Geometry, universality and Beltrami complex structure for scaling limits of random dimer coverings.

> Kari Astala University of Helsinki

The Analysis and Geometry of Random Spaces **MSRI 2022**

Based on joint work with Erik Duse, Istvan Prause and Xiao Zhong

Random tilings and Complex Analysis

• Scaling limits of random tilings

• The Beltrami equation: $\overline{\partial} f(z) = f(z) \partial f(z), \quad f : \mathscr{L} \to \mathbb{D}.$

Pictures: Courtesy of R. Kenyon, L. Petrov, S. Chhita, I. Prause, E. Duse...

Random tilings and Complex Analysis

• Scaling limits of random tilings

• The Beltrami equation: $\overline{\partial} f(z) = f(z) \partial f(z), \quad f : \mathcal{L} \to \mathbb{D}.$

Pictures: Courtesy of R. Kenyon, L. Petrov, S. Chhita, I. Prause, E. Duse...

Random tilings (by Dominoes)

Tilings by dominoes (uniform probability):

Random tilings (by Dominoes)

Tilings by dominoes (uniform probability):

Artic circle Theorem [Cohn-Larsen-Propp (1998)]]:

In scaling limits of random lozenges tilings of a regular hexagon,

Scaling limit, with probability 1:

Artic circle Theorem [Cohn-Larsen-Propp (1998)]]:

In scaling limits of random lozenges tilings of a regular hexagon, there is a.s. a disordered region with deterministic limit, with bdry a circle.

Random tiling:

Scaling limit, with probability 1:

Artic circle Theorem [Cohn-Larsen-Propp (1998)]]:

In scaling limits of random lozenges tilings of regular hexagon, there is a.s. a disordered region with deterministic limit, with bdry a circle. [Cohn-Kenyon-Propp(2001)]: a.s. Artic circle for dominoes

Random tiling:

Scaling limit, with probability 1:

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

In scaling limits, a.s. disordered (or "liquid") regions \mathcal{L} and ordered (or "frozen") regions \mathcal{F} in other polygons, too, for lozenge and domino tilings and more generally, for all dimer models.

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

In scaling limits, a.s. disordered (or "liquid") regions \mathcal{L} and ordered (or "frozen") regions \mathcal{F} in other polygons, too, for lozenge and domino tilings and more generally, for all dimer models.

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

In scaling limits, a.s. disordered (or "liquid") regions \mathcal{L} and ordered (or "frozen") regions \mathcal{F} in other polygons, too, for lozenge and domino tilings and more generally, for all dimer models.

• Dimer models: perfect matchings on a bipartite, doubly periodic planar graph.

• Dimer models: perfect matchings on a bipartite, doubly periodic planar graph.

Problem: **Describe** the geometry of all frozen boundaries $\partial \mathcal{L} = \mathcal{F}$!

With algebraic geometry and complex Burgers equation, Kenyon-Okounkov (2007):

For losenges tilings, in polygons with 3*n* sides, directions cyclically repeated: Frozen boundary is (a specific) algebraic curve.

General dimer models

Question:

Geometry of Frozen boundary for dominoes (on square lattice) ?

For general dimer models ??

General dimer models

Question:

Geometry of Frozen boundary for dominoes (on square lattice) ?

For general dimer models ??

Random tilings and Thurston's discrete height function

Random tilings and Thurston's discrete height function

- Asymptotic height function *h*.
- N =Gradient constraint for ∇h [N depends on dimer model !]

Random tilings and Thurston's discrete height function

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

Determining the frozen boundaries is equivalent to

a (non standard) variational problem for h!

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \quad h_0 \in Lip_1(\partial\Omega),$$

• "Energy" or "Surface tension" σ has special form:

$$\begin{split} \det D^2\sigma &= 1 + \sum_{q \in \mathscr{G}} \delta_q \quad \text{in a convex polygon } \mathcal{N} = \mathcal{N}_{\sigma}, \quad (\mathsf{MA}) \\ \sigma \text{ convex, } \quad \text{with } \sigma_{|\partial \mathcal{N}_{\sigma}} \text{ piecewise linear.} \end{split}$$

• Liquid domains:

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \quad h_0 \in Lip_1(\partial\Omega),$$

• "Energy" or "Surface tension" σ has special form:

 $\begin{array}{l} \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q \quad \text{in a convex polygon } N = N_{\sigma}, \quad (\mathsf{MA}) \\ \sigma \text{ convex, } \quad \text{with } \sigma_{|\partial N_{\sigma}} \text{ piecewise linear.} \end{array}$

• Liquid domains:

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \quad h_0 \in Lip_1(\partial\Omega),$$

• "Energy" or "Surface tension" σ has special form:

 $\begin{array}{l} \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q & \text{in a convex polygon } N = N_{\sigma}, \quad (\text{MA}) \\ \sigma \text{ convex, } & \text{with } \sigma_{\mid \partial N_{\sigma}} \text{ piecewise linear.} \end{array}$

• Liquid domains:

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \quad h_0 \in Lip_1(\partial\Omega),$$

• "Energy" or "Surface tension" σ has special form:

 $\begin{array}{l} \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q \quad \text{in a convex polygon } N = N_{\sigma}, \quad (\text{MA}) \\ \sigma \text{ convex, } \quad \text{with } \sigma_{|\partial N_{\sigma}} \text{ piecewise linear.} \end{array}$

- Liquid domains: $\mathscr{L} := \{ z : \nabla h(z) \in (N_{\sigma})^{\circ} \setminus \mathscr{G} \} \subset \Omega.$
- Say: $\partial \mathscr{L}$ frozen if $\nabla h(z) \to \partial N_{\sigma} \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.

Problem: Describe the geometric properties of $\partial \mathscr{L}$!

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \quad h_0 \in Lip_1(\partial\Omega),$$

• "Energy" or "Surface tension" σ has special form:

 $\begin{array}{l} \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q \quad \text{in a convex polygon } N = N_{\sigma}, \quad (\mathsf{MA}) \\ \sigma \text{ convex, } \quad \text{with } \sigma_{|\partial N_{\sigma}} \text{ piecewise linear.} \end{array}$

- Liquid domains: $\mathscr{L} := \{ z : \nabla h(z) \in (N_{\sigma})^{\circ} \setminus \mathscr{G} \} \subset \Omega.$
- Say: $\partial \mathscr{L}$ frozen if $\nabla h(z) \to \partial N_{\sigma} \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.

Problem: Describe the geometric properties of $\partial \mathscr{L}$!

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \quad h_0 \in Lip_1(\partial\Omega),$$

• "Energy" or "Surface tension" σ has special form:

 $\begin{array}{l} \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q \quad \text{in a convex polygon } N = N_{\sigma}, \quad (\mathsf{MA}) \\ \sigma \text{ convex, } \quad \text{with } \sigma_{|\partial N_{\sigma}} \text{ piecewise linear.} \end{array}$

- Liquid domains: $\mathscr{L} := \{ z : \nabla h(z) \in (N_{\sigma})^{\circ} \setminus \mathscr{G} \} \subset \Omega.$
- Say: $\partial \mathscr{L}$ frozen if $\nabla h(z) \to \partial N_{\sigma} \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.

Problem: Describe the geometric properties of $\partial \mathscr{L}$!

Lozenge model: surface tension

$$\text{Let } N = N_{\scriptscriptstyle Lo} := \overline{\operatorname{conv}}\{(0,0), (0,1), (1,0)\}. \quad \text{Then } \sigma = \sigma_{\scriptscriptstyle Lo} \quad \text{where}$$

$$\nabla \sigma_{\scriptscriptstyle Lo}(s,t) = \frac{1}{\pi} \left(\log \left(\frac{\sin(\pi s)}{\sin(\pi(t+s))} \right), \, \log \left(\frac{\sin(\pi t)}{\sin(\pi(t+s))} \right) \right).$$

NEITHER OUTER NOR INNER VARIATION WORKS !

Lozenge model: surface tension

$$\text{Let } N = N_{\scriptscriptstyle Lo} := \overline{\operatorname{conv}}\{(0,0), (0,1), (1,0)\}. \quad \text{Then } \sigma = \sigma_{\scriptscriptstyle Lo} \quad \text{where}$$

$$\nabla \sigma_{\scriptscriptstyle Lo}(s,t) = \frac{1}{\pi} \left(\log \left(\frac{\sin(\pi s)}{\sin(\pi(t+s))} \right), \, \log \left(\frac{\sin(\pi t)}{\sin(\pi(t+s))} \right) \right).$$

NEITHER OUTER NOR INNER VARIATION WORKS !

Theorem 1 (A.-Duse-Prause-Zhong)

- 1) $\partial \mathscr{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathscr{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathscr{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- Characterisation of Rational maps that arise as parametrization of some ∂L (when L simply connected).

Theorem 1 (A.-Duse-Prause-Zhong)

- 1) $\partial \mathscr{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathscr{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathscr{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- Characterisation of Rational maps that arise as parametrization of some ∂ℒ (when ℒ simply connected).

Theorem 1 (A.-Duse-Prause-Zhong)

- 1) $\partial \mathscr{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathscr{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathscr{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- 4) Characterisation of Rational maps that arise as parametrization of some $\partial \mathscr{L}$ (when \mathscr{L} simply connected).

Theorem 1 (A.-Duse-Prause-Zhong)

- 1) $\partial \mathscr{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathscr{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathscr{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- Characterisation of Rational maps that arise as parametrization of some ∂ℒ (when ℒ simply connected).

Theorem 1 (A.-Duse-Prause-Zhong)

- 1) $\partial \mathscr{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathscr{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathscr{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- 4) Characterisation of Rational maps that arise as parametrization of some $\partial \mathscr{L}$ (when \mathscr{L} simply connected).

Geometry of Frozen boundaries: Universality

Theorem 2 (A-D-P-Z)

Let $\mathscr{L}_0 \subset \mathbb{C}$ be a bounded Jordan domain.

Suppose \mathscr{L}_0 is liquid domain for some dimer model, with frozen boundary $\partial \mathscr{L}_0$.

Then \mathscr{L}_0 is liquid, with frozen bdry, for the Lozenges model.

Geometry of Frozen boundaries: Universality

Theorem 2 (A-D-P-Z)

Let $\mathscr{L}_0 \subset \mathbb{C}$ be a bounded Jordan domain.

Suppose \mathscr{L}_0 is liquid domain for some dimer model, with frozen boundary $\partial \mathscr{L}_0$.

Then \mathscr{L}_0 is liquid, with frozen bdry, for the Lozenges model.

Geometry of Frozen boundaries: Universality

Theorem 2 (A-D-P-Z)

Let $\mathscr{L}_0 \subset \mathbb{C}$ be a bounded Jordan domain.

Suppose \mathscr{L}_0 is liquid domain for some dimer model, with frozen boundary $\partial \mathscr{L}_0$.

Then \mathscr{L}_0 is liquid, with frozen bdry, for the Lozenges model.

• Variational problem with Gradient constraint N.

 $\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.$

- Liquid domain $\mathscr{L} = \{z : \nabla h(z) \in N^{\circ} \setminus \mathscr{G}\} \subset \Omega.$
- $\partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \to \partial N \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.
- De Silva-Savin: \mathscr{L} is open (if non-empty), and $h \in C^1$ in \mathscr{L} . Thus div $\nabla \sigma(\nabla h) = 0$ in \mathscr{L}

• Variational problem with Gradient constraint N.

 $\int_\Omega \sigma(\nabla h) = \inf \left\{ \int_\Omega \sigma(\nabla v) : v_{|\partial\Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.$

- Liquid domain $\mathscr{L} = \{z : \nabla h(z) \in N^{\circ} \setminus \mathscr{G}\} \subset \Omega.$
- $\partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \to \partial N \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.
- De Silva-Savin: \mathscr{L} is open (if non-empty), and $h \in C^1$ in \mathscr{L} . Thus div $\nabla \sigma(\nabla h) = 0$ in \mathscr{L}

• Variational problem with Gradient constraint N.

 $\int_\Omega \sigma(\nabla h) = \inf \left\{ \int_\Omega \sigma(\nabla v) : v_{|\partial\Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.$

- Liquid domain $\mathscr{L} = \{z : \nabla h(z) \in N^{\circ} \setminus \mathscr{G}\} \subset \Omega.$
- $\partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \to \partial N \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.
- De Silva-Savin: \mathscr{L} is open (if non-empty), and $h \in C^1$ in \mathscr{L} .

Thus div $abla \sigma(
abla h) = 0$ in \mathscr{L}

• Variational problem with Gradient constraint N.

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.$$

- Liquid domain $\mathscr{L} = \{z : \nabla h(z) \in N^{\circ} \setminus \mathscr{G}\} \subset \Omega.$
- $\partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \to \partial N \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.
- De Silva-Savin: \mathscr{L} is open (if non-empty), and $h \in C^1$ in \mathscr{L} .

Thus div $\nabla \sigma(\nabla h) = 0$ in \mathscr{L}

• Variational problem with Gradient constraint N.

$$\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{|\partial\Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.$$

- Liquid domain $\mathscr{L} = \{z : \nabla h(z) \in N^{\circ} \setminus \mathscr{G}\} \subset \Omega.$
- $\partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \to \partial N \cup \mathscr{G}$ as $z \to \partial \mathscr{L}$.
- De Silva-Savin: \mathscr{L} is open (if non-empty), and $h \in C^1$ in \mathscr{L} .

Thus div $\nabla \sigma(\nabla h) = 0$ in \mathscr{L}

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_{z}), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When $\det D^2\sigma\equiv 1$, have $\mathcal{H}=\mathcal{H}_\sigma$ complex analytic ~!

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial}f(z) = \mathcal{H}_{\sigma}'(f(z)) \,\partial f(z),$

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_z)$, $\mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma\equiv 1$, have $\mathcal{H}=\mathcal{H}_{\sigma}$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial}f(z) = \mathcal{H}_{\sigma}'(f(z)) \,\partial f(z),$

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_z)$, $\mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2 \sigma \equiv 1$, have $\mathcal{H} = \mathcal{H}_{\sigma}$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial}f(z) = \mathcal{H}_{\sigma}'(f(z))\,\partial f(z),$

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2 \sigma \equiv 1$, have $\mathcal{H} = \mathcal{H}_{\sigma}$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial}f(z) = \mathcal{H}_{\sigma}'(f(z))\,\partial f(z),$

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma \equiv 1$, have $\mathcal{H} = \mathcal{H}_{\sigma}$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial}f(z) = \mathcal{H}_{\sigma}'(f(z)) \,\partial f(z),$

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma \equiv 1$, have $\mathcal{H} = \mathcal{H}_{\sigma}$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial}f(z) = \mathcal{H}_{\sigma}'(f(z)) \,\partial f(z),$

• "Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)$$

- For \mathcal{L} simply connected: Set F = h + iv.
- $F_{\overline{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma \equiv 1$, have $\mathcal{H} = \mathcal{H}_{\sigma}$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)} \Rightarrow \nabla h = (Id + \nabla \sigma)^{-1}(\overline{f})$, where

 $L_{\sigma}^{-1} := (I + \nabla \sigma)^{-1}$ harmonic homeo !

Beltrami equation from height function: First Conclusions

Theorem 3 (A-D-P-Z) Suppose:

 σ convex, det $D^2\sigma = 1$ in $N = co\{p_j\}_1^n$, $\sigma_{|_{\partial N}}$ piecewise affine,

and $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in bdd domain \mathscr{L} with $\partial \mathscr{L}$ frozen. Then

(1)
$$\nabla h(z) = \sum_{j=1}^{n} p_j \omega_{\mathbb{D}}(f(z); l_j)$$
 $[\omega_{\mathbb{D}} \text{ harmonic meas. in } \mathbb{D}]$
where

(2) $f: \mathscr{L} \to \mathbb{D}$ proper with $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}, z \in \mathscr{L}$.

Beltrami equation from height function: First Conclusions

Theorem 3 (A-D-P-Z) Suppose:

 σ convex, det $D^2\sigma = 1$ in $N = co\{p_j\}_1^n$, $\sigma_{|_{\partial N}}$ piecewise affine,

and $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in bdd domain \mathscr{L} with $\partial \mathscr{L}$ frozen. Then

(1)
$$\nabla h(z) = \sum_{j=1}^{n} p_j \omega_{\mathbb{D}}(f(z); I_j)$$
 $[\omega_{\mathbb{D}} \text{ harmonic meas. in } \mathbb{D}]$

where

(2) $f: \mathscr{L} \to \mathbb{D}$ proper with $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}, z \in \mathscr{L}$.

Beltrami equation from height function: First Conclusions

Theorem 3 (A-D-P-Z) Suppose:

 σ convex, det $D^2\sigma = 1$ in $N = co\{p_j\}_1^n$, $\sigma_{|_{\partial N}}$ piecewise affine,

and $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in bdd domain \mathscr{L} with $\partial \mathscr{L}$ frozen. Then

(1)
$$\nabla h(z) = \sum_{j=1}^{n} p_j \omega_{\mathbb{D}}(f(z); I_j)$$
 $[\omega_{\mathbb{D}} \text{ harmonic meas. in } \mathbb{D}]$

where

(2) $f: \mathscr{L} \to \mathbb{D}$ proper with $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}, z \in \mathscr{L}$.

The "Universal Equation":

 $\overline{\partial}f(z) = f(z)\,\partial f(z) \qquad (*)$

• If $f : \mathscr{L} \to \mathbb{D}$ proper and satisfies $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}$,

 $\Rightarrow f_o := \mathcal{H}'_{\sigma}(f) \text{ proper map } \mathscr{L} \to \mathbb{D}, \text{ solving } (*).$

The "Universal Equation":

 $\overline{\partial}f(z) = f(z)\,\partial f(z) \qquad (*)$

• If $f : \mathscr{L} \to \mathbb{D}$ proper and satisfies $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}$,

$$\Rightarrow f_o := \mathcal{H}'_{\sigma}(f) \text{ proper map } \mathscr{L} \to \mathbb{D}, \text{ solving } (*).$$

Theorem (A.-Duse-Prause-Zhong) Suppose

- $f : \mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\overline{\partial} f(z) = f(z) \, \partial f(z)$

Then

f(x) extends continuously to ∂ℒ, f smooth in ℒ.
 ∂ℒ algebraic; if ℒ simply connected, ∂ℒ = r(S¹); r ∈ R(C
 f ∈ Lip_{1/3}(ℒ);

4) $f \in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}$.

Theorem (A.-Duse-Prause-Zhong) Suppose

- $f : \mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\overline{\partial} f(z) = f(z) \, \partial f(z)$

Then

f(x) extends continuously to ∂ℒ, f smooth in ℒ.
 ∂ℒ algebraic; if ℒ simply connected, ∂ℒ = r(S¹); r ∈ R(ℂ).
 f ∈ Lip_{1/3}(ℒ);

4) $f \in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}$.

Theorem (A.-Duse-Prause-Zhong) Suppose

- $f : \mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\overline{\partial} f(z) = f(z) \, \partial f(z)$

Then

1) f(x) extends continuously to $\partial \mathscr{L}$, f smooth in \mathscr{L} .

2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$.

3) $f \in Lip_{1/3}(\mathscr{L});$

4) $f \in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}$.

Theorem (A.-Duse-Prause-Zhong) Suppose

- $f : \mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\overline{\partial} f(z) = f(z) \, \partial f(z)$

Then

- 1) f(x) extends continuously to $\partial \mathscr{L}$, f smooth in \mathscr{L} .
- 2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$.
- 3) $f \in Lip_{1/3}(\mathcal{L});$
- 4) $f \in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}$.

Theorem (A.-Duse-Prause-Zhong) Suppose

- $f : \mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\overline{\partial} f(z) = f(z) \, \partial f(z)$

Then

- 1) f(x) extends continuously to $\partial \mathscr{L}$, f smooth in \mathscr{L} .
- 2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$.
- 3) $f \in Lip_{1/3}(\mathcal{L});$
- 4) $f \in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}$.

Beltrami equations and geometry of frozen boundaries Singularities:

- 5) Boundary $\partial \mathscr{L}$ has only first order cusps.
- 6) f ∈ Lip_{1/3} on line ℓ transversal to cusp; f ∈ Lip_{1/2} in the cusp direction.

Beltrami equations and geometry of frozen boundaries Singularities:

- 5) Boundary $\partial \mathscr{L}$ has only first order cusps.
- 6) $f \in Lip_{1/3}$ on line ℓ transversal to cusp; $f \in Lip_{1/2}$ in the cusp direction.

 $\overline{\partial}f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For \mathscr{L} simply connected,

 $f = B \circ G$

where

 $G: \mathscr{L} \to \mathbb{D}$ homeo, solution to $\overline{\partial} G(z) = f(z) \partial G(z)$,

 $B: \mathbb{D} \to \mathbb{D}$ analytic and proper $\Rightarrow B =$ finite Blaschke product.

 $\overline{\partial}f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For \mathscr{L} simply connected,

 $f = B \circ G$

where

 $G: \mathscr{L} \to \mathbb{D}$ homeo, solution to $\overline{\partial} G(z) = f(z) \partial G(z)$,

 $B: \mathbb{D} \to \mathbb{D}$ analytic and proper $\Rightarrow B =$ finite Blaschke product.

 $\overline{\partial}f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For \mathscr{L} simply connected,

 $f = B \circ G$

where

 $G: \mathscr{L} \to \mathbb{D}$ homeo, solution to $\overline{\partial} G(z) = f(z) \partial G(z)$,

 $B: \mathbb{D} \to \mathbb{D}$ analytic and proper $\Rightarrow B =$ finite Blaschke product.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For \mathscr{L} simply connected,

 $f=B\circ g^{-1}$

where

 $g: \mathbb{D} \to \mathscr{L}$ homeo, solution to $\overline{\partial}g(z) = -B(z)\overline{\partial g(z)}$,

 $\overline{\partial}f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

 $g: \mathbb{D} \to \mathscr{L}$ homeo, solution to $\overline{\partial}g(z) = -B(z)\overline{\partial}g(z)$, $g(z) = \Phi(z, 1/\overline{z}), \qquad \Phi(z, w)$ rational in \mathbb{C}^2 , symmetric.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

$$\begin{split} g: \mathbb{D} &\to \mathscr{L} \quad \text{homeo, solution to} \quad \overline{\partial}g(z) = -B(z) \,\overline{\partial}g(z), \\ g(z) &= \Phi(z, 1/\overline{z}) \quad \Rightarrow \quad g_{\big|\partial\mathbb{D}} = R(z), \text{ rational} \quad \Rightarrow \ \partial\mathcal{L} = R(\mathbb{S}^1). \\ f &= B \circ g^{-1}, \quad \text{thus} \quad f: \mathscr{L} \to \mathbb{D} \text{ continuous up to} \ \partial\mathscr{L}. \ \Box \end{split}$$

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D} \text{ cont. and proper}$ How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

$$\begin{split} g: \mathbb{D} &\to \mathscr{L} \quad \text{homeo, solution to} \quad \overline{\partial}g(z) = -B(z) \ \overline{\partial}g(z), \\ g(z) &= \Phi(z, 1/\overline{z}) \quad \Rightarrow \quad g_{\big| \partial \mathbb{D}} = R(z), \text{ rational} \quad \Rightarrow \ \partial \mathcal{L} = R(\mathbb{S}^1). \\ f &= B \circ g^{-1}, \quad \text{thus} \quad f: \mathscr{L} \to \mathbb{D} \text{ continuous up to} \ \partial \mathscr{L}. \ \Box \end{split}$$

Corollary: Regularity of Height Function

Recall height function h(z); div $(\nabla \sigma(\nabla h)) = 0$ in liquid region

$$\mathcal{L} = \{ z \in \Omega : \nabla h(z) \in \operatorname{int}(K) \}.$$

• $\nabla h \in C^{1/2}(\mathcal{L})$, outside a finite set of cusp singularities on $\partial \mathscr{L}$. (Pokrovsky-Talapov law)

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{|_{Lo}}$;

• Given: $f: \mathscr{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z, \quad z \in \mathscr{L}_0$,

• Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}(f(z); I_j)$ defines $h \in Lip_1(\mathscr{L}_0)$.

• $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: Extend h to polygonal $\Omega \supset \mathscr{L}_0$ s.t. • $\int_{\Omega} \sigma_{L_0}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{L_0}(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{L_0} \right\}, \text{ and}$ • $\mathscr{L}_0 \equiv \{ z : \ \nabla h(z) \in (N_{L_0})^\circ \}; \quad \nabla h(z) \to \partial N_{L_0} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{|_{Lo}}$;

- Given: $f : \mathscr{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z, \quad z \in \mathscr{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}(f(z); I_j)$ defines $h \in Lip_1(\mathscr{L}_0)$.

• $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: Extend h to polygonal $\Omega \supset \mathscr{L}_0$ s.t. • $\int_{\Omega} \sigma_{L_0}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{L_0}(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{L_0} \right\}, \text{ and}$ • $\mathscr{L}_0 \equiv \{z : \ \nabla h(z) \in (N_{L_0})^\circ\}; \quad \nabla h(z) \to \partial N_{L_0} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{|_{Lo}}$;

- Given: $f : \mathscr{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z, \quad z \in \mathscr{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}(f(z); I_j)$ defines $h \in Lip_1(\mathscr{L}_0)$.
- $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: Extend *h* to polygonal $\Omega \supset \mathscr{L}_0$ s.t. • $\int_{\Omega} \sigma_{Lo}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{Lo}(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{Lo} \right\}, \text{ and}$ • $\mathscr{L}_0 \equiv \{z : \ \nabla h(z) \in (N_{Lo})^\circ\}; \quad \nabla h(z) \to \partial N_{Lo} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{|_{Lo}}$;

- Given: $f : \mathscr{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z, \quad z \in \mathscr{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}(f(z); I_j)$ defines $h \in Lip_1(\mathscr{L}_0)$.
- $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: Extend *h* to polygonal $\Omega \supset \mathscr{L}_0$ s.t. • $\int_{\Omega} \sigma_{Lo}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{Lo}(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{Lo} \right\}, \text{ and}$ • $\mathscr{L}_0 \equiv \{ z : \ \nabla h(z) \in (N_{Lo})^{\circ} \}; \ \nabla h(z) \to \partial N_{Lo} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{|_{Lo}}$;

- Given: $f: \mathscr{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z, \quad z \in \mathscr{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}(f(z); I_j)$ defines $h \in Lip_1(\mathscr{L}_0)$.
- $\operatorname{div}(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: (Nontrivial) Extend h to polygonal $\Omega \supset \mathscr{L}_0$ s.t.

- $\int_{\Omega} \sigma_{{}_{Lo}}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{{}_{Lo}}(\nabla v) : v_{|\partial\Omega} = h_0, \ \nabla v \in N_{{}_{Lo}} \right\}, \text{ and }$
- $\mathscr{L}_0 \equiv \{z: \nabla h(z) \in (N_{\scriptscriptstyle Lo})^\circ\}; \quad \nabla h(z) \to \partial N_{\scriptscriptstyle Lo} \text{ as } z \to \partial \mathscr{L}_0.$

Thank you !