Complex rotation numbers and renormalization

Nataliya Goncharuk, University of Toronto natalia.goncharuk@utoronto.ca

MSRI workshop "Adventurous Berkeley Complex Dynamics", May 2-6, 2022

May 2, 2022

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C²-smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C²-smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let *F* be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let F be a lift of $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{x} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

f has a periodic orbit \Leftrightarrow rot f is rational.

[Denjoy] C^2 -smooth f is continuously conjugate to the rotation by rot f if rot f is irrational.

[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot f if rot f is a Herman number.

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \text{Im } z < \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

[Im ω

Let $f: \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism. Im $z = \operatorname{Im} \omega \xrightarrow[]{F_{\omega}(0)} F_{\omega}(x) F_{\omega}(1)$ Im $z = 0 \xrightarrow[]{0} x 1$

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \operatorname{Im} z < \operatorname{Im} \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

Im ω

Let $f: \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism. Im $z = \operatorname{Im} \omega \xrightarrow{F_{\omega}(0) \quad F_{\omega}(x) \quad F_{\omega}(1)}$ Im $z = 0 \xrightarrow{0 \quad x \quad 1}$

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \operatorname{Im} z < \operatorname{Im} \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

$$f+\omega$$

Im ω

э

Let $f: \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism. Im $z = \operatorname{Im} \omega$ $F_{\omega}(0)$ $F_{\omega}(x)$ $F_{\omega}(1)$ Im z = 0 x = 1

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \operatorname{Im} z < \operatorname{Im} \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

$$f+\omega$$
 $f+\omega$ $f+\omega$

Let $f: \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism. Im $z = \operatorname{Im} \omega$ $F_{\omega}(0)$ $F_{\omega}(x)$ $F_{\omega}(1)$ Im z = 0 x = 1

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \operatorname{Im} z < \operatorname{Im} \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

$$f+\omega$$
 $f+\omega$ $f+\omega$

Let $f: \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism. Im $z = \operatorname{Im} \omega$ $F_{\omega}(0)$ $F_{\omega}(x)$ $F_{\omega}(1)$ Im z = 0 x = 1

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \operatorname{Im} z < \operatorname{Im} \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

$$f+\omega$$
 $f+\omega$ $f+\omega$

3

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 < \text{Im } z < \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

$$f+\omega$$
 Im

э

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

Let $f : \mathbb{R}/\mathbb{Z} \mapsto \mathbb{R}/\mathbb{Z}$ be an analytic circle diffeomorphism.

- **Example:** If f(x) is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's conjecture, 1978:

$$\lim_{\omega \to a \in \mathbb{R}} \tau_f(\omega) = \operatorname{rot}(f + a)$$

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{P}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{\rho}{a}$ -bubble is much smaller:

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{q^2}$

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{q^2}$

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{q^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.

• Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.

• Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim rac{(dist(p/q,\alpha))^{\xi}}{a^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.

• Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. (Outside stairs)
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

- rot(f + a) is Diophantine $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

- rot(f + a) is Diophantine $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

- rot(f + a) is Diophantine $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

$\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . X.Buff, NG Let $\hat{\tau}_f(a) := \lim_{\omega \to \infty} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$ -bubble is at most $\frac{C}{a^2}$.
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . X.Buff, NG Let $\hat{\tau}_f(a) := \lim_{t \to \infty} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . X.Buff, NG Let $\hat{\tau}_f(a) := \lim_{t \to \infty} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller: $<\sim \frac{(dist(p/q,\alpha))^{\xi}}{a^2}$

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . X.Buff, NG Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller. NG, I.Gorbovickis

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . X.Buff, NG Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near a Diophantine number α , the $\frac{p}{q}$ -bubble is much smaller. NG, I.Gorbovickis

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . X.Buff, NG Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- rot(f + a) is irrational $\Rightarrow \hat{\tau}_f(a) = rot(f + a)$. X.Buff, NG \leftarrow Risler; Moldavskis
- f + a is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- f + a is parabolic $\Rightarrow \hat{\tau}_f(a) = \operatorname{rot}(f + a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near a Diophantine number α , the $\frac{p}{a}$ -bubble is much smaller. NG, I.Gorbovickis

Zero bubbles for perturbations of $z \mapsto \frac{az+b}{cz+d}$, approximation.

- *T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.
- f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!
- $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

- *T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.
- f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!
- $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

- *T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.
- f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!
- $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

*T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.

• f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!

• $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

• T_{ω} is the quotient of a fundamental domain of $f + \omega$ via $f + \omega$. This domain degenerates as $\omega \rightarrow a$.

• f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!

• $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

- *T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.
- f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!

• $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

- *T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.
- f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!

• $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

- *T*_ω is the quotient of a fundamental domain of *f* + ω via *f* + ω. This domain degenerates as ω → a.
- f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!

• $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

• T_{ω} is the quotient of a fundamental domain of $f + \omega$ via $f + \omega$. This domain degenerates as $\omega \rightarrow a$.

• f + a, $a \in \mathbb{R}$, has an annular fundamental domain Π as well!

• $\hat{\tau}_f(a) = \lim_{\omega \to a} \tau_f(\omega)$ is the modulus of the torus $\Pi/(f+a)$.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Lavaurs maps — through the eggbeater

Fact: $\mathcal{R}(f + a) \rightarrow L_c$ as $a \rightarrow 0$ where L_c are Lavaurs maps, $c \in \mathbb{R}/\mathbb{Z}$.

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

B b

- TR

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Lavaurs maps — through the eggbeater

Fact: $\mathcal{R}(f + a) \rightarrow L_c$ as $a \rightarrow 0$ where L_c are Lavaurs maps, $c \in \mathbb{R}/\mathbb{Z}$.

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

B b

- TR

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Lavaurs maps — through the eggbeater

Fact: $\mathcal{R}(f + a) \rightarrow L_c$ as $a \rightarrow 0$ where L_c are Lavaurs maps, $c \in \mathbb{R}/\mathbb{Z}$.

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

B b

- TR

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Lavaurs maps — through the eggbeater

Fact: $\mathcal{R}(f+a) o L_c$ as a o 0 where L_c are Lavaurs maps, $c \in \mathbb{R}/\mathbb{Z}$.

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

э

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle [0, f(0)]/f.

$$\operatorname{rot}(\mathcal{R}f) = -\frac{1}{\operatorname{rot} f} \mod 1; \qquad \tau(\mathcal{R}f) = -\frac{1}{\tau(f)} \mod 1.$$

\bullet Golden ratio rotation is a hyperbolic fixed point for \mathcal{R}^2

- \Rightarrow bubbles are small near the golden ratio (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot *f* = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?

- \bullet Golden ratio rotation is a hyperbolic fixed point for \mathcal{R}^2
- ullet \Rightarrow bubbles are small near the golden ratio (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot *f* = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?

- Brjuno rotations are a hyperbolic set for \mathcal{R} (joint with M. Yampolsky).
- \Rightarrow bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot *f* = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).
- QQ Are they only finitely smooth?
- QQ Do critical maps have bubbles? How do they look like?

- Brjuno rotations are a hyperbolic set for \mathcal{R} (joint with M. Yampolsky).
- \Rightarrow bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot *f* = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?

- Brjuno rotations are a hyperbolic set for \mathcal{R} (joint with M. Yampolsky).
- \Rightarrow bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot *f* = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?

- Brjuno rotations are a hyperbolic set for \mathcal{R} (joint with M. Yampolsky).
- \Rightarrow bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot f = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?

- Brjuno rotations are a hyperbolic set for \mathcal{R} (joint with M. Yampolsky).
- \Rightarrow bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot f = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).
- QQ Are they only finitely smooth?

- Brjuno rotations are a hyperbolic set for \mathcal{R} (joint with M. Yampolsky).
- \Rightarrow bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- \Rightarrow "rot f = Herman number" is an analytic condition (Risler's theorem).
- "rot *f* = golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?

