Invariant currents for surface maps with transcendental dynamical degrees

Jeffrey Diller

Unversity of Notre Dame

Adventurous Berkeley Complex Dynamics May 6, 2022

Joint work in progress with Roland Roeder

Recall the following result of Lyubich and Friere/Lopes/Manẽ.

Theorem

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be rational with deg $f \ge 2$. Then \exists an f-invariant ergodic probability measure μ with supp $\mu = \mathcal{J}(f)$, obtained as the weak limit of preimages of any non-exceptional point $z \in \mathbb{P}^1$:

$$\lim \frac{1}{(\deg f)^n} \sum_{f^n(w)=z} \delta_w = \mu.$$

In particular, we have *backward* invariance $f^*\mu = (\deg f) \cdot \mu$

Examples of rational maps of two complex variables:

- Monomial map: $h_A(x_1, x_2) := (x_1^{A_{11}} x_2^{A_{12}}, x_1^{A_{21}} x_2^{A_{22}})$ for some non-singular 2 × 2 integer matrix A.
- Birational involution: $g(x_1, x_2) = \left(x_1 \frac{1-x_1+x_2}{x_1+x_2-1}, x_2 \frac{1+x_1-x_2}{x_1+x_2-1}\right).$
- Main character: $f := g \circ h_A$.

Any smooth compact rational surface X can be the domain of f. Choose $X = \mathbb{P}^2$ for now. In general \exists (domain dependent) sets:

- Ind(f_X) = finite set of 'indeterminacy' points where
 f : X → X is undefined.
- Exc(f_X) = finite union of 'exceptional' (algebraic) curves f_X contracts to points.

For rational $f : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, \exists several relevant 'degrees'.

- Topological degree $d_{top}(f) := \#f^{-1}(x)$ for general $x \in \mathbb{P}^2$;
- Algebraic degree d_{alg}(f) := deg f⁻¹(H), for general line H ⊂ P².
- Dynamical degree $\lambda(f) := \lim_{n \to \infty} d_{alg}(f^n)^{1/n} \le d_{alg}(f)$. Cases:
 - Involution eg. $d_{alg}(g) = 2$, $d_{top}(g) = \lambda(g) = 1$;
 - Monomial egs. $d_{top}(h_A) = |\det A|$, $\lambda(h_A) = \max |\text{eigenvalue of } A|$, $d_{alg}(h_A) = \text{exercise.}$

Definition

A rational map f is algebraically stable on a rational surface X if $f_X^n(\operatorname{Exc}(f_X)) \cap I(f_X) = \emptyset$ for all n > 0.

Proposition

If $f_X : X \dashrightarrow X$ is an algebraically stable rational map on a rational surface X, then for all $n \neq 0$,

$$(f_X^n)^* = (f_X^*)^n : H^2(X, \mathbb{R}) \to H^2(X, \mathbb{R}).$$

It follows that $\lambda(f)$ is the the spectral radius of f_X^* , in particular an algebraic integer.

Theorem (D-Dujardin-Guedj)

Let $f_X : X \dashrightarrow X$ be an algebraically stable rational map on a smooth rational surface X. If $\lambda(f)^2 > d_{top}(f)$, then \exists a positive closed (1,1) current T^* on X such that $f_X^*T^* = \lambda T^*$.

If in fact $\lambda(f) > d_{top}(f)$, then

- T^{*} does not charge curves in X;
- For almost all irreducible curves H ⊂ X there exists c(H) > 0 such that

$$\frac{f_X^{-n}(H)}{\lambda(f)^n} = cT^*;$$

• T* is strongly laminar;

A *toric surface* is, for present purposes, a smooth projective surface X with an embedding $(\mathbb{C}^*)^2 \hookrightarrow X$ of the algebraic 2-torus such that

- The natural action of (ℂ*)² on itself extends holomorphically to X;
- (alternatively) X can be obtained¹ from \mathbb{P}^2 by repeated 'satellite' blowups along the coordinate axes.
- (alternatively) the irreducible components of X \ (C*)² are the simple poles of the meromorphic 2-form η := dx₁∧dx₂/x₁x₂.

Irreducible components of $X \setminus (\mathbb{C}^*)^2$ are indexed by a finite set $\Sigma_1(X)$ of rational rays $\sigma \subset \mathbb{R}^2$ (= $N_{\mathbb{R}}$).

¹convenient fib alert

Any monomial map h_A is a self-cover of $(\mathbb{C}^*)^2$, semiconjugated to $A : \mathbb{R}^2 \to \mathbb{R}^2$ via the 'logarithm' map

$$L(x) := (-\log |x_1|, -\log |x_2|).$$

This makes it easy to understand the extension of h_A to a toric surface.

Theorem (Favre)

Suppose $\zeta \in \mathbb{Z}[i]$ satisfies $\frac{1}{2\pi} \arg \zeta \notin \mathbb{Q}$. If $A = \begin{pmatrix} \operatorname{Re} \zeta & -\operatorname{Im} \zeta \\ \operatorname{Im} \zeta & \operatorname{Re} \zeta \end{pmatrix}$, then there exists no surface X such that $h_A : X \dashrightarrow X$ is algebraically stable.

Jan-Li Lin and I considered the following class of rational maps at length.

Definition

A rational map $f : (\mathbb{C}^*)^2 \dashrightarrow (\mathbb{C}^*)^2$ is *toric* if $f^*\eta = \delta \eta$ for some $\delta \in \mathbb{C}^*$.

- A monomial map h_A is toric with $\delta = \det A$;
- The above involution g is toric with $\delta = 1$;
- Compositions of toric maps are toric (e.g. f := g o h_A);
- (Blanc) The full group of toric **bi**rational surface maps is known;
- Question: are all toric maps finite compositions of monomial and birational toric maps?

Toric maps f do *not* usually respect the group structure of $(\mathbb{C}^*)^2$, but they act fairly well on toric surfaces. If X and Y are toric surfaces, then

- there exists a toric blowup $\hat{X} \to X$ such that $\operatorname{Ind}(f) := \operatorname{Ind}(f_{\hat{X}Y})$ is a finite subset of $\hat{X} \setminus (\mathbb{C}^*)^2$ with image $f_{\hat{X}Y}(\operatorname{Ind}(f))$ equal to finitely many 'internal' curves in Y;
- ... analogous statement for the exceptional set $\operatorname{Exc}(f) := \operatorname{Exc}(f_{X\hat{Y}})$ under suitable toric blowup $\hat{Y} \to Y$ of the range.
- These 'persistent' indeterminacy and exceptional sets and their images by *f* are independent of the toric surfaces.
- *f* maps 'poles to poles' according to some induced 1-homogeneous PL map *T_f* : ℝ² → ℝ².

The bad map

Let A be the matrix associated to multiplication by $\zeta \in \mathbb{C}[i]$ with $\zeta^n \notin \mathbb{C}$ for any n > 0. From now on $f = g \circ h_A$. Note f is a toric map with $T_f = T_{h_A} = A$.

Theorem (Bell-D-Jonsson)

The dynamical degree $\lambda(f)$ of such a map is transcendental.

Remarks: $\lambda(f)^2 > d_{top}$ always, but one can choose A to get either $\lambda(f) > d_{top}(f)$ or $\lambda(f) < d_{top}(f)$.

Proposition (It's not *that* bad)

f is 'internally stable'. That is, $f^n(\operatorname{Exc}(f)) \cap \operatorname{Ind}(f) = \emptyset$ for any $n \in \mathbb{N}$.

Warning: to make sense of the last sentence, the domain and range toric surfaces need to be different and depend on n.

Theorem (D-Roeder)

There exists a positive closed current T^* (independent of the toric surface) such that

• T* does not charge curves;

•
$$f^*T^*|_{(\mathbb{C}^*)^2} = \lambda T^*;$$

• for any internal curve $C \subset X$, there exists c > 0 such that

$$\lim_{n\to\infty}\frac{1}{\lambda(f)^n}f^{n*}C|_{(\mathbb{C}^*)^2}=cT^*;$$

• hence T^{*} is strongly laminar.

Key (new) ingredients in the proof. First,

Theorem

Given a toric surface X with volume form dV and $\rho > d_{top}$, there exist constants a, b > 0 such that for any open $U \subset X$ and any $n \ge 0$, $\operatorname{Vol}(f^n(U)) \ge (a \operatorname{Vol}(U))^{b\rho^{n/2}}$.

The invariant two form η and the fact that A acts by irrational rotation on \mathbb{R}^2 are important in the proof of this fact.

Every class on every toric surface, all at once

An idea from Boucksom/Favre/Jonsson and Cantat.

- If X and Y are toric surfaces, then we say X ≻ Y if the birational map µ_{XY} : X → Y is a morphism.
- Identify a class $\alpha_X \in H^2(X, \mathbb{R})$ with its pushforward $\alpha_Y = \mu_{XY*} \alpha_X$.
- A toric class α ∈ H² is a choice of a class α_X on every toric surface X compatible under pushforwards by birational morphisms.

Corollary

There exists a nef class $\theta^* \in H^2$ such that for any other nef class $\theta \in H^2$, we have

$$\lim_{n\to\infty}\frac{1}{\lambda(f)^n}f^{n*}\theta=c(\theta)\theta^*,$$

where $c(\theta) > 0$ depends linearly on θ . In particular $f^*\theta^* = \lambda \theta^*$.

One can define (positive) toric *currents* exactly the same way as toric classes.

- Toric currents *S*, *T* are *completely cohomologous* if for each toric surface *X* the representatives *T_X* and *S_X* are cohomologous.
- Then $S_X T_X = dd^c \varphi$ for φ integrable and independent of X.
- T and its complete cohomologues define a toric class.
- Conversely each (nef) toric class has a canonical (positive) 'homogeneous' representative.
- Positive toric currents in a compact set of nef classes form a compact set in the weak topology...
- ... which leads to uniform volume estimates for sublevel sets of potentials.
- ... yada, yada, yada.

Thanks to the organizers and to MSRI, and thanks for your attention!