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Potential theory and the Julia Set

Recall the following result of Lyubich and Friere/Lopes/Manẽ.

Theorem

Let f : P1 → P1 be rational with deg f ≥ 2. Then ∃ an f -invariant
ergodic probability measure µ with suppµ = J (f ), obtained as the
weak limit of preimages of any non-exceptional point z ∈ P1:

lim
1

(deg f )n

∑
f n(w)=z

δw = µ.

In particular, we have backward invariance f ∗µ = (deg f ) · µ
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Two complex variables

Examples of rational maps of two complex variables:

Monomial map: hA(x1, x2) := (xA11
1 xA12

2 , xA21
1 xA22

2 ) for some
non-singular 2× 2 integer matrix A.

Birational involution: g(x1, x2) =
(
x1

1−x1+x2
x1+x2−1 , x2

1+x1−x2
x1+x2−1

)
.

Main character: f := g ◦ hA.
Any smooth compact rational surface X can be the domain of f .
Choose X = P2 for now. In general ∃ (domain dependent) sets:

Ind(fX ) = finite set of ‘indeterminacy’ points where
f : X 99K X is undefined.

Exc(fX ) = finite union of ‘exceptional’ (algebraic) curves fX
contracts to points.
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Degrees in dimC = 2

For rational f : P2 99K P2, ∃ several relevant ‘degrees’.

Topological degree dtop(f ) := #f −1(x) for general x ∈ P2;

Algebraic degree dalg (f ) := deg f −1(H), for general line
H ⊂ P2.

Dynamical degree λ(f ) := limn→∞ dalg (f
n)1/n ≤ dalg (f ).

Cases:

Involution eg. dalg (g) = 2, dtop(g) = λ(g) = 1;

Monomial egs. dtop(hA) = | detA|,
λ(hA) = max |eigenvalue of A|, dalg (hA) = exercise.
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Algebraic stability

Definition

A rational map f is algebraically stable on a rational surface X if
f nX (Exc(fX )) ∩ I (fX ) = ∅ for all n > 0.

Proposition

If fX : X 99K X is an algebraically stable rational map on a rational
surface X , then for all n ̸= 0,

(f nX )
∗ = (f ∗X )

n : H2(X ,R) → H2(X ,R).

It follows that λ(f ) is the the spectral radius of f ∗X , in particular an
algebraic integer.
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Invariant currents for algebraically stable maps

Theorem (D-Dujardin-Guedj)

Let fX : X 99K X be an algebraically stable rational map on a
smooth rational surface X . If λ(f )2 > dtop(f ), then ∃ a positive
closed (1, 1) current T ∗ on X such that f ∗XT

∗ = λT ∗.

If in fact λ(f ) > dtop(f ), then

T ∗ does not charge curves in X ;

For almost all irreducible curves H ⊂ X there exists c(H) > 0
such that

f −n
X (H)

λ(f )n
= cT ∗;

T ∗ is strongly laminar;
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Monomial maps and toric surfaces

A toric surface is, for present purposes, a smooth projective surface
X with an embedding (C∗)2 ↪→ X of the algebraic 2-torus such
that

The natural action of (C∗)2 on itself extends holomorphically
to X ;

(alternatively) X can be obtained1 from P2 by repeated
‘satellite’ blowups along the coordinate axes.

(alternatively) the irreducible components of X \ (C∗)2 are the
simple poles of the meromorphic 2-form η := dx1∧dx2

x1x2
.

Irreducible components of X \ (C∗)2 are indexed by a finite set
Σ1(X ) of rational rays σ ⊂ R2 (= NR).

1convenient fib alert
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Toric surfaces and monomial maps (cont)

Any monomial map hA is a self-cover of (C∗)2, semiconjugated to
A : R2 → R2 via the ‘logarithm’ map

L(x) := (− log |x1|,− log |x2|).

This makes it easy to understand the extension of hA to a toric
surface.

Theorem (Favre)

Suppose ζ ∈ Z[i ] satisfies 1
2π arg ζ /∈ Q. If A =

(
Re ζ − Im ζ
Im ζ Re ζ

)
,

then there exists no surface X such that hA : X 99K X is
algebraically stable.
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Toric maps

Jan-Li Lin and I considered the following class of rational maps at
length.

Definition

A rational map f : (C∗)2 99K (C∗)2 is toric if f ∗η = δη for some
δ ∈ C∗.

A monomial map hA is toric with δ = detA;

The above involution g is toric with δ = 1;

Compositions of toric maps are toric (e.g. f := g ◦ hA);
(Blanc) The full group of toric birational surface maps is
known;

Question: are all toric maps finite compositions of monomial
and birational toric maps?
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Toric maps: good news/bad news

Toric maps f do not usually respect the group structure of (C∗)2,
but they act fairly well on toric surfaces. If X and Y are toric
surfaces, then

there exists a toric blowup X̂ → X such that
Ind(f ) := Ind(fX̂Y ) is a finite subset of X̂ \ (C∗)2 with image
fX̂Y (Ind(f )) equal to finitely many ‘internal’ curves in Y ;

. . . analogous statement for the exceptional set
Exc(f ) := Exc(fXŶ ) under suitable toric blowup Ŷ → Y of
the range.

These ‘persistent’ indeterminacy and exceptional sets and
their images by f are independent of the toric surfaces.

f maps ‘poles to poles’ according to some induced
1-homogeneous PL map Tf : R2 → R2.
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The bad map

Let A be the matrix associated to multiplication by ζ ∈ C[i ] with
ζn /∈ C for any n > 0. From now on f = g ◦ hA. Note f is a toric
map with Tf = ThA = A.

Theorem (Bell-D-Jonsson)

The dynamical degree λ(f ) of such a map is transcendental.

Remarks: λ(f )2 > dtop always, but one can choose A to get either
λ(f ) > dtop(f ) or λ(f ) < dtop(f ).

Proposition (It’s not that bad)

f is ‘internally stable’. That is, f n(Exc(f )) ∩ Ind(f ) = ∅ for any
n ∈ N.

Warning: to make sense of the last sentence, the domain and
range toric surfaces need to be different and depend on n.
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The main theorem:

Theorem (D-Roeder)

There exists a positive closed current T ∗ (independent of the toric
surface) such that

T ∗ does not charge curves;

f ∗T ∗|(C∗)2 = λT ∗;

for any internal curve C ⊂ X , there exists c > 0 such that

lim
n→∞

1

λ(f )n
f n∗C |(C∗)2 = cT ∗;

hence T ∗ is strongly laminar.
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The bad map is good to volume

Key (new) ingredients in the proof. First,

Theorem

Given a toric surface X with volume form dV and ρ > dtop, there
exist constants a, b > 0 such that for any open U ⊂ X and any
n ≥ 0,

Vol(f n(U)) ≥ (aVol(U))bρ
n/2

.

The invariant two form η and the fact that A acts by irrational
rotation on R2 are important in the proof of this fact.
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Every class on every toric surface, all at once

An idea from Boucksom/Favre/Jonsson and Cantat.

If X and Y are toric surfaces, then we say X ≻ Y if the
birational map µXY : X → Y is a morphism.

Identify a class αX ∈ H2(X ,R) with its pushforward
αY = µXY ∗αX .

A toric class α ∈ H2 is a choice of a class αX on every toric
surface X compatible under pushforwards by birational
morphisms.

Corollary

There exists a nef class θ∗ ∈ H2 such that for any other nef class
θ ∈ H2, we have

lim
n→∞

1

λ(f )n
f n∗θ = c(θ)θ∗,

where c(θ) > 0 depends linearly on θ. In particular f ∗θ∗ = λθ∗.
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Currents and classes

One can define (positive) toric currents exactly the same way as
toric classes.

Toric currents S ,T are completely cohomologous if for each
toric surface X the representatives TX and SX are
cohomologous.

Then SX −TX = ddcφ for φ integrable and independent of X .

T and its complete cohomologues define a toric class.

Conversely each (nef) toric class has a canonical (positive)
‘homogeneous’ representative.

Positive toric currents in a compact set of nef classes form a
compact set in the weak topology. . .

. . . which leads to uniform volume estimates for sublevel sets
of potentials.

. . . yada, yada, yada.
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I’m done now

Thanks to the organizers and to MSRI, and thanks for your
attention!
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