\Phi}$, μ_{Φ}

Here

- We want to find λ intrinsically, as part of our method
- We just normalize (for g positive) by $\int \mathcal{L}^n g$ Leb, or $\min \mathcal{L}^n g$, and we will see the exponential behaviour later.

For simplicity: $\phi \in \mathcal{C}^2$, g = 1. Denote $\mathbb{1}_n := \mathcal{L}^n \mathbb{1}$ and $\mathbb{1}_n^* = \mathbb{1}_n / \min \mathbb{1}_n$.

Idea

We prove that $\max \mathbb{1}_n^* = \max \mathbb{1}_n / \min \mathbb{1}_n$ is bounded

Method: finding λ

Idea

We prove that $\max \mathbb{1}_n^* = \max \mathbb{1}_n / \min \mathbb{1}_n$ is bounded

Then:

$$\begin{cases} \max \mathbb{1}_{n+m} \leqslant \max \mathbb{1}_n \cdot \max \mathbb{1}_m \\ \min \mathbb{1}_{n+m} \geqslant \min \mathbb{1}_n \cdot \min \mathbb{1}_m \\ \max \mathbb{1}_n / \min \mathbb{1}_n \leqslant C \end{cases} \Rightarrow \boxed{\lambda := \inf_n (\max \mathbb{1}_n)^{1/n} := \sup_n (\min \mathbb{1}_n)^{1/n}}$$

To bound \max / \min , we bound $\Omega / \min = (\max - \min) / \min$

We need to bound $\Omega(\mathbb{1}_n^*)$

Bounding the oscillation (k = 1 for simplicity)

Bound on $dd^c \Rightarrow$ bound on oscillation

Lemma (Heuristic version)

 $dd^cg \leqslant dd^ch$ then $\Omega(g,r) \lesssim \Omega(h,r)$.

Bounding the oscillation (k = 1 for simplicity)

Bound on $dd^c \Rightarrow$ bound on oscillation

Lemma (Heuristic version)

 $dd^cg \leqslant dd^ch \text{ then } \Omega(g,r) \lesssim \Omega(h,r).$

Lemma (More precise version)

- $\Omega(g, r) \lesssim \Omega(h, \sqrt{r}) + A\sqrt{r}$.
- if $dd^c g_n \leqslant R$ with continuous potentials, then the family g_n is equicontinous.

Here we want

$$dd^{c}\mathbb{1}_{n}^{*}\leqslant R$$

for some uniform R, for which we control the regularity of the potential

Bounding the oscillation of $\mathbb{1}_n^*$

Development of $\mathbb{1}_n$

$$dd^{c}\mathbb{1}_{n}=dd^{c}\left(\sum_{f^{n}(x)=y}e^{\phi+\phi(f(x))+...\phi(f^{n-1}(x))}\mathbb{1}\right)$$

Bounding the oscillation of $\mathbb{1}_n^*$

Development of $\mathbb{1}_n$

$$dd^{c}\mathbb{1}_{n} = dd^{c}\left(\sum_{f^{n}(x)=y} e^{\phi + \phi(f(x)) + \dots \phi(f^{n-1}(x))} \mathbb{1}\right)$$

$$= \sum_{f^{n}(x)=y} e^{\phi + \phi(f(x)) + \dots \phi(f^{n-1}(x))} \left(\sum_{j=0}^{n-1} dd^{c} \phi(f^{j}(x)) + \sum_{j,l=0}^{n-1} \partial \phi(f^{j}(x) \wedge \overline{\partial} \phi(f^{l}(x))\right)$$

Bounding the oscillation of $\mathbb{1}_n^*$

Development of $\mathbb{1}_n$

$$dd^{c}\mathbb{1}_{n} = dd^{c} \left(\sum_{f^{n}(x)=y} e^{\phi + \phi(f(x)) + \dots \phi(f^{n-1}(x))} \mathbb{1} \right)$$

$$= \sum_{f^{n}(x)=y} e^{\phi + \phi(f(x)) + \dots \phi(f^{n-1}(x))} \left(\sum_{j=0}^{n-1} dd^{c} \phi(f^{j}(x)) + \sum_{j,l=0}^{n-1} \partial \phi(f^{j}(x) \wedge \overline{\partial} \phi(f^{l}(x)) \right)$$

(more complicated with g, ϕ less regular)

$$\begin{split} dd^c\mathbb{1}_n^* \lesssim \sum_{j=0}^n \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j \Omega(\mathbb{1}_{n-j}^*) \, \|\varphi\|_{\mathcal{C}^2} \, f_*^{j-1} \, \mathsf{Leb} \\ \lesssim \sum_{j=0}^\infty \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j f_*^{j-1} \, \mathsf{Leb} \end{split}$$

Ok for mass. We still need to estimate the oscillation of the potential of the RHS. But what is this potential?

(Dynamical) potentials

$$Leb = \mu + dd^c u_0 \qquad f_*^j Leb = \mu + dd^c u_j$$

- $-u_0$ is the Green function, which is γ -Hölder.
- Up to a Hölder continuous function, the potential of

$$\sum_{j=0}^{\infty} \left(\frac{\mathrm{e}^{\Omega(\varphi)}}{d}\right)^j f_*^{j-1} \, \mathrm{Leb} \quad \text{ is given by } \quad \sum_{j=0}^n \left(\frac{\mathrm{e}^{\Omega(\varphi)}}{d}\right)^j u_j$$

(Dynamical) potentials

$$Leb = \mu + dd^c u_0 \qquad f_*^j Leb = \mu + dd^c u_j$$

- $-u_0$ is the Green function, which is γ -Hölder.
- Up to a Hölder continuous function, the potential of

$$\sum_{j=0}^{\infty} \left(\frac{e^{\Omega(\phi)}}{d}\right)^j f_*^{j-1} \text{ Leb} \quad \text{ is given by } \quad \sum_{j=0}^n \left(\frac{e^{\Omega(\phi)}}{d}\right)^j u_j$$

Lemma

- **1** u_j is $\gamma/2^j$ Hölder.
- $||u_i||_{\infty} \lesssim d^n/\delta^n$ for all $\delta < d$.

$$\Rightarrow \sum_{j=0}^{\infty} \left(\frac{e^{\Omega(\phi)}}{d} \right) u_j \in \log^p \quad \forall p$$
$$\Rightarrow \|\mathbb{1}_n^*\|_{\log^p} < C_p \quad \forall n, p$$

When ϕ is not \mathbb{C}^2

$$\phi \in \log^q \Rightarrow \begin{cases} \varphi = \varphi_j^1 + \varphi_j^2 \\ \|\varphi_j^2\|_{\infty} \leqslant 1/j^2 \\ \|\varphi_j^1\|_{\mathbb{C}^2} \leqslant e^{j^2/q} \leftarrow \text{ sub-exponential} \end{cases}$$

$$dd^c\mathbb{1}_n^* \lesssim \sum_{j=1}^n \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j \Omega(\mathbb{1}_{n-j}^*) \left\|\varphi_j^1\right\|_{\mathcal{C}^2} f_*^{j-1} \operatorname{\mathsf{Leb}}$$

 \Rightarrow Existence and uniqueness of equilibrium state and conformal measure for all ϕ with $\|\phi\|_{\log^q}<\infty$ for some q>2 (Theorem 1)

When ϕ is not \mathbb{C}^2

$$\phi \in \mathsf{log}^q \Rightarrow \begin{cases} \varphi = \varphi_j^1 + \varphi_j^2 \\ \|\varphi_j^2\|_\infty \leqslant 1/j^2 \\ \|\varphi_j^1\|_{\mathbb{C}^2} \leqslant e^{j^2/q} \leftarrow \text{ sub-exponential} \end{cases}$$

$$dd^c\mathbb{1}_n^* \lesssim \sum_{j=1}^n \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j \Omega(\mathbb{1}_{n-j}^*) \left\|\varphi_j^1\right\|_{\mathcal{C}^2} f_*^{j-1} \operatorname{\mathsf{Leb}}$$

 \Rightarrow Existence and uniqueness of equilibrium state and conformal measure for all φ with $\|\varphi\|_{\log^q}<\infty$ for some q>2 (Theorem 1)

Second (and main) goal: find a norm so that this convergence becomes a contraction in a suitable space of functions.

Norm and spectral gap

First consider the case $\phi = 0$

DSH norm (Dinh-Sibony)

$$\|g\|_{DSH}=\min\|R^+\|$$
, where $dd^cg=R^+-R^-$, R^\pm positive measures

Then

$$\left\|\frac{f_*g}{d}\right\|_{DSH} \leqslant \frac{1}{d}\left\|f_*R^+ - f_*R^-\right\| = \frac{1}{d}\left\|g\right\|_{DSH}$$

Norm and spectral gap

First consider the case $\boldsymbol{\varphi}=\boldsymbol{0}$

DSH norm (Dinh-Sibony)

$$\|g\|_{DSH}=\min\|R^+\|$$
, where $dd^cg=R^+-R^-$, R^\pm positive measures

Then

$$\left\| \frac{f_* g}{d} \right\|_{DSH} \leqslant \frac{1}{d} \left\| f_* R^+ - f_* R^- \right\| = \frac{1}{d} \left\| g \right\|_{DSH}$$

Here, if we try to do the same

$$\begin{split} dd^c \mathcal{L}_{\varphi}(g) \sim \sum_{f(x)=y} e^{\varphi(x)} dd^c g + g dd^c \varphi e^{\varphi} + e^{\varphi} \partial g \overline{\partial} \varphi + e^{\varphi} \partial \varphi \overline{\partial} g \\ dd^c \mathcal{L}_{\varphi}^n(g) \sim \dots \end{split}$$

$$dd^c\mathcal{L}_{\varphi}(g)\sim \sum_{f(x)=y}e^{\varphi(x)}dd^cg+gdd^c\varphi e^{\varphi}+e^{\varphi}\partial g\overline{\partial}\varphi+e^{\varphi}\partial\varphi\overline{\partial}g$$

- The operator dd^c is complex (commutes with f_*). Here non complex perturbation $(f_*(e^{\phi} \cdot))$. No way to keep complex norm like DSH even if ϕ is smooth.
- Serious problem for norm is given by mixed terms.
- f_* does not work well with Hölder, so need weaker.

$$dd^c\mathcal{L}_{\varphi}(g) \sim \sum_{f(x) = y} e^{\varphi(x)} dd^c g + g dd^c \varphi e^{\varphi} + e^{\varphi} \partial g \overline{\partial} \varphi + e^{\varphi} \partial \varphi \overline{\partial} g$$

- The operator dd^c is complex (commutes with f_*). Here non complex perturbation $(f_*(e^{\phi} \cdot))$. No way to keep complex norm like DSH even if ϕ is smooth.
- Serious problem for norm is given by mixed terms.
- f_* does not work well with Hölder, so need weaker.

Idea 0

Use a norm with bound on dd^c + regularity; then obtain spectral gap on "real" norm by interpolation. We use pluripotential theory to study the norm with dd^c .

$$dd^c\mathcal{L}_{\varphi}(g)\sim \sum_{f(x)=y}e^{\varphi(x)}dd^cg+gdd^c\varphi e^{\varphi}+e^{\varphi}\partial g\overline{\partial}\varphi+e^{\varphi}\partial\varphi\overline{\partial}g$$

- The operator dd^c is complex (commutes with f_*). Here non complex perturbation $(f_*(e^{\phi} \cdot))$. No way to keep complex norm like DSH even if ϕ is smooth.
- Serious problem for norm is given by mixed terms.
- \bullet f_* does not work well with Hölder, so need weaker.

Idea 0

Use a norm with bound on dd^c + regularity; then obtain spectral gap on "real" norm by interpolation. We use pluripotential theory to study the norm with dd^c .

Idea 1

Use something like $\|\cdot\|_p \cong \|\cdot\|_{DSH} + \|\cdot\|_{\log^p} \left(\|\nu\|_p \cong \|\nu\|_* + \|u_\nu\|_{\log^p} \text{ for measures}\right)$

$$\|\cdot\|_p :\cong \|\cdot\|_{DSH} + \|\cdot\|_{\log^p}$$

Lemma

$$\left\| \partial g \wedge \overline{\partial} h \right\|_{p} \leqslant \|g\|_{p} \|h\|_{p}$$

$$\|\cdot\|_p :\cong \|\cdot\|_{DSH} + \|\cdot\|_{\log^p}$$

Lemma

$$\left\| \partial g \wedge \overline{\partial} h \right\|_{p} \leqslant \|g\|_{p} \|h\|_{p}$$

... but other problems: loss of regularity!

$$\frac{dd^c\mathbb{1}_n}{\lambda^n} \lesssim \left(\frac{e^{\Omega(\varphi)}}{d}\right)^n f_*^n dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j \left\|\frac{\mathcal{L}^{n-j}g}{\lambda^{n-j}}\right\|_{\infty} f_*^{j-1} dd^c \varphi + \dots$$

The potential of the RHS is

$$\left(\frac{e^{\Omega(\phi)}}{d}\right)^{n} f_{*}^{n} g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d}\right)^{j} \left\|\frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}}\right\|_{\infty} f_{*}^{j-1} \phi + \cdots \in ???$$

$$\|\cdot\|_p :\cong \|\cdot\|_{DSH} + \|\cdot\|_{\log^p}$$

Lemma

$$\left\|\partial g \wedge \overline{\partial} h\right\|_{p} \leqslant \|g\|_{p} \|h\|_{p}$$

... but other problems: loss of regularity!

$$\frac{dd^c\mathbb{1}_n}{\lambda^n} \lesssim \left(\frac{e^{\Omega(\varphi)}}{d}\right)^n f_*^n dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j \left\|\frac{\mathcal{L}^{n-j}g}{\lambda^{n-j}}\right\|_\infty f_*^{j-1} dd^c \varphi + \dots$$

The potential of the RHS is

$$\left(\frac{e^{\Omega(\phi)}}{d}\right)^{n} f_{*}^{n} g + \sum_{j=1}^{n} \left(\frac{e^{\Omega(\phi)}}{d}\right)^{j} \left\|\frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}}\right\|_{\infty} f_{*}^{j-1} \phi + \cdots \in ???$$

Lemma

$$\left\|d^{-j}f_*^j\varphi\right\|_{\log^p}\leqslant c_p(A)A^n\left\|\varphi\right\|_{\log^p}$$
 for all $A>1$

Theorem

 $\|\phi\|_p < \infty$ then $\|f_*^j \phi/d^j\|_{\infty} \to 0$ exponentially (precise bounds).

$$\Rightarrow \left(\frac{e^{\Omega(\varphi)}}{d}\right)^n f_*^n g + \sum_{i=1}^n \left(\frac{e^{\Omega(\varphi)}}{d}\right)^j \left\|\frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}}\right\|_{\infty} f_*^j \varphi \in \log^q \text{ for some explicit } q < p$$

 \Rightarrow convergence $\|\lambda^{-n}\mathcal{L}_{\Phi}^n g\|_{\sigma} \to 0$, uniform in g, but no spectral gap yet!

Idea 2: a dynamical norm

Definition

$$\|R\|_{\alpha,p} := \min c \colon R \leqslant c \sum_{j} \alpha^{j} f_{*}^{j} S \text{ for some } \|S\|_{p} \leqslant 1.$$

By definition: $\|f_*R\|_{\alpha,p} \leqslant \frac{1}{\alpha} \|R\|_{\alpha,p}$

$$\Rightarrow \left\| \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_*^n dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} f_*^{j-1} dd^c \phi \right\|_{\alpha,p}$$

$$\leq \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^n \left\| dd^c g \right\|_{\alpha,p} + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^j \left\| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} \left\| dd^c \phi \right\|_{\alpha,p}$$

$$\leq c_n \left\| dd^c g \right\|_{\alpha,p} \to 0!$$

Idea 2: a dynamical norm

Definition

$$\|R\|_{\alpha,p} := \min c \colon R \leqslant c \sum_{j} \alpha^{j} f_{*}^{j} S \text{ for some } \|S\|_{p} \leqslant 1.$$

By definition: $\|f_*R\|_{\alpha,p} \leqslant \frac{1}{\alpha} \|R\|_{\alpha,p}$

$$\begin{split} &\Rightarrow \left\| \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_*^n dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} f_*^{j-1} dd^c \phi \right\|_{\alpha,p} \\ &\leqslant \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^n \left\| dd^c g \right\|_{\alpha,p} + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^j \left\| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} \left\| dd^c \phi \right\|_{\alpha,p} \\ &\leqslant c_n \left\| dd^c g \right\|_{\alpha,p} \to 0! \end{split}$$

Where is the problem?

Idea 2: a dynamical norm

Definition

$$\|R\|_{\alpha,p} := \min c \colon R \leqslant c \sum_{j} \alpha^{j} f_{*}^{j} S \text{ for some } \|S\|_{p} \leqslant 1.$$

By definition: $\|f_*R\|_{\alpha,p} \leqslant \frac{1}{\alpha} \|R\|_{\alpha,p}$

$$\Rightarrow \left\| \left(\frac{e^{\Omega(\phi)}}{d} \right)^n f_*^n dd^c g + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{d} \right)^j \left\| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} f_*^{j-1} dd^c \phi \right\|_{\alpha,p}$$

$$\leq \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^n \left\| dd^c g \right\|_{\alpha,p} + \sum_{j=1}^n \left(\frac{e^{\Omega(\phi)}}{\alpha d} \right)^j \left\| \frac{\mathcal{L}^{n-j} g}{\lambda^{n-j}} \right\|_{\infty} \left\| dd^c \phi \right\|_{\alpha,p}$$

$$\leq c_n \left\| dd^c g \right\|_{\alpha,p} \to 0!$$

Where is the problem? We did not consider the mixed terms!

The problem of the mixed terms

Definition

$$\|g\|_{\alpha,p}:=\|dd^cg\|:=\min c\colon dd^cg\leqslant c\textstyle\sum_j\alpha^jf_*^jS \text{ for some } \|S\|_p\leqslant 1.$$

Then we have

$$dd^{c}(gh) = gdd^{c}h + hdd^{c}g + i\partial g \wedge \overline{\partial}h + i\partial h \wedge \overline{\partial}g$$
$$\|dd^{c}gh\|_{\alpha,p} \leq \|g\|_{\infty} \|dd^{c}h\|_{\alpha,p} + \|h\|_{\infty} \|dd^{c}g\|_{\alpha,p} + \|i\partial g \wedge \overline{\partial}h + i\partial h \wedge \overline{\partial}g\|_{\alpha,p}$$

The problem of the mixed terms

Definition

$$\|g\|_{\alpha,p}:=\|dd^cg\|:=\min c\colon dd^cg\leqslant c\textstyle\sum_j\alpha^jf_*^jS \text{ for some } \|S\|_p\leqslant 1.$$

Then we have

$$dd^{c}(gh) = gdd^{c}h + hdd^{c}g + i\partial g \wedge \overline{\partial}h + i\partial h \wedge \overline{\partial}g$$
$$\|dd^{c}gh\|_{\alpha,p} \leq \|g\|_{\infty} \|dd^{c}h\|_{\alpha,p} + \|h\|_{\infty} \|dd^{c}g\|_{\alpha,p} + \|i\partial g \wedge \overline{\partial}h + i\partial h \wedge \overline{\partial}g\|_{\alpha,p}$$

Modified definition

$$\|g\|_{\alpha,\rho}^2 := \left\|i\partial g \wedge \overline{\partial} g\right\| := \min c \colon i\partial g \wedge \overline{\partial} g \leqslant c \textstyle \sum_j \alpha^j f_*^j S, \|S\|_\rho \leqslant 1.$$

$$\|g\|_{\alpha,p}^2 := \left\| i \partial g \wedge \overline{\partial} g \right\| := \min c \colon i \partial g \wedge \overline{\partial} g \leqslant c \sum_j \alpha^j f_*^j S \text{ for some } \|S\|_p \leqslant 1.$$

- ok for mixed terms
- still good shifting property (less direct)
- spectral gap

$$\|g\|_{\alpha,\rho}^2:=\left\|i\partial g\wedge\overline{\partial} g\right\|:=\min c\colon i\partial g\wedge\overline{\partial} g\leqslant c\sum_j\alpha^jf_*^jS\text{ for some }\|S\|_p\leqslant 1.$$

- ok for mixed terms
- still good shifting property (less direct)
- spectral gap ?

Main issue... all the method was based on the

Lemma

$$dd^c g \leqslant dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r)$$

We need

Lemma

$$\partial g \wedge \overline{\partial} g \leqslant dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r)$$

$$\|g\|_{\alpha,\rho}^2:=\left\|i\partial g\wedge\overline{\partial} g\right\|:=\min c\colon i\partial g\wedge\overline{\partial} g\leqslant c\sum_j\alpha^jf_*^jS\text{ for some }\|S\|_p\leqslant 1.$$

- ok for mixed terms
- still good shifting property (less direct)
- spectral gap ? YES!

Main issue... all the method was based on the

Lemma

$$dd^c g \leqslant dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r)$$

We need

Lemma

$$\partial g \wedge \overline{\partial} g \leqslant dd^c h \Rightarrow \Omega(g, r) \lesssim \Omega(h, r)$$

Much more involved but true!

Spectral gap(s) by interpolation

We have a spectral gap for the norm $\|g\|_{\alpha,\rho}^2 := \|\partial g \wedge \overline{\partial} g\|_{\alpha,\rho}$ \Rightarrow We build a γ -Hölder-like norm from $\|\cdot\|_{\alpha,\rho}$:

Definition

$$\|g\|_{\alpha,p,\gamma} \coloneqq \min c \colon \forall 0 < \epsilon < 1 \colon \begin{cases} g = g_{\epsilon}^1 + g_{\epsilon}^2 \\ \|g_{\epsilon}^2\|_{\infty} \leqslant c\epsilon \\ \|g_{\epsilon}^1\|_{\alpha,p} \leqslant c(1/\epsilon)^{1/\gamma} \end{cases}$$

- $\log^q \leqslant \|\cdot\|_{\alpha,p,\gamma} \leqslant \|\cdot\|_{\mathcal{C}^{\gamma}}$
- Interpolation techniques (all the method is stable under "sub-exponential perturbations"):

Spectral gap for $\|\cdot\|_{\alpha,p,\gamma} \lesssim \mathcal{C}^{\gamma}$

Thank you for your attention!