Geometry, universality and Beltrami complex structure for scaling limits of random dimer coverings.

> Kari Astala University of Helsinki

The Analysis and Geometry of Random Spaces MSRI 2022

Based on joint work with Erik Duse, Istvan Prause and Xiao Zhong

Random tilings and Complex Analysis

• Scaling limits of random tilings

• The Beltrami equation: $\overline{\partial} f(z) = f(z) \partial f(z)$, $f : \mathscr{L} \to \mathbb{D}$.

Pictures: Courtesy of R. Kenyon, L. Petrov, S. Chhita, I. Prause, E. Duse...

Random tilings and Complex Analysis

• Scaling limits of random tilings

• The Beltrami equation: $\overline{\partial} f(z) = f(z) \partial f(z)$, $f : \mathscr{L} \to \mathbb{D}$.

Pictures: Courtesy of R. Kenyon, L. Petrov, S. Chhita, I. Prause, E. Duse...

Random tilings (by Dominoes)

Tilings by dominoes (uniform probability):

Random tilings (by Dominoes)

Tilings by dominoes (uniform probability):

Artic circle Theorem [Cohn-Larsen-Propp (1998)]]:

In scaling limits of random lozenges tilings of a regular hexagon,

Artic circle Theorem [Cohn-Larsen-Propp (1998)]]:

In scaling limits of random lozenges tilings of a regular hexagon, there is a.s. a disordered region with deterministic limit, with bdry a circle.

Random tiling: Scaling limit, with probability 1:

Artic circle Theorem [Cohn-Larsen-Propp (1998)]]:

In scaling limits of random lozenges tilings of regular hexagon, there is a.s. a disordered region with deterministic limit, with bdry a circle. [Cohn-Kenyon-Propp(2001)]: a.s. Artic circle for dominoes

Random tiling: Scaling limit, with probability 1:

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

In scaling limits, a.s. disordered (or "liquid") regions $\mathcal L$ and ordered (or "frozen") regions $\mathcal F$ in other polygons, too, for lozenge and domino tilings and more generally, for all dimer models.

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

In scaling limits, a.s. disordered (or "liquid") regions $\mathcal L$ and ordered (or "frozen") regions $\mathcal F$ in other polygons, too, for lozenge and domino tilings and more generally, for all dimer models.

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

In scaling limits, a.s. disordered (or "liquid") regions $\mathcal L$ and ordered (or "frozen") regions $\mathcal F$ in other polygons, too, for lozenge and domino tilings and more generally, for all dimer models.

' Dimer models: perfect matchings on a bipartite, doubly periodic planar graph.

' Dimer models: perfect matchings on a bipartite, doubly periodic planar graph.

Problem: Describe the geometry of all frozen boundaries $\partial \mathcal{L} = \mathcal{F}$!

With algebraic geometry and complex Burgers equation, Kenyon-Okounkov (2007):

For losenges tilings, in polygons with 3n sides, directions cyclically repeated: Frozen boundary is (a specific) algebraic curve.

General dimer models

Question:

Geometry of Frozen boundary for dominoes (on square lattice) ?

For general dimer models ??

General dimer models

Question:

Geometry of Frozen boundary for dominoes (on square lattice) ?

For general dimer models ??

Random tilings and Thurston's discrete height function

Random tilings and Thurston's discrete height function

- Asymptotic height function h.
- $N =$ Gradient constraint for ∇h [N depends on dimer model !]

Random tilings and Thurston's discrete height function

[Cohn-Kenyon-Propp (2001)]; [Kenyon-Okounkov-Sheffield (2006)]:

Determining the frozen boundaries is equivalent to

a (non standard) variational problem for h !

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \ h_0 \in Lip_1(\partial \Omega),
$$

 \bullet "Energy" or "Surface tension" σ has special form:

 $_{q \in \mathscr{G}} \delta_q$ in a convex polygon $N = N_{\sigma}$, (MA) σ convex, with $\sigma_{\vert \partial N_{\sigma}}$ piecewise linear.

• Liquid domains:

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

 $\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}$ ($h_0 \in Lip_1(\partial\Omega),$

 \bullet "Energy" or "Surface tension" σ has special form:

det $D^2 \sigma = 1 +$ ř $_{q\in\mathscr{G}}\delta_{q}$ in a convex polygon $N=N_{\sigma}$, (MA) σ convex, $\left\vert \mathrm{with}\right\rangle \sigma_{\left\vert \partial N_{\sigma}\right\rangle }$ piecewise linear.

' Liquid domains:

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

 $\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}$ ($h_0 \in Lip_1(\partial\Omega),$

 \bullet "Energy" or "Surface tension" σ has special form:

det $D^2 \sigma = 1 +$ ř $_{q\in\mathscr{G}}\delta_{q}$ in a convex polygon $N=N_{\sigma}$, (MA) σ convex, $\left\vert \mathrm{with}\right\rangle \sigma_{\left\vert \partial N_{\sigma}\right\rangle }$ piecewise linear.

' Liquid domains:

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \ h_0 \in Lip_1(\partial \Omega),
$$

 \bullet "Energy" or "Surface tension" σ has special form:

det $D^2 \sigma = 1 +$ ř $_{q\in\mathscr{G}}\delta_{q}$ in a convex polygon $N=N_{\sigma}$, (MA) σ convex, $\left. \right.$ with $\sigma_{\left. \right| \partial N_{\sigma}}$ piecewise linear.

- Liquid domains: $\mathscr{L} := \{ z : \nabla h(z) \in (N_{\sigma})^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- Say: $\partial \mathscr{L}$ frozen if $\nabla h(z) \rightarrow \partial N_{\sigma} \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \ h_0 \in Lip_1(\partial \Omega),
$$

 \bullet "Energy" or "Surface tension" σ has special form:

det $D^2 \sigma = 1 +$ ř $_{q\in\mathscr{G}}\delta_{q}$ in a convex polygon $N=N_{\sigma}$, (MA) σ convex, $\left. \right.$ with $\sigma_{\left. \right| \partial N_{\sigma}}$ piecewise linear.

- Liquid domains: $\mathscr{L} := \{ z : \nabla h(z) \in (N_{\sigma})^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- Say: $\partial \mathscr{L}$ frozen if $\nabla h(z) \rightarrow \partial N_{\sigma} \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.

Problem: Describe the geometric properties of $\partial \mathcal{L}$!

• Variational problem, with gradient constraint: $\Omega \subset \mathbb{C}$ open;

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0, \ \nabla v \in N_{\sigma} \right\}, \ h_0 \in Lip_1(\partial \Omega),
$$

 \bullet "Energy" or "Surface tension" σ has special form:

det $D^2 \sigma = 1 +$ ř $_{q\in\mathscr{G}}\delta_{q}$ in a convex polygon $N=N_{\sigma}$, (MA) σ convex, $\left. \right.$ with $\sigma_{\left. \right| \partial N_{\sigma}}$ piecewise linear.

- Liquid domains: $\mathscr{L} := \{ z : \nabla h(z) \in (N_{\sigma})^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- Say: $\partial \mathscr{L}$ frozen if $\nabla h(z) \rightarrow \partial N_{\sigma} \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.

Problem: Describe the geometric properties of $\partial \mathcal{L}$!

Lozenge model: surface tension

Let
$$
N = N_{l_o} := \overline{\text{conv}}\{(0,0), (0,1), (1,0)\}
$$
. Then $\sigma = \sigma_{l_o}$ where

$$
\nabla \sigma_{Lo}(s,t) = \frac{1}{\pi} \left(\log \left(\frac{\sin(\pi s)}{\sin(\pi (t+s))} \right), \log \left(\frac{\sin(\pi t)}{\sin(\pi (t+s))} \right) \right).
$$

' NEITHER OUTER NOR INNER VARIATION WORKS !

Lozenge model: surface tension

Let
$$
N = N_{l_o} := \overline{\text{conv}}\{(0,0), (0,1), (1,0)\}
$$
. Then $\sigma = \sigma_{l_o}$ where

$$
\nabla \sigma_{L_o}(s,t) = \frac{1}{\pi} \left(\log \left(\frac{\sin(\pi s)}{\sin(\pi (t+s))} \right), \log \left(\frac{\sin(\pi t)}{\sin(\pi (t+s))} \right) \right).
$$

. NEITHER OUTER NOR INNER VARIATION WORKS !

Theorem 1 (A.-Duse-Prause-Zhong)

Let $\mathscr{L} \subset \mathbb{C}$ be bounded (simply- or multiply connected) domain. If $\mathscr L$ liquid for any dimer model, with boundary $\partial \mathscr L$ frozen, then

1) $\partial \mathscr{L}$ is the real locus of an algebraic curve.

-
-
-

Theorem 1 (A.-Duse-Prause-Zhong)

Let $\mathscr{L} \subset \mathbb{C}$ be bounded (simply- or multiply connected) domain. If $\mathscr L$ liquid for any dimer model, with boundary $\partial \mathscr L$ frozen, then

1) $\partial \mathcal{L}$ is the real locus of an algebraic curve.

2) The singularities of $\partial \mathcal{L}$ are all first order cusps or tacnodes.

Theorem 1 (A.-Duse-Prause-Zhong)

Let $\mathscr{L} \subset \mathbb{C}$ be bounded (simply- or multiply connected) domain. If $\mathscr L$ liquid for any dimer model, with boundary $\partial \mathscr L$ frozen, then

1) $\partial \mathcal{L}$ is the real locus of an algebraic curve.

- 2) The singularities of $\partial \mathcal{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathscr{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
-

Theorem 1 (A.-Duse-Prause-Zhong)

Let $\mathscr{L} \subset \mathbb{C}$ be bounded (simply- or multiply connected) domain. If $\mathscr L$ liquid for any dimer model, with boundary $\partial \mathscr L$ frozen, then

- 1) $\partial \mathcal{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathcal{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathcal{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- 4) Characterisation of Rational maps that arise as parametrization of some $\partial \mathscr{L}$ (when \mathscr{L} simply connected).

Theorem 1 (A.-Duse-Prause-Zhong)

Let $\mathscr{L} \subset \mathbb{C}$ be bounded (simply- or multiply connected) domain. If $\mathscr L$ liquid for any dimer model, with boundary $\partial \mathscr L$ frozen, then

- 1) $\partial \mathcal{L}$ is the real locus of an algebraic curve.
- 2) The singularities of $\partial \mathcal{L}$ are all first order cusps or tacnodes.
- 3) For $\zeta \in \partial \mathcal{L}$, outside cusps and tacnodes, $\partial \mathcal{L}$ is locally convex: $B(\zeta, \varepsilon) \cap \mathscr{L}$ is convex $\forall \varepsilon > 0$ small.
- 4) Characterisation of Rational maps that arise as parametrization of some $\partial \mathscr{L}$ (when \mathscr{L} simply connected).

Geometry of Frozen boundaries: Universality

Theorem 2 (A-D-P-Z)

Let $\mathscr{L}_0 \subset \mathbb{C}$ be a bounded Jordan domain.

Suppose \mathscr{L}_0 is liquid domain for some dimer model, with frozen boundary $\partial \mathcal{L}_0$.

Geometry of Frozen boundaries: Universality

Theorem 2 (A-D-P-Z)

Let $\mathscr{L}_0 \subset \mathbb{C}$ be a bounded Jordan domain.

Suppose \mathscr{L}_0 is liquid domain for some dimer model, with frozen boundary $\partial \mathcal{L}_0$.

Then \mathscr{L}_0 is liquid, with frozen bdry, for the Lozenges model.

Geometry of Frozen boundaries: Universality

Theorem 2 (A-D-P-Z)

Let $\mathscr{L}_0 \subset \mathbb{C}$ be a bounded Jordan domain.

Suppose \mathscr{L}_0 is liquid domain for some dimer model, with frozen boundary $\partial \mathcal{L}_0$.

Then \mathscr{L}_0 is liquid, with frozen bdry, for the Lozenges model.

' Variational problem with Gradient constraint N.

 $\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0 \right\}$ $, \quad \det D^2 \sigma = 1 +$ $_{q\in\mathscr{G}}$ $\delta_{q}.$

- Liquid domain $\mathscr{L} = \{ z : \nabla h(z) \in \mathsf{N}^\circ \backslash \mathscr{G} \} \subset \Omega.$
- $\cdot \partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \rightarrow \partial N \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.
- De Silva-Savin: $\mathscr L$ is open (if non-empty), and $h\in C^1$ in $\mathscr L.$

' Variational problem with Gradient constraint N.

 $\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0 \right\}$ ($, \quad \det D^2 \sigma = 1 +$ $_{q\in\mathscr{G}}$ $\delta_{q}.$

- Liquid domain $\mathscr{L} = \{ z : \nabla h(z) \in N^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- $\cdot \partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \rightarrow \partial N \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.
- De Silva-Savin: $\mathscr L$ is open (if non-empty), and $h\in C^1$ in $\mathscr L.$

' Variational problem with Gradient constraint N.

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.
$$

- Liquid domain $\mathscr{L} = \{ z : \nabla h(z) \in N^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- \bullet $\partial \mathscr{L}$ frozen \Leftrightarrow $\nabla h(z) \rightarrow \partial N \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.
- De Silva-Savin: $\mathscr L$ is open (if non-empty), and $h\in C^1$ in $\mathscr L.$

Thus div $\nabla \sigma(\nabla h) = 0$ in \mathscr{L}

' Variational problem with Gradient constraint N.

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.
$$

- Liquid domain $\mathscr{L} = \{ z : \nabla h(z) \in N^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- \bullet $\partial \mathscr{L}$ frozen \Leftrightarrow $\nabla h(z) \rightarrow \partial N \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.
- De Silva-Savin: $\mathscr L$ is open (if non-empty), and $h\in C^1$ in $\mathscr L.$

Thus div $\nabla \sigma(\nabla h) = 0$ in $\mathscr L$

TASK: When $\partial \mathcal{L}$ frozen, describe its geometry !

' Variational problem with Gradient constraint N.

$$
\int_{\Omega} \sigma(\nabla h) = \inf \left\{ \int_{\Omega} \sigma(\nabla v) : v_{\vert \partial \Omega} = h_0 \right\}, \quad \det D^2 \sigma = 1 + \sum_{q \in \mathscr{G}} \delta_q.
$$

- Liquid domain $\mathscr{L} = \{ z : \nabla h(z) \in N^{\circ} \backslash \mathscr{G} \} \subset \Omega.$
- $\cdot \partial \mathscr{L}$ frozen $\Leftrightarrow \nabla h(z) \rightarrow \partial N \cup \mathscr{G}$ as $z \rightarrow \partial \mathscr{L}$.
- De Silva-Savin: $\mathscr L$ is open (if non-empty), and $h\in C^1$ in $\mathscr L.$

Thus div $\nabla \sigma(\nabla h) = 0$ in $\mathscr L$

TASK: When $\partial \mathcal{L}$ frozen, describe its geometry !

Beltrami equation from height function: Complex structure $F_{\bar{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For L simply connected: Set $F = h + iv$.
-

Beltrami equation from height function: Complex structure $F_{\overline{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For L simply connected: Set $F = h + iv$.
- $F_{\bar{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

Beltrami equation from height function: Complex structure $F_{\overline{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For L simply connected: Set $F = h + iv$.
- $F_{\bar{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

Beltrami equation from height function: Complex structure $F_{\bar{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For $\mathcal L$ simply connected: Set $F = h + iv$.
- $F_{\bar{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma\equiv 1$, have $\mathcal{H}=\mathcal{H}_\sigma$ complex analytic !

• $f := F_z = \nabla h + \nabla \sigma(\nabla h)$ satisfies

Beltrami equation from height function: Complex structure $F_{\bar{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For $\mathcal L$ simply connected: Set $F = h + iv$.
- $F_{\bar{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma\equiv 1$, have $\mathcal{H}=\mathcal{H}_\sigma$ complex analytic !

• $f := F_z = \nabla h + \nabla \sigma(\nabla h)$ satisfies

 $\overline{\partial} f(z) = \mathcal{H}_{\sigma}$ ['] ($f(z)$ $\partial f(z),$ Beltrami equation from height function: Complex structure $F_{\overline{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For $\mathcal L$ simply connected: Set $F = h + iv$.
- $F_{\bar{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma\equiv 1$, have $\mathcal{H}=\mathcal{H}_\sigma$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)}$ satisfies

 $\overline{\partial} f(z) = \mathcal{H}_{\sigma}^{\prime} \big(\, f(z) \, \big) \, \partial f(z),$

Beltrami equation from height function: Complex structure $F_{\bar{z}} = \mu F_z, \qquad |\mu|_{\infty} \leq 1.$

• " Cauchy-Riemann eqn's " for div $\nabla \sigma(\nabla h) = 0$:

$$
v_x = -\sigma_y(\nabla h), \ v_y = \sigma_x(\nabla h)
$$

- For $\mathcal L$ simply connected: Set $F = h + iv$.
- $F_{\bar{z}} = \mathcal{H}(F_z), \qquad \mathcal{H}(w) = (I \nabla \sigma) \circ (I + \nabla \sigma)^{-1}(\overline{w})$

When det $D^2\sigma\equiv 1$, have $\mathcal{H}=\mathcal{H}_\sigma$ complex analytic !

• $f := F_z = \overline{\nabla h + \nabla \sigma(\nabla h)} \Rightarrow \nabla h = (Id + \nabla \sigma)^{-1}(\overline{f})$, where

 $L_{\sigma}^{-1} := (I + \nabla \sigma)^{-1}$ harmonic homeo !

Beltrami equation from height function: First Conclusions

Theorem 3 (A-D-P-Z) Suppose:

 σ convex, $\det D^2 \sigma = 1$ in $\mathcal{N} = co\{p_j\}_1^n$ \int_{1}^{π} , $\sigma_{|_{\partial N}}$ piecewise affine,

and $\text{div}(\nabla \sigma \circ \nabla h) = 0$ in bdd domain $\mathscr L$ with $\partial \mathscr L$ frozen. Then

(1) $\nabla h(z) = \sum_{j=1}^n p_j \omega_{\mathbb{D}}$ $f(z)$; Ij $[\omega_{\mathbb{D}}]$ harmonic meas. in \mathbb{D}]

(2) $f : \mathscr{L} \to \mathbb{D}$ proper with $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_z, z \in \mathscr{L}$.

Beltrami equation from height function: First Conclusions

Theorem 3 (A-D-P-Z) Suppose:

 σ convex, $\det D^2 \sigma = 1$ in $\mathcal{N} = co\{p_j\}_1^n$ \int_{1}^{π} , $\sigma_{|_{\partial N}}$ piecewise affine,

and $\text{div}(\nabla \sigma \circ \nabla h) = 0$ in bdd domain $\mathscr L$ with $\partial \mathscr L$ frozen. Then

(1)
$$
\nabla h(z) = \sum_{j=1}^{n} p_j \omega_{\mathbb{D}}(f(z); l_j)
$$
 [$\omega_{\mathbb{D}}$ harmonic meas. in \mathbb{D}]

where

(2) $f: \mathscr{L} \to \mathbb{D}$ proper with $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_z, z \in \mathscr{L}$.

Beltrami equation from height function: First Conclusions

Theorem 3 (A-D-P-Z) Suppose:

 σ convex, $\det D^2 \sigma = 1$ in $\mathcal{N} = co\{p_j\}_1^n$ \int_{1}^{π} , $\sigma_{|_{\partial N}}$ piecewise affine,

and $\text{div}(\nabla \sigma \circ \nabla h) = 0$ in bdd domain $\mathscr L$ with $\partial \mathscr L$ frozen. Then

(1)
$$
\nabla h(z) = \sum_{j=1}^{n} p_j \omega_{\mathbb{D}}(f(z); l_j)
$$
 [$\omega_{\mathbb{D}}$ harmonic meas. in \mathbb{D}]

where

(2) $f: \mathscr{L} \to \mathbb{D}$ proper with $f_{\bar{z}} = \mathcal{H}'_{\sigma}(f) f_z, z \in \mathscr{L}$.

The "Universal Equation":

 $\overline{\partial} f(z) = f(z) \partial f(z)$ (*)

• If $f : \mathscr{L} \to \mathbb{D}$ proper and satisfies $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}$,

 $\Rightarrow f_o := \mathcal{H}'_\sigma(f)$ proper map $\mathscr{L} \to \mathbb{D}$, solving (*).

The "Universal Equation":

 $\overline{\partial} f(z) = f(z) \partial f(z)$ (*)

• If $f : \mathscr{L} \to \mathbb{D}$ proper and satisfies $f_{\overline{z}} = \mathcal{H}'_{\sigma}(f) f_{z}$,

 $\Rightarrow f_o := \mathcal{H}'_{\sigma}(f)$ proper map $\mathscr{L} \to \mathbb{D}$, solving (*).

Theorem (A.-Duse-Prause-Zhong) Suppose

- \bullet f : $\mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\partial f(z) = f(z) \partial f(z)$

Then

1) $f(x)$ extends continuously to $\partial \mathcal{L}$, f smooth in \mathcal{L} .

Theorem (A.-Duse-Prause-Zhong) Suppose

- \bullet f : $\mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\partial f(z) = f(z) \partial f(z)$

Then

1) $f(x)$ extends continuously to $\partial \mathcal{L}$, f smooth in \mathcal{L} . 2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$.

Theorem (A.-Duse-Prause-Zhong) Suppose

- \bullet f : $\mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\partial f(z) = f(z) \partial f(z)$

Then

1) $f(x)$ extends continuously to $\partial \mathcal{L}$, f smooth in \mathcal{L} . 2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$. 3) $f \in Lip_{1/3}(\mathscr{L});$

Theorem (A.-Duse-Prause-Zhong) Suppose

- \bullet f : $\mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\partial f(z) = f(z) \partial f(z)$

Then

- 1) $f(x)$ extends continuously to $\partial \mathcal{L}$, f smooth in \mathcal{L} .
- 2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$.
- 3) $f \in Lip_{1/3}(\mathscr{L});$

4) $f\in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}.$

Theorem (A.-Duse-Prause-Zhong) Suppose

- \bullet f : $\mathscr{L} \to \mathbb{D}$ is continuous and proper; \mathscr{L} bounded.
- $\partial f(z) = f(z) \partial f(z)$

Then

- 1) $f(x)$ extends continuously to $\partial \mathcal{L}$, f smooth in \mathcal{L} .
- 2) $\partial \mathscr{L}$ algebraic; if \mathscr{L} simply connected, $\partial \mathscr{L} = r(\mathbb{S}^1)$; $r \in R(\mathbb{C})$.
- 3) $f \in Lip_{1/3}(\mathscr{L});$
- 4) $f\in Lip_{1/2}(\mathscr{L})$ outside a finite set of singularities on $\partial \mathscr{L}.$

Beltrami equations and geometry of frozen boundaries Singularities:

- 5) Boundary $\partial \mathcal{L}$ has only first order cusps.
- 6) $f \in Lip_{1/3}$ on line ℓ transversal to cusp; $f \in Lip_{1/2}$ in the cusp direction.

Beltrami equations and geometry of frozen boundaries Singularities:

- 5) Boundary $\partial \mathscr{L}$ has only first order cusps.
- 6) $f \in Lip_{1/3}$ on line ℓ transversal to cusp; $f \in Lip_{1/2}$ in the cusp direction.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ G$

where

 $G : \mathscr{L} \to \mathbb{D}$ homeo, solution to $\overline{\partial} G(z) = f(z) \partial G(z)$.

 $B: \mathbb{D} \to \mathbb{D}$ analytic and proper $\Rightarrow B =$ finite Blaschke product.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ G$

where

 $G : \mathscr{L} \to \mathbb{D}$ homeo, solution to $\overline{\partial} G(z) = f(z) \partial G(z)$,

 $B: \mathbb{D} \to \mathbb{D}$ analytic and proper $\Rightarrow B =$ finite Blaschke product.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ G$

where

 $G : \mathscr{L} \to \mathbb{D}$ homeo, solution to $\overline{\partial} G(z) = f(z) \partial G(z)$,

 $B : \mathbb{D} \to \mathbb{D}$ analytic and proper $\Rightarrow B =$ finite Blaschke product.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

 $g : \mathbb{D} \to \mathscr{L}$ homeo, solution to $\overline{\partial}g(z) = -B(z)\overline{\partial g(z)}$,

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

 $g : \mathbb{D} \to \mathscr{L}$ homeo, solution to $\overline{\partial}g(z) = -B(z)\overline{\partial g(z)}$, $g(z) = \Phi(z, 1/\overline{z}), \qquad \Phi(z, w)$ rational in \mathbb{C}^2 , symmetric.

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

 $g : \mathbb{D} \to \mathscr{L}$ homeo, solution to $\overline{\partial}g(z) = -B(z)\overline{\partial g(z)}$, $g(z) = \Phi(z, 1/\overline{z}) \Rightarrow g_{|\partial \mathbb{D}} = R(z)$, rational $\Rightarrow \partial \mathcal{L} = R(\mathbb{S}^1)$. $f = B \circ g^{-1}$, thus $f : \mathscr{L} \to \mathbb{D}$ continuous up to $\partial \mathscr{L} . \ \Box$

 $\overline{\partial} f(z) = f(z) \partial f(z), \quad f \in W^{1,2}_{loc}, \quad f : \mathscr{L} \to \mathbb{D}$ cont. and proper How to approach ? !

Hodograph transform: For $\mathscr L$ simply connected,

 $f = B \circ g^{-1}$

where

 $g : \mathbb{D} \to \mathscr{L}$ homeo, solution to $\overline{\partial}g(z) = -B(z)\overline{\partial g(z)}$, $g(z) = \Phi(z, 1/\overline{z}) \Rightarrow g_{|\partial \mathbb{D}} = R(z)$, rational $\Rightarrow \partial \mathcal{L} = R(\mathbb{S}^1)$. $f = B \circ g^{-1}$, thus $f : \mathscr{L} \to \mathbb{D}$ continuous up to $\partial \mathscr{L}$.

Corollary: Regularity of Height Function

Recall height function $h(z)$; div $(\nabla \sigma(\nabla h))$ ˘ $= 0$ in liquid region

$$
\mathcal{L} = \{ z \in \Omega : \nabla h(z) \in \text{int}(K) \}.
$$

 \bullet $\nabla h \in C^{1/2}(\mathcal{L}), \circ$ outside a finite set of cusp singularities on $\partial \mathscr{L}.$ (Pokrovsky-Talapov law)

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{\vert_{L^{\circ}}}$;

- Given: $f : \mathcal{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z$, $z \in \mathcal{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}$ $f(z)$; Ij defines $h \in Lip_1(\mathscr{L}_0)$.

 \cdot div $(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{\vert_{L^{\circ}}}$;

- Given: $f : \mathcal{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z$, $z \in \mathcal{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}$ \mathcal{L} $f(z)$; I_j ˘ defines $h \in Lip_1(\mathscr{L}_0)$.

 \bullet div $(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

• $\int_{\Omega} \sigma_{Lo}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{Lo}(\nabla v) : v_{|\partial \Omega} = h_0, \nabla v \in N_{Lo} \right\}$, and • $\mathscr{L}_0 \equiv \{ z : \nabla h(z) \in (N_{L_o})^\circ \}; \quad \nabla h(z) \to \partial N_{L_o} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{\vert_{L^{\circ}}}$;

- Given: $f : \mathcal{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z$, $z \in \mathcal{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}$ \mathcal{L} $f(z)$; I_j ˘ defines $h \in Lip_1(\mathscr{L}_0)$.
- \bullet div $(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: Extend h to polygonal $\Omega \supset \mathscr{L}_0$ s.t. • $\int_{\Omega} \sigma_{Lo}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{Lo}(\nabla v) : v_{|\partial \Omega} = h_0, \nabla v \in N_{Lo} \right\}$, and • $\mathscr{L}_0 \equiv \{ z : \nabla h(z) \in (N_{L_o})^\circ \}; \quad \nabla h(z) \to \partial N_{L_o} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{\vert_{L^{\circ}}}$;

- Given: $f : \mathcal{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z$, $z \in \mathcal{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}$ \mathcal{L} $f(z)$; I_j ˘ defines $h \in Lip_1(\mathscr{L}_0)$.
- \bullet div $(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: Extend h to polygonal $\Omega \supset \mathscr{L}_0$ s.t. • $\int_{\Omega} \sigma_{Lo}(\nabla h) = \inf \left\{ \int_{\Omega} \sigma_{Lo}(\nabla v) : v_{|\partial\Omega} = h_0, \nabla v \in N_{Lo} \right\}$, and • $\mathscr{L}_0 \equiv \{ z : \nabla h(z) \in (N_{L_o})^{\circ} \}; \quad \nabla h(z) \to \partial N_{L_o} \text{ as } z \to \partial \mathscr{L}_0.$

Height functions, Beltrami equation and Universality Conversely: Suppose $\sigma = \sigma_{\vert_{L^{\circ}}}$;

- Given: $f : \mathcal{L}_0 \to \mathbb{D}$ proper with $f_{\overline{z}} = f f_z$, $z \in \mathcal{L}_0$,
- Formula $\nabla h(z) = \sum_{j=1}^{3} p_j \omega_{\mathbb{D}}$ \mathcal{L} $f(z)$; I_j ˘ defines $h \in Lip_1(\mathscr{L}_0)$.
- \bullet div $(\nabla \sigma \circ \nabla h) = 0$ in \mathscr{L}_0 .

Last: (Nontrivial) Extend h to polygonal $\Omega \supset \mathscr{L}_0$ s.t.

- $\int_{\Omega} \sigma_{Lo}(\nabla h) = \inf \{ \int_{\Omega} \sigma_{Lo}(\nabla v) : v_{\partial\Omega} = h_0, \ \nabla v \in N_{Lo} \}$, and
- $\mathscr{L}_0 \equiv \{ z : \nabla h(z) \in (N_{L_o})^{\circ} \}; \quad \nabla h(z) \to \partial N_{L_o} \text{ as } z \to \partial \mathscr{L}_0.$

Thank you !