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Random tiling: Scaling limit ?
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Random tilings and dimer models

Problem: Describe the geometry of all frozen boundaries BL “ F !



Random tilings (Losenges)

With algebraic geometry and complex Burgers equation,
Kenyon-Okounkov (2007):

For losenges tilings, in polygons with 3n sides, directions cyclically
repeated: Frozen boundary is (a specific) algebraic curve.
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Random tilings and Thurston’s discrete height function

p1 p3p2 p4 N

‚ Asymptotic height function h.

‚ N = Gradient constraint for ∇h [N depends on dimer model !]



Random tilings and Thurston’s discrete height function

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

Determining the frozen boundaries is equivalent to

a (non standard) variational problem for h !

Ω



Free boundary problem for Dimer Models [CKP], [KOS].

‚ Variational problem, with gradient constraint: Ω Ă C open;

´
Ω σp∇hq “ inf

 ´
Ω σp∇vq : v|BΩ “ h0, ∇v P Nσ

(

, h0 P Lip1pBΩq,

‚ "Energy" or "Surface tension" σ has special form:

detD2σ “ 1`
ř

qPG δq in a convex polygon N “ Nσ, (MA)

σ convex, with σˇ
ˇBNσ

piecewise linear.

‚ Liquid domains:
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Lozenge model: surface tension

Let N “ N
Lo

:“ convtp0, 0q, p0, 1q, p1, 0qu. Then σ “ σ
Lo

where

∇σ
Lo
ps, tq “

1
π

ˆ

log

ˆ

sinpπsq

sinpπpt ` sqq

˙

, log

ˆ

sinpπtq

sinpπpt ` sqq

˙˙

.

‚ NEITHER OUTER NOR INNER VARIATION WORKS !
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Geometry of Frozen boundaries
Theorem 1 (A.-Duse-Prause-Zhong)

Let L Ă C be bounded (simply- or multiply connected) domain.
If L liquid for any dimer model, with boundary BL frozen, then

1) BL is the real locus of an algebraic curve.

2) The singularities of BL are all first order cusps or tacnodes.

3) For ζ P BL , outside cusps and tacnodes, BL is locally convex:
Bpζ, εq XL is convex @ ε ą 0 small.

4) Characterisation of Rational maps that arise as parametrization
of some BL (when L simply connected).
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Geometry of Frozen boundaries: Universality
Theorem 2 (A-D-P-Z)

Let L0 Ă C be a bounded Jordan domain.

Suppose L0 is liquid domain for some dimer model, with frozen
boundary BL0.

Then L0 is liquid, with frozen bdry, for the Lozenges model.
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Free boundary problem for Dimer models: What to do ?

‚ Variational problem with Gradient constraint N.
´
Ω σp∇hq “ inf
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ř
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Beltrami equation from height function: Complex structure
Fz̄ “ µFz , |µ|8 ď 1.

‚ " Cauchy-Riemann eqn’s " for div∇σp∇hq “ 0:

vx “ ´σy p∇hq, vy “ σxp∇hq

‚ For L simply connected: Set F “ h ` iv .

‚ Fz̄ “ HpFzq, Hpwq “ pI ´∇σq ˝ pI `∇σq´1pwq

When detD2σ ” 1, have H “ Hσ complex analytic !

‚ f :“ Fz “ ∇h `∇σp∇hq satisfies

Bf pzq “ Hσ
1
`

f pzq
˘

Bf pzq,
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Beltrami equation from height function: First Conclusions
Theorem 3 (A-D-P-Z) Suppose:

σ convex, detD2σ “ 1 in N “ cotpju
n

1
, σ|BN piecewise affine,

and divp∇σ ˝∇hq “ 0 in bdd domain L with BL frozen. Then

(1) ∇hpzq “
řn

j“1 pj ωD
`

f pzq; Ij
˘

[ωD harmonic meas. in D]

where

(2) f : L Ñ D proper with fz̄ “ H1σpf q fz , z P L .

f
Ñ --

|
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Beltrami equations and geometry of frozen boundaries

The "Universal Equation":

Bf pzq “ f pzq Bf pzq (*)

‚ If f : L Ñ D proper and satisfies fz̄ “ H1σpf q fz ,

ñ fo :“ H1σpf q proper map L Ñ D, solving (*).
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Theorem (A.-Duse-Prause-Zhong) Suppose

‚ f : L Ñ D is continuous and proper; L bounded.

‚ Bf pzq “ f pzq Bf pzq

Then

1) f pxq extends continuously to BL , f smooth in L .

2) BL algebraic; if L simply connected, BL “ rpS1q; r P RpCq.

3) f P Lip1{3pL q;

4) f P Lip1{2pL q outside a finite set of singularities on BL .
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5) Boundary BL has only first order cusps.

6) f P Lip1{3 on line ` transversal to cusp; f P Lip1{2 in the cusp
direction.

f : L Ñ D
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Beltrami equation: Boundary continuity

Bf pzq “ f pzq Bf pzq, f PW 1,2
loc , f : L Ñ D cont. and proper

How to approach ? !

Hodograph transform: For L simply connected,

f “ B ˝ G
where

G : L Ñ D homeo, solution to BG pzq “ f pzq BG pzq,

B : DÑ D analytic and proper ñ B “ finite Blaschke product.
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Corollary: Regularity of Height Function

Recall height function hpzq; div
`

∇σp∇hq
˘

“ 0 in liquid region

L “
 

z P Ω : ∇hpzq P intpK q
(

.

‚ ∇h P C 1{2pLq, outside a finite set of cusp singularities on BL .
(Pokrovsky-Talapov law)



Height functions, Beltrami equation and Universality
Conversely: Suppose σ “ σ|Lo ;

‚ Given: f : L0 Ñ D proper with fz̄ “ f fz , z P L0,

‚ Formula ∇hpzq “
ř3

j“1 pj ωD
`

f pzq; Ij
˘

defines h P Lip1pL0q.

‚ divp∇σ ˝∇hq “ 0 in L0.

Last: Extend h to polygonal Ω Ą L0 s.t.

‚
´
Ω σLo

p∇hq “ inf
 ´

Ω σLo
p∇vq : v|BΩ “ h0, ∇v P N

Lo

(

, and

‚ L0 ” tz : ∇hpzq P pN
Lo
q˝u; ∇hpzq Ñ BN

Lo
as z Ñ BL0.
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Height functions, Beltrami equation and Universality
Conversely: Suppose σ “ σ|Lo ;

‚ Given: f : L0 Ñ D proper with fz̄ “ f fz , z P L0,

‚ Formula ∇hpzq “
ř3

j“1 pj ωD
`

f pzq; Ij
˘

defines h P Lip1pL0q.

‚ divp∇σ ˝∇hq “ 0 in L0.

Last: (Nontrivial) Extend h to polygonal Ω Ą L0 s.t.

‚
´
Ω σLo

p∇hq “ inf
 ´

Ω σLo
p∇vq : v|BΩ “ h0, ∇v P N

Lo

(

, and

‚ L0 ” tz : ∇hpzq P pN
Lo
q˝u; ∇hpzq Ñ BN

Lo
as z Ñ BL0.



Thank you !


