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J−STABILITY

Definition (J-stability)
fλ0 is J−stable iff there exists a nbhd U of λ0 and a

holomorphic motion of J(fλ0 ) over U preserving the dynamics, i.e.

H : U × Jλ0 −→ Jλ
(λ, z) 7−→ Hλ(z)

such that

• z 7→ Hλ(z) is injective for any λ ∈ U;

• λ 7→ Hλ(z) is holomorphic for any z ∈ Jλ0 ;

• Hλ0 = Id

• Hλ ◦ fλ0 = fλ ◦ Hλ.

λ−Lemma [MSS’83]
Any holomorphic motion H of a set E ∈ C estends to a holomorphic motion

Ĥ of E , such that Ĥ is jointly continuous and Ĥλ(z) is quasiconformal.
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FIXED POINTS DISAPPEARED TO INFINITY

Fλ(z) = z + e−z
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ACCESSIBLE VIRTUAL CENTERS
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VIRTUAL CENTERS

Tλ(z) = λ tan(z) Fλ(z) = π tan2(z) + λ
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VIRTUAL CENTERS
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J−stability Theorem

Theorem (Astorg-Benini-F)

{fλ}λ∈M natural family of meromorphic maps of finite type. U ⊂ M

be a simply connected domain of parameters. Then, the following

are equivalent.

(a) fλ is J-stable for all λ ∈ U;

(b) Every singular value is passive on U;

(c) The period of attracting cycles is bounded in U;

(d) The number of attracting cycles is constant in U.

(e) U contains no non-persistent parabolic parameters.

Corollary

J-stable parameters form an open and dense set in M.
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The end

Thank you for your attention!
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A (dynamically) natural family (1-D) [F-Keen’20]

fa(z) = a
(

1− aez

(a+0.5)z+a

)

capture
ca, va ∈ Aa(0)

zoom

• attracting fixed point at z = 0, constant multiplier 1
2

• persistent asymptotic value at ∞
• Free asymptotic value va = a • Free critical point ca = 1

1+2a
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Proof of activity

• Suppose t 7→ (λ(t), z(t)) curve in Pn

s.t λ(t) −→
t→∞

λ0, z(t) −→
t→∞

∞.

• Define xm(t) = f mλ(t)(z(t)) 0 ≤ m ≤ n − 1

• Limit points eventually map to ∞.

• By discreteness of prepoles, xm(t) has a limit.

• Let am = limt→∞ xm(t) ∈ Ĉ.
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Proof of activity

Assume am =∞

go back
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