Integrability of SLE via conformal welding of random surfaces

Nina Holden

ETH Zürich

Collaboration with Morris Ang and Xin Sun

March 28, 2022

Holden (ETH Zürich) **Integrability of SLE** via conformal welding March 28, 2022 1/22

 299

Gaussian free field (GFF)

• Free boundary Gaussian free field h in $\mathbb D$ with mean zero on $\partial \mathbb D$: Gaussian random field with mean zero and covariance

$$
Cov(h(z),h(w)) = G(z,w),
$$

where $G : \mathbb{D} \times \mathbb{D} \to [0, \infty)$ is the Neumann Green's function

$$
G(z, w) = \log |z - w|^{-1} + \log |1 - z\overline{w}|^{-1}.
$$

- h not well defined as a function since $G(z, z) = \infty$.
- *h* well-defined as a random generalized function (distribution).
	- $\int_{\mathbb{D}}$ hf d^2z is well-defined for f a smooth test function.

Liouville quantum gravity (LQG)

• Let $\gamma \in (0, 2)$ and let h be the Gaussian free field in D. LQG surface: $e^{\gamma h} (dx^2 + dy^2)$

Area measure: $\mu = \text{``}e^{\gamma h}d^2z \text{''},$

Boundary measure: $\nu = \mu e^{\gamma h/2} dz$ ",

Distance: $D = "e^{\gamma h/d_{\gamma}}|dz|$ ", $d_{\gamma} =$ dimension $>$ 2.

- The definition of an LQG surface does not make literal sense since h is a distribution and not a function.
- μ, ν, D defined rigorously via regularized version h_{ϵ} of h, e.g.

$$
\mu(U)=\lim_{\epsilon\to 0}\epsilon^{\gamma^2/2}\int_U e^{\gamma h_\epsilon(z)}d^2z,\quad U\subset\mathbb{D}.
$$

References:

- \bullet μ, ν : Hoegh-Krohn'71, Kahane'85, Duplantier-Sheffield'08, Rhodes-Vargas'13, Berestycki'15, etc.
- D: Ding-Dubedat-Dunlap-Falconet'19, Gwynne-Miller'19
- See also talks of Powell, Sturm, Kupiainen[, C](#page-1-0)[he](#page-3-0)[n,](#page-1-0) [S](#page-2-0)[u](#page-3-0)[n](#page-0-0)

Liouville quantum gravity (LQG) surface

The tuple (μ, ν, D) describes the geometry of the γ -**LQG surface** (\mathbb{D}, h).

Two different embeddings of the same γ -LQG surface

LQG as a scaling limit of random planar maps

If boundary length and area is random, then we have infinite measures (not probability measures) on the space of LQG surfaces.

- Example: Law of γ -LQG disk boundary length is $c\ell^{-2-\frac{4}{\gamma^2}}$ d ℓ for $c > 0$.
- See e.g. Le Gall'11, Miermont'11, Duplantier-Miller-Sheffield'14, Miller-Sheffield'16, H.-Sun'19 for scaling li[mit](#page-3-0) [re](#page-5-0)[s](#page-3-0)[ult](#page-4-0)[s.](#page-5-0)

 QQ

The Schramm-Loewner evolution (SLE)

- Let $\kappa > 0$, let $D \subset \mathbb{C}$ be simply connected, and let $a, b \in \partial D$.
- A Schramm-Loewner evolution with parameter κ on (D, a, b) is a random fractal curve from a to b in D.
- The Schramm-Loewner evolution describes the scaling limit of interfaces in statistical physics models.
- Introduced by Oded Schramm in 1999.
- Uniquely characterized by conformal invariance and the domain Markov property.

つひい

The Schramm-Loewner evolution with force points

- Let $\kappa \geq 0$, $D \subset \mathbb{C}$, a, b, z₋, z₊ $\in \partial D$, and $\rho_-, \rho_+ > -2$.
- SLE_{$\kappa(\rho)$, $\rho = (\rho_-; \rho_+)$, is the variant of SLE_{κ} where we keep track of} two **force points** on the domain boundary.
- In remainder of talk: $z_-=a^-, z_+=a^+$.
- Force point attractive (resp. repulsive) for ρ_{\pm} < 0 (resp. ρ_{\pm} > 0).
- Special case: $ρ_ = ρ_ + = 0$ gives SLE_κ.
- Studied in e.g. Lawler-Schramm-Werner'02, Dubedat'03, Miller-Sheffield'12.
- Arises in a variety of settings: conditioned SLE_{κ} , boundary data, chordal restriction, imaginary geometry, Liouville quantum gravity, ...

つひい

The Schramm-Loewner evolution with force points

- Let $\kappa \geq 0$, $D \subset \mathbb{C}$, a, b, z₋, z₊ $\in \partial D$, and $\rho_-, \rho_+ > -2$.
- SLE_{$\kappa(\rho)$, $\rho = (\rho_-; \rho_+)$, is the variant of SLE_{κ} where we keep track of} two **force points** on the domain boundary.
- In remainder of talk: $z_-=a^-, z_+=a^+$.
- Force point attractive (resp. repulsive) for ρ_{\pm} < 0 (resp. ρ_{\pm} > 0).
- Special case: $ρ_ = ρ_ + = 0$ gives SLE_κ.
- Studied in e.g. Lawler-Schramm-Werner'02, Dubedat'03, Miller-Sheffield'12.
- Arises in a variety of settings: conditioned SLE_{κ} , boundary data, chordal restriction, imaginary geometry, Liouville quantum gravity, ...

つひい

The Schramm-Loewner evolution with force points

- Let $\kappa \geq 0$, $D \subset \mathbb{C}$, a, b, z₋, z₊ $\in \partial D$, and $\rho_-, \rho_+ > -2$.
- SLE_{$\kappa(\rho)$, $\rho = (\rho_-; \rho_+)$, is the variant of SLE_{κ} where we keep track of} two **force points** on the domain boundary.
- In remainder of talk: $z_-=a^-, z_+=a^+$.
- Force point attractive (resp. repulsive) for ρ_{\pm} < 0 (resp. ρ_{\pm} > 0).
- Special case: $ρ_ = ρ_ + = 0$ gives SLE_κ.
- Studied in e.g. Lawler-Schramm-Werner'02, Dubedat'03, Miller-Sheffield'12.
- Arises in a variety of settings: conditioned SLE_{κ} , boundary data, chordal restriction, imaginary geometry, Liouville quantum gravity, ...

The conformal welding probl.: disk $+$ disk $=$ disk $+$ curve

- \bullet \mathbb{D}_1 , \mathbb{D}_2 copies of the unit disk; ϕ : $L_1 \rightarrow L_2$ a homeomorphism.
- Conformal welding: a conformal structure on the disk $\mathbb D$ obtained by identifying L_1 and L_2 according to ϕ .
	- More precisely, we are interested in a curve η and conformal maps $\psi_j: \mathbb{D}_j \to D_j, \, j=1,2,$ such that $\phi = \psi_2^{-1} \circ \psi_1|_{L_1}.$
- Does there exist a conformal welding? If so, is it unique?
- Existence and uniqeness may fail, but sufficient regularity of ϕ or η guarantees a unique solution.

 $Disk + disk = disk + SLE$

 $\beta \in \mathbb{R}$ next to $z \in \partial \mathbb{D}$ means the field looks locally like $GFF + \beta \log |\cdot - z|^{-1}$ η has law $\text{SLE}_{\kappa}(\rho_-;\rho_+), \kappa = \gamma^2, \, \rho_{\pm} = \gamma^2 - \gamma \beta_{\pm}$

- Welding homeomorphism given by LQG boundary length
- **•** Green & blue disks **independent** cond. on matching bdy lengths
- SLE and disk in left figure **independent**
- Ang-H.-Sun'20, building on Sheffield'10 & Duplantier-Miller-Sheff.'14

Conformal welding with thin LQG disks

 $\beta \in \mathbb{R}$ next to $z \in \partial \mathbb{D}$ means the field looks locally like GFF+ $\beta \log |\cdot -z|$ η has law SLE_{κ} $(\rho_-; \rho_+), \kappa = \gamma^2, \rho_{\pm} = \gamma^2 - \gamma \beta_{\pm}$

- The thin disk is defined via a PPP $\{(t,S_t)\}$, where S_t is a two-pointed LQG disk and $t > 0$ indicates the relative ordering.
- Background charge $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$ $\frac{\gamma}{2}$.
- Th[e t](#page-10-0)hin disk is the natural extension of the t[hic](#page-12-0)[k](#page-0-0) [d](#page-11-0)[is](#page-12-0)k [for](#page-30-0) $\beta > Q$ $\beta > Q$ $\beta > Q$ $\beta > Q$.

Discrete motivation for conformal welding

Bijection: $\big((M_1,v_1,w_2),(M_2,v_2,w_2)\big), \#\partial_1^{\mathsf{R}}=\#\partial_2^{\mathsf{L}}$ and (M,v,w,η)

Continuum result inspired by planar maps, but proof is purely continuum.

Moments for uniformizing map of $\overline{\text{SLE}}_\kappa(\rho_-;\rho_+)$

Theorem 1 (Ang-H.-Sun'21)

$$
\mathbb{E}[\psi'(1)^\lambda]=\frac{\digamma(\alpha(\lambda),\kappa,\rho_-,\rho_+)}{\digamma(\sqrt{\kappa},\kappa,\rho_-,\rho_+)}\qquad\text{for }\lambda<\lambda_0.
$$

Moments for uniformizing map of $\overline{\text{SLE}}_\kappa(\rho_-;\rho_+)$

Theorem 1 (Ang-H.-Sun'21)

$$
\mathbb{E}[\psi'(1)^\lambda] = \frac{F(\alpha(\lambda), \kappa, \rho_-, \rho_+)}{F(\sqrt{\kappa}, \kappa, \rho_-, \rho_+)} \quad \text{for } \lambda < \lambda_0.
$$

$$
Q = 2/\sqrt{\kappa} + \sqrt{\kappa}/2,
$$

\n
$$
\log \Gamma_{\frac{\sqrt{\kappa}}{2}}(z) = \int_0^\infty \frac{1}{t} \Big(\frac{e^{-zt} - e^{-Qt/2}}{(1 - e^{-\frac{\sqrt{\kappa}}{2}t})(1 - e^{-\frac{\sqrt{\kappa}}{2}t})} - \frac{(\frac{Q}{2} - z)^2}{2} e^{-t} + \frac{z - \frac{Q}{2}}{t} \Big) dt.
$$

\n
$$
F(x, \kappa, \rho_-, \rho_+) = \frac{\Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2} + \frac{\rho_+}{\sqrt{\kappa}} + \frac{x}{2}) \Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{4}{\sqrt{\kappa}} + \frac{\rho_+}{\sqrt{\kappa}} - \frac{x}{2})}{\Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{4}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2} + \frac{\rho_- + \rho_+}{\sqrt{\kappa}} + \frac{x}{2}) \Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{6}{\sqrt{\kappa}} + \frac{\rho_- + \rho_+}{\sqrt{\kappa}} - \frac{x}{2})}
$$

\n
$$
\lambda = 1 - \frac{\alpha(\lambda)}{2}(\frac{\sqrt{\kappa}}{2} + \frac{2}{\sqrt{\kappa}} - \frac{\alpha(\lambda)}{2}).
$$

\n
$$
\lambda_0 = (\rho_+ + 2)(\rho_+ + 4 - \kappa/2)/\kappa.
$$

Moments for uniformizing map of $SLE_{\kappa}(\rho_-;\rho_+)$

Theorem 1 (Ang-H.-Sun'21)

$$
\mathbb{E}[\psi'(1)^\lambda]=\frac{\digamma(\alpha(\lambda),\kappa,\rho_-,\rho_+)}{\digamma(\sqrt{\kappa},\kappa,\rho_-,\rho_+)}\qquad\text{for }\lambda<\lambda_0.
$$

- $\psi'(1)$ quantifies how close the $\mathsf{SLE}_\kappa(\rho_-;\rho_+)$ gets to the point $1.$
- The formula is the same for all $\kappa > 0$ although the proof is very different for $\kappa \in (0, 4)$ and $\kappa > 4$.
	- Our proof for $\kappa > 4$ uses SLE duality between κ and $16/\kappa$.

Moments for uniformizing map of $SLE_{\kappa}(\rho_-;\rho_+)$

Theorem 1 (Ang-H.-Sun'21)

$$
\mathbb{E}[\psi'(1)^\lambda]=\frac{\digamma(\alpha(\lambda),\kappa,\rho_-,\rho_+)}{\digamma(\sqrt{\kappa},\kappa,\rho_-,\rho_+)}\qquad\text{for }\lambda<\lambda_0.
$$

- Proof uses conformal welding and two sources of integrability in LQG:
	- Liouville conformal field theory (LCFT)
	- Random planar maps (RPM) and Brownian motion
- The theorem is difficult to approach via classical Loewner chain and Itô calculus methods.

 200

Exact formulas for SLE via LQG: Other examples

- KPZ formula: relates exponents/dim. in Eucl. & LQG environments E.g. Duplantier, Gwynne-H.-Miller'15
- Chen-Curien-Maillard'17: CLE conf. radius via RPM with $O(n)$ model
- Miller-Sheffield-Werner'20: trunk of $SLE_{\kappa}(\rho)$ -processes, continuum Edwards-Sokal coupling, fuzzy Potts model arm exponent
- Ang-Sun'21: CLE electrical thickness and three-point function
- Kavvadias-Miller-Schoug'21: regularity of $SLE₄$ and $SLE₈$
- Ang-Remy-Sun'22: CLE modulus, SLE_{8/3} loop part. func. (Sun's talk)

Related techniques used for permutons in recent Borga-H.-Sun-Yu'22.

Proof of SLE moment formula via welding

 \leftarrow \Box

 299

Proof of SLE moment formula via welding

 η has law $|\psi'(1)|^{1-\frac{\alpha}{2}(Q-\frac{\alpha}{2})}d\mathrm{SLE}_\kappa(\rho_-;\rho_+)$

 QQ

Proof of SLE moment formula via welding

 η has law $|\psi'(1)|^{1-\frac{\alpha}{2}(Q-\frac{\alpha}{2})}d\mathrm{SLE}_\kappa(\rho_-;\rho_+)$

First step in proof of moment formula:

- **1** Compute law of $\nu(L)$ using left and right sides of welding identity.
- **2** Formula using right side involves $\mathbb{E}[|\psi'(1)|^{1-\frac{\alpha}{2}(Q-\frac{\alpha}{2})}].$
- 3 Set formulas in 1. equal to each other; solve for $\mathbb{E}[|\psi'(1)|^{1-\frac{\alpha}{2}(Q-\frac{\alpha}{2})}].$
- \bullet This strategy works for $\beta_-\in\{\gamma,\frac{2}{\gamma}+\frac{\gamma}{2}\}$ $\frac{\gamma}{2}$ $\frac{\gamma}{2}$ $\frac{\gamma}{2}$ [{](#page-17-0) $(\rho_-\in\{0,\frac{\gamma^2}{2}-2\})$ $(\rho_-\in\{0,\frac{\gamma^2}{2}-2\})$ $(\rho_-\in\{0,\frac{\gamma^2}{2}-2\})$ $(\rho_-\in\{0,\frac{\gamma^2}{2}-2\})$ $(\rho_-\in\{0,\frac{\gamma^2}{2}-2\})$ [.](#page-30-0)

Two inputs for computing law of LQG length $\nu(L)$ of L

 200

Boundary length of disks with three singularities

Remy-Zhu'20:

$$
\nu(L) \sim \mathfrak{c}(\beta,\alpha) \ell^{\frac{2}{\gamma}(\beta+\frac{1}{2}\alpha-Q)-1} d\ell,
$$

where $\nu(L)$ is the γ -LQG length of L and $\mathfrak{c}(\beta,\alpha)$ is equal to

$$
\frac{1}{(Q-\beta)^2}\bigg(\frac{2\pi}{\left(\frac{\gamma}{2}\right)^{\frac{\gamma^2}{4}}\Gamma(1-\frac{\gamma^2}{4})}\bigg)^{\frac{2}{\gamma}(Q-\beta-\frac{1}{2}\alpha)}\frac{\Gamma_{\frac{\gamma}{2}}(\frac{1}{2}\alpha)^2\Gamma_{\frac{\gamma}{2}}(Q-\beta+\frac{1}{2}\alpha)\Gamma_{\frac{\gamma}{2}}(\beta+\frac{1}{2}\alpha-\frac{\gamma}{2})}{\Gamma_{\frac{\gamma}{2}}(\frac{2}{\gamma})\Gamma_{\frac{\gamma}{2}}(Q-\beta)^2\Gamma_{\frac{\gamma}{2}}(\alpha)}.
$$

 γ -LQG disk with singularities β, β, α β, β, α β, β, α

Holden (ETH Zürich) [Integrability of SLE via conformal welding](#page-0-0) March 28, 2022 15/22

Thick-thin disk duality: disks with two marked points

Remy-Zhu'20: For thick disks with two β -singularities,

$$
\nu(L) \sim \overline{R}(\beta) \ell^{-2 - \frac{4}{\gamma^2} + \frac{2\beta}{\gamma}} d\ell. \tag{1}
$$

Ang-H.-Sun'21: The thin disk also satisfies [\(1\)](#page-23-1).

The proof uses:

- **The PPP definition of the thin disk.**
- Reflection principle:

 $R(\beta)R(2Q - \beta) = 1,$ $R(\beta) = -\Gamma(1 - 2(Q - \beta)/\gamma)\overline{R}(\beta).$

Thick-thin disk duality: disks with three marked points

Remy-Zhu'20: For thick disks with two β -singularities and one α -sing.

$$
\nu(L) \sim \mathfrak{c}(\beta, \alpha) \ell^{\frac{2}{\gamma}(\beta + \frac{1}{2}\alpha - Q) - 1} d\ell. \tag{2}
$$

Ang-H.-Sun'21: The thin disk with an α -singularity also satisfies [\(2\)](#page-24-1).

The proof uses:

- The PPP definition of the thin disk with an α -singularity.
- Reflection principle:

$$
H_{(0,1,0)}^{(\beta,\beta,\alpha)}=R(\beta)^2H_{(0,1,0)}^{(2Q-\beta,2Q-\beta,\alpha)},\quad H_{(0,1,0)}^{(\beta,\beta,\alpha)}=c_{\gamma,\beta,\alpha}\mathfrak{c}(\beta,\alpha).
$$

Holden (ETH Zürich) [Integrability of SLE via conformal welding](#page-0-0) March 28, 2022 17/22

Joint boundary lengths of disks with two singularities

 $\ell = \nu(L)$, $r = \nu(R)$, $\nu = LQG$ length measure

Proof uses encoding of LQG disks in terms of planar Brownian motion (mating of trees; Duplantier-Miller-[Sh](#page-24-0)[effi](#page-26-0)[e](#page-24-0)[ld](#page-25-0)['](#page-26-0)[14](#page-0-0)[\).](#page-30-0) Ω

Holden (ETH Zürich) [Integrability of SLE via conformal welding](#page-0-0) March 28, 2022 18/22

Planar Brownian motion and SLE on LQG

- $\widehat{\eta}$ is a space-filling SLE_{16/ γ} on an independent γ -LQG disk.
- Boundary length process given by correlated Brownian cone excursion.
- See Duplantier-Miller-Sheffield'14 and Ang-Gwynne'19.

つひひ

Planar Brownian motion and SLE on LQG

- $\widehat{\eta}$ is a space-filling SLE_{16/γ²} on an independent γ-LQG disk.
- Boundary length process given by correlated Brownian cone excursion.
- The turquoise domain defines a disk with $\frac{2}{\gamma}+\frac{\gamma}{2}$ $\frac{\gamma}{2}$ singularities.
- The time t corresponds to a running infimum for $L \Rightarrow$ The disk with $\frac{2}{\gamma} + \frac{\gamma}{2}$ $\frac{\gamma}{2}$ singularities and boundary lengths ℓ,r encoded by Brownian path in first quadrant from $(\ell, 0)$ to $(0, r)$.
- Brownian motion estimates give partition f[unc](#page-26-0)[tio](#page-28-0)[n](#page-25-0) [o](#page-27-0)[f](#page-28-0) [su](#page-0-0)[ch](#page-30-0) [e](#page-0-0)[xc](#page-30-0)[urs](#page-0-0)[ion](#page-30-0)s.

General case of SLE moment theorem via shift equations

$$
\psi_2'(1) = \psi_1'(1)\psi'(1) \quad \text{(product rule)}
$$
\n
$$
f\left(\beta + \beta - \frac{2}{\gamma} - \gamma, \beta_+\right) = f\left(\beta, \beta - \beta_+ - \frac{2}{\gamma} - \gamma\right)f(\beta_-, \beta_+), \quad f(\beta_-, \beta_+) := \mathbb{E}[\psi'(1)^{\lambda}].
$$

€⊡

 299

General case of SLE moment theorem via shift equations

$$
f(\beta + \beta_{-} - \frac{2}{\gamma} - \gamma, \beta_{+}) = f(\beta, \beta_{-} + \beta_{+} - \frac{2}{\gamma} - \gamma) f(\beta_{-}, \beta_{+}), \quad f(\beta_{-}, \beta_{+}) := \mathbb{E}[\psi'(1)^{\lambda}],
$$

\n
$$
\frac{f(\beta_{-} - \frac{2}{\gamma}, \beta_{+})}{f(\beta_{-}, \beta_{+})} = f(\gamma, \beta_{-} + \beta_{+} - \frac{2}{\gamma} - \gamma) \text{ known explicitly (1st shift equation)},
$$

\n
$$
\frac{f(\beta_{-} - \frac{\gamma}{2}, \beta_{+})}{f(\beta_{-}, \beta_{+})} = f(\frac{2}{\gamma} + \frac{\gamma}{2}, \beta_{-} + \beta_{+} - \frac{2}{\gamma} - \gamma) \text{ known explicitly (2nd shift equation)}.
$$

- \bullet The shift equations uniquely characterize f .
- **•** Shift equations also play an essential role in LCFT (Teschner'95, Kupianen-Rhodes-Vargas'17, Remy-Zhu'20)

Thanks for your attention!

 \leftarrow \Box

∍

 299