Integrability of SLE via conformal welding of random surfaces

Nina Holden

ETH Zürich

Collaboration with Morris Ang and Xin Sun

March 28, 2022

Holden (ETH Zürich)

Integrability of SLE via conformal welding

Gaussian free field (GFF)

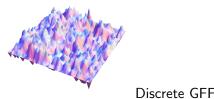
 Free boundary Gaussian free field *h* in D with mean zero on ∂D: Gaussian random field with mean zero and covariance

$$\operatorname{Cov}(h(z), h(w)) = G(z, w),$$

where $G:\mathbb{D}\times\mathbb{D}\to[0,\infty)$ is the Neumann Green's function

$$G(z,w) = \log |z-w|^{-1} + \log |1-z\overline{w}|^{-1}$$

- *h* not well defined as a function since $G(z, z) = \infty$.
- *h* well-defined as a random generalized function (distribution).
 - $\int_{\mathbb{D}} hf d^2 z$ is well-defined for f a smooth test function.



Liouville quantum gravity (LQG)

Let γ ∈ (0,2) and let h be the Gaussian free field in D.
LQG surface: e^{γh}(dx² + dy²)

Area measure: $\mu = "e^{\gamma h} d^2 z"$,

Boundary measure: $\nu = "e^{\gamma h/2} dz"$,

Distance: $D = "e^{\gamma h/d_{\gamma}} |dz|", \ d_{\gamma} = \text{dimension} > 2.$

- The definition of an LQG surface does not make literal sense since *h* is a distribution and not a function.
- μ, ν, D defined rigorously via regularized version h_{ϵ} of h, e.g.

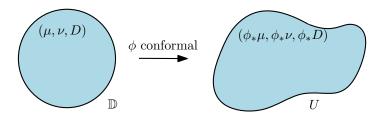
$$\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} \int_U e^{\gamma h_\epsilon(z)} d^2 z, \quad U \subset \mathbb{D}.$$

• References:

- μ, ν : Hoegh-Krohn'71, Kahane'85, Duplantier-Sheffield'08, Rhodes-Vargas'13, Berestycki'15, etc.
- D: Ding-Dubedat-Dunlap-Falconet'19, Gwynne-Miller'19
- See also talks of Powell, Sturm, Kupiainen, Chen, Sun

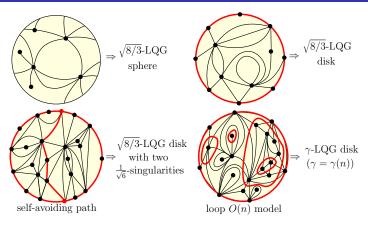
Liouville quantum gravity (LQG) surface

The tuple (μ, ν, D) describes the geometry of the γ -LQG surface (\mathbb{D}, h) .



Two different embeddings of the same γ -LQG surface

LQG as a scaling limit of random planar maps



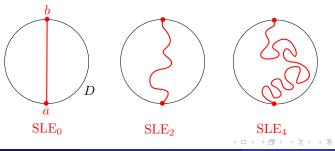
• If boundary length and area is random, then we have **infinite measures** (not probability measures) on the space of LQG surfaces.

- Example: Law of γ -LQG disk boundary length is $c\ell^{-2-\frac{4}{\gamma^2}} d\ell$ for c > 0.
- See e.g. Le Gall'11, Miermont'11, Duplantier-Miller-Sheffield'14, Miller-Sheffield'16, H.-Sun'19 for scaling limiteresults.

Holden (ETH Zürich)

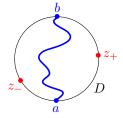
The Schramm-Loewner evolution (SLE)

- Let $\kappa \geq 0$, let $D \subset \mathbb{C}$ be simply connected, and let $a, b \in \partial D$.
- A Schramm-Loewner evolution with parameter κ on (D, a, b) is a random fractal curve from a to b in D.
- The Schramm-Loewner evolution describes the scaling limit of interfaces in statistical physics models.
- Introduced by Oded Schramm in 1999.
- Uniquely characterized by **conformal invariance** and the **domain Markov property**.



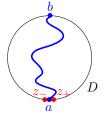
The Schramm-Loewner evolution with force points

- Let $\kappa \geq 0$, $D \subset \mathbb{C}$, $a, b, z_-, z_+ \in \partial D$, and $\rho_-, \rho_+ > -2$.
- SLE_κ(ρ), ρ = (ρ₋; ρ₊), is the variant of SLE_κ where we keep track of two force points on the domain boundary.
- In remainder of talk: $z_{-} = a^{-}, z_{+} = a^{+}$.
- Force point attractive (resp. repulsive) for $\rho_{\pm} < 0$ (resp. $\rho_{\pm} > 0$).
- Special case: $\rho_{-} = \rho_{+} = 0$ gives SLE_{κ} .
- Studied in e.g. Lawler-Schramm-Werner'02, Dubedat'03, Miller-Sheffield'12.
- Arises in a variety of settings: conditioned SLE_κ, boundary data, chordal restriction, imaginary geometry, Liouville quantum gravity, ...



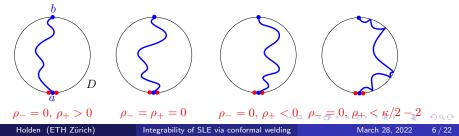
The Schramm-Loewner evolution with force points

- Let $\kappa \geq 0$, $D \subset \mathbb{C}$, $a, b, z_-, z_+ \in \partial D$, and $\rho_-, \rho_+ > -2$.
- SLE_κ(ρ), ρ = (ρ₋; ρ₊), is the variant of SLE_κ where we keep track of two force points on the domain boundary.
- In remainder of talk: $z_{-} = a^{-}, z_{+} = a^{+}$.
- Force point attractive (resp. repulsive) for $\rho_{\pm} < 0$ (resp. $\rho_{\pm} > 0$).
- Special case: $\rho_{-} = \rho_{+} = 0$ gives SLE_{κ} .
- Studied in e.g. Lawler-Schramm-Werner'02, Dubedat'03, Miller-Sheffield'12.
- Arises in a variety of settings: conditioned SLE_κ, boundary data, chordal restriction, imaginary geometry, Liouville quantum gravity, ...



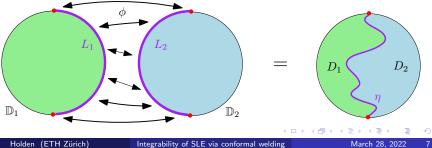
The Schramm-Loewner evolution with force points

- Let $\kappa \geq 0$, $D \subset \mathbb{C}$, $a, b, z_-, z_+ \in \partial D$, and $\rho_-, \rho_+ > -2$.
- SLE_κ(ρ), ρ = (ρ₋; ρ₊), is the variant of SLE_κ where we keep track of two force points on the domain boundary.
- In remainder of talk: $z_- = a^-, z_+ = a^+$.
- Force point attractive (resp. repulsive) for $\rho_{\pm} < 0$ (resp. $\rho_{\pm} > 0$).
- Special case: $\rho_{-} = \rho_{+} = 0$ gives SLE_{κ} .
- Studied in e.g. Lawler-Schramm-Werner'02, Dubedat'03, Miller-Sheffield'12.
- Arises in a variety of settings: conditioned SLE_κ, boundary data, chordal restriction, imaginary geometry, Liouville quantum gravity, ...

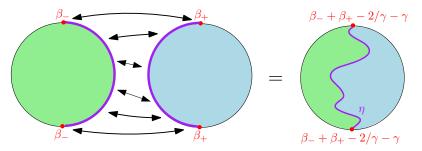


The conformal welding probl.: disk + disk = disk + curve

- $\mathbb{D}_1, \mathbb{D}_2$ copies of the unit disk; $\phi: L_1 \to L_2$ a homeomorphism.
- Conformal welding: a conformal structure on the disk \mathbb{D} obtained by identifying L_1 and L_2 according to ϕ .
 - More precisely, we are interested in a curve η and conformal maps $\psi_i: \mathbb{D}_i \to D_i, j = 1, 2$, such that $\phi = \psi_2^{-1} \circ \psi_1|_{L_1}$.
- Does there exist a conformal welding? If so, is it unique?
- Existence and uniqueness may fail, but sufficient regularity of ϕ or η guarantees a unique solution.



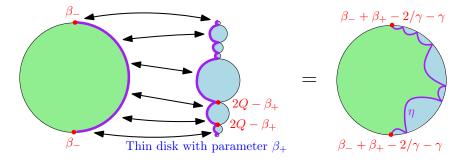
$\mathsf{Disk} + \mathsf{disk} = \mathsf{disk} + \mathsf{SLE}$



 $\beta \in \mathbb{R}$ next to $z \in \partial \mathbb{D}$ means the field looks locally like GFF+ $\beta \log |\cdot -z|^{-1}$ η has law SLE_{κ}($\rho_-; \rho_+$), $\kappa = \gamma^2$, $\rho_{\pm} = \gamma^2 - \gamma \beta_{\pm}$

- Welding homeomorphism given by LQG boundary length
- Green & blue disks independent cond. on matching bdy lengths
- SLE and disk in left figure independent
- Ang-H.-Sun'20, building on Sheffield'10 & Duplantier-Miller-Sheff.'14

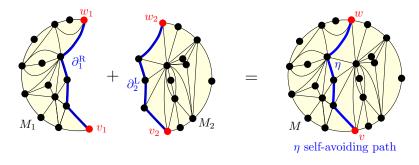
Conformal welding with thin LQG disks



 $\beta \in \mathbb{R}$ next to $z \in \partial \mathbb{D}$ means the field looks locally like GFF+ $\beta \log |\cdot -z|$ η has law SLE_{κ}($\rho_-; \rho_+$), $\kappa = \gamma^2$, $\rho_{\pm} = \gamma^2 - \gamma \beta_{\pm}$

- The thin disk is defined via a PPP $\{(t, S_t)\}$, where S_t is a two-pointed LQG disk and t > 0 indicates the relative ordering.
- Background charge $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$.
- The thin disk is the natural extension of the thick disk for $\beta > Q$.

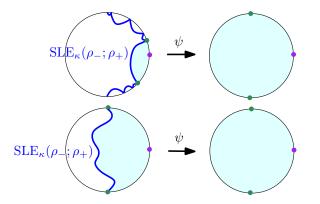
Discrete motivation for conformal welding



 $\text{Bijection: } \big((\textit{M}_1,\textit{v}_1,\textit{w}_2),(\textit{M}_2,\textit{v}_2,\textit{w}_2)\big),\#\partial_1^{\mathsf{R}}=\#\partial_2^{\mathsf{L}} \text{ and } (\textit{M},\textit{v},\textit{w},\eta)$

Continuum result inspired by planar maps, but proof is purely continuum.

$$\mathbb{E}[\psi'(1)^{\lambda}] = \frac{F(\alpha(\lambda), \kappa, \rho_{-}, \rho_{+})}{F(\sqrt{\kappa}, \kappa, \rho_{-}, \rho_{+})} \quad \text{for } \lambda < \lambda_{0}.$$



$$\mathbb{E}[\psi'(1)^{\lambda}] = \frac{F(\alpha(\lambda), \kappa, \rho_{-}, \rho_{+})}{F(\sqrt{\kappa}, \kappa, \rho_{-}, \rho_{+})} \quad \text{for } \lambda < \lambda_{0}.$$

$$\begin{split} Q &= 2/\sqrt{\kappa} + \sqrt{\kappa}/2, \\ \log \Gamma_{\frac{\sqrt{\kappa}}{2}}(z) &= \int_{0}^{\infty} \frac{1}{t} \Big(\frac{e^{-zt} - e^{-Qt/2}}{(1 - e^{-\frac{\sqrt{\kappa}}{2}t})(1 - e^{-\frac{\sqrt{\kappa}}{2}t})} - \frac{(\frac{Q}{2} - z)^{2}}{2} e^{-t} + \frac{z - \frac{Q}{2}}{t} \Big) dt. \\ F(x, \kappa, \rho_{-}, \rho_{+}) &= \frac{\Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2} + \frac{\rho_{+}}{\sqrt{\kappa}} + \frac{x}{2})}{\Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{4}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2} + \frac{\rho_{-+} + \rho_{+}}{\sqrt{\kappa}} + \frac{x}{2})\Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{4}{\sqrt{\kappa}} + \frac{\rho_{-+} - x}{\sqrt{\kappa}})}{\frac{\sqrt{\kappa}}{2}(\frac{4}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2} + \frac{\rho_{-+} + \rho_{+}}{\sqrt{\kappa}} + \frac{x}{2})\Gamma_{\frac{\sqrt{\kappa}}{2}}(\frac{6}{\sqrt{\kappa}} + \frac{\rho_{-+} + \rho_{+}}{\sqrt{\kappa}} - \frac{x}{2})}. \\ \lambda &= 1 - \frac{\alpha(\lambda)}{2}(\frac{\sqrt{\kappa}}{2} + \frac{2}{\sqrt{\kappa}} - \frac{\alpha(\lambda)}{2}). \\ \lambda_{0} &= (\rho_{+} + 2)(\rho_{+} + 4 - \kappa/2)/\kappa. \end{split}$$

$$\mathbb{E}[\psi'(1)^{\lambda}] = \frac{F(\alpha(\lambda), \kappa, \rho_{-}, \rho_{+})}{F(\sqrt{\kappa}, \kappa, \rho_{-}, \rho_{+})} \quad \text{for } \lambda < \lambda_{0}.$$

- $\psi'(1)$ quantifies how close the SLE_{κ}($\rho_{-}; \rho_{+}$) gets to the point 1.
- The formula is the same for all κ > 0 although the proof is very different for κ ∈ (0, 4) and κ > 4.
 - Our proof for $\kappa > 4$ uses SLE duality between κ and $16/\kappa$.

$$\mathbb{E}[\psi'(1)^{\lambda}] = \frac{F(\alpha(\lambda), \kappa, \rho_{-}, \rho_{+})}{F(\sqrt{\kappa}, \kappa, \rho_{-}, \rho_{+})} \qquad \textit{for } \lambda < \lambda_{0}.$$

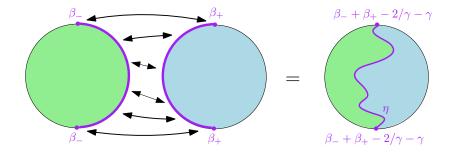
- Proof uses conformal welding and two sources of integrability in LQG:
 - Liouville conformal field theory (LCFT)
 - Random planar maps (RPM) and Brownian motion
- The theorem is difficult to approach via classical Loewner chain and Itô calculus methods.

Exact formulas for SLE via LQG: Other examples

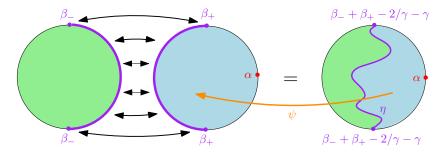
- KPZ formula: relates exponents/dim. in Eucl. & LQG environments
 E.g. Duplantier, Gwynne-H.-Miller'15
- Chen-Curien-Maillard'17: CLE conf. radius via RPM with O(n) model
- Miller-Sheffield-Werner'20: trunk of $SLE_{\kappa}(\rho)$ -processes, continuum Edwards-Sokal coupling, fuzzy Potts model arm exponent
- Ang-Sun'21: CLE electrical thickness and three-point function
- Kavvadias-Miller-Schoug'21: regularity of SLE₄ and SLE₈
- Ang-Remy-Sun'22: CLE modulus, SLE_{8/3} loop part. func. (Sun's talk)

Related techniques used for **permutons** in recent Borga-H.-Sun-Yu'22.

Proof of SLE moment formula via welding



Proof of SLE moment formula via welding



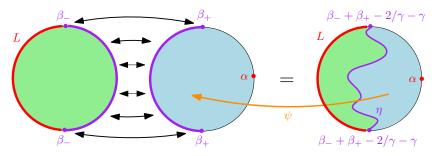
 η has law $|\psi'(1)|^{1-rac{lpha}{2}(Q-rac{lpha}{2})}d\mathrm{SLE}_\kappa(
ho_-;
ho_+)$

Holden (ETH Zürich)

Integrability of SLE via conformal welding

March 28, 2022 13 / 22

Proof of SLE moment formula via welding

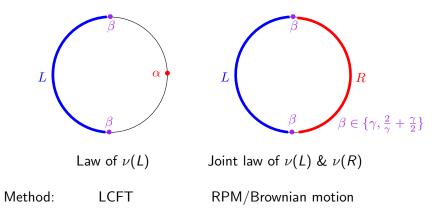


 η has law $|\psi'(1)|^{1-rac{lpha}{2}(\mathcal{Q}-rac{lpha}{2})}d\mathrm{SLE}_\kappa(
ho_-;
ho_+)$

First step in proof of moment formula:

- Compute law of $\nu(L)$ using left and right sides of welding identity.
- **2** Formula using right side involves $\mathbb{E}[|\psi'(1)|^{1-\frac{\alpha}{2}(Q-\frac{\alpha}{2})}]$.
- Set formulas in 1. equal to each other; solve for $\mathbb{E}[|\psi'(1)|^{1-\frac{\alpha}{2}(Q-\frac{\alpha}{2})}]$.
- This strategy works for $\beta_{-} \in \{\gamma, \frac{2}{\gamma} + \frac{\gamma}{2}\}$ $(\rho_{-} \in \{0, \frac{\gamma^{2}}{2} 2\}).$

Two inputs for computing law of LQG length $\nu(L)$ of L



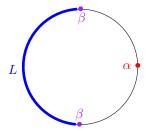
Boundary length of disks with three singularities

Remy-Zhu'20:

$$u(L) \sim \mathfrak{c}(\beta, \alpha) \ell^{\frac{2}{\gamma}(\beta + \frac{1}{2}\alpha - Q) - 1} d\ell,$$

where $\nu(L)$ is the γ -LQG length of L and $\mathfrak{c}(\beta, \alpha)$ is equal to

$$\frac{1}{(Q-\beta)^2} \left(\frac{2\pi}{\left(\frac{\gamma}{2}\right)^{\frac{\gamma^2}{4}} \Gamma(1-\frac{\gamma^2}{4})}\right)^{\frac{2}{\gamma}(Q-\beta-\frac{1}{2}\alpha)} \frac{\Gamma_{\frac{\gamma}{2}}(\frac{1}{2}\alpha)^2 \Gamma_{\frac{\gamma}{2}}(Q-\beta+\frac{1}{2}\alpha) \Gamma_{\frac{\gamma}{2}}(\beta+\frac{1}{2}\alpha-\frac{\gamma}{2})}{\Gamma_{\frac{\gamma}{2}}(\frac{2}{\gamma}) \Gamma_{\frac{\gamma}{2}}(Q-\beta)^2 \Gamma_{\frac{\gamma}{2}}(\alpha)}$$



 $\gamma\text{-}\mathsf{LQG}$ disk with singularities β,β,α

Holden (ETH Zürich)

Integrability of SLE via conformal welding

Thick-thin disk duality: disks with two marked points

Remy-Zhu'20: For thick disks with two β -singularities,

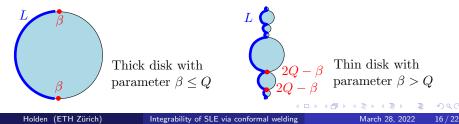
$$\nu(L) \sim \overline{R}(\beta) \ell^{-2 - \frac{4}{\gamma^2} + \frac{2\beta}{\gamma}} d\ell.$$
(1)

Ang-H.-Sun'21: The thin disk also satisfies (1).

The proof uses:

- The PPP definition of the thin disk.
- Reflection principle:

 $R(\beta)R(2Q-\beta)=1,$ $R(\beta)=-\Gamma(1-2(Q-\beta)/\gamma)\overline{R}(\beta).$



Thick-thin disk duality: disks with three marked points

Remy-Zhu'20: For thick disks with two β -singularities and one α -sing.,

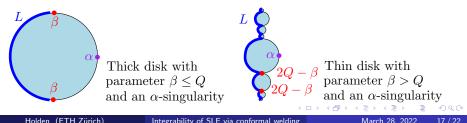
$$\nu(L) \sim \mathfrak{c}(\beta, \alpha) \ell^{\frac{2}{\gamma}(\beta + \frac{1}{2}\alpha - Q) - 1} d\ell.$$
(2)

Ang-H.-Sun'21: The thin disk with an α -singularity also satisfies (2).

The proof uses:

- The PPP definition of the thin disk with an α -singularity.
- Reflection principle:

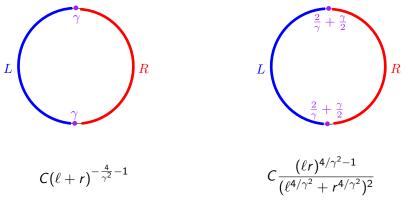
$$H_{(0,1,0)}^{(\beta,\beta,\alpha)}=R(\beta)^2H_{(0,1,0)}^{(2Q-\beta,2Q-\beta,\alpha)},\quad H_{(0,1,0)}^{(\beta,\beta,\alpha)}=c_{\gamma,\beta,\alpha}\mathfrak{c}(\beta,\alpha).$$



Holden (ETH Zürich)

Integrability of SLE via conformal welding

Joint boundary lengths of disks with two singularities



 $\ell = \nu(L), r = \nu(R), \nu =$ LQG length measure

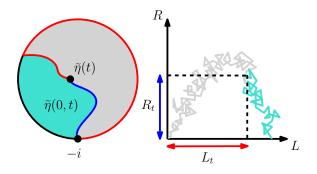
Proof uses encoding of LQG disks in terms of planar Brownian motion (mating of trees; Duplantier-Miller-Sheffield'14).

Holden (ETH Zürich)

Integrability of SLE via conformal welding

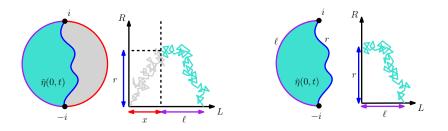
March 28, 2022 18 / 22

Planar Brownian motion and SLE on LQG



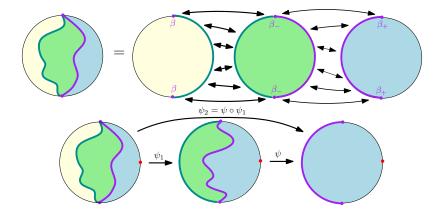
- $\widetilde{\eta}$ is a space-filling ${\rm SLE}_{16/\gamma^2}$ on an independent $\gamma\text{-LQG}$ disk.
- Boundary length process given by correlated Brownian cone excursion.
- See Duplantier-Miller-Sheffield'14 and Ang-Gwynne'19.

Planar Brownian motion and SLE on LQG



- $\widetilde{\eta}$ is a space-filling ${\rm SLE}_{16/\gamma^2}$ on an independent $\gamma\text{-LQG}$ disk.
- Boundary length process given by correlated Brownian cone excursion.
- The turquoise domain defines a disk with $\frac{2}{\gamma} + \frac{\gamma}{2}$ singularities.
- The time t corresponds to a running infimum for $L \Rightarrow$ The disk with $\frac{2}{\gamma} + \frac{\gamma}{2}$ singularities and boundary lengths ℓ, r encoded by Brownian path in first quadrant from $(\ell, 0)$ to (0, r).
- Brownian motion estimates give partition function of such excursions.

General case of SLE moment theorem via shift equations



$$\psi_2'(1) = \psi_1'(1)\psi'(1) \quad (\text{product rule})$$

$$f\left(\beta + \beta_- - \frac{2}{\gamma} - \gamma, \beta_+\right) = f\left(\beta, \beta_- + \beta_+ - \frac{2}{\gamma} - \gamma\right)f(\beta_-, \beta_+), \quad f(\beta_-, \beta_+) := \mathbb{E}[\psi'(1)^{\lambda}].$$

General case of SLE moment theorem via shift equations

$$\begin{split} f\left(\beta + \beta_{-} - \frac{2}{\gamma} - \gamma, \beta_{+}\right) &= f\left(\beta, \beta_{-} + \beta_{+} - \frac{2}{\gamma} - \gamma\right) f(\beta_{-}, \beta_{+}), \quad f(\beta_{-}, \beta_{+}) := \mathbb{E}[\psi'(1)^{\lambda}], \\ \frac{f(\beta_{-} - \frac{2}{\gamma}, \beta_{+})}{f(\beta_{-}, \beta_{+})} &= f\left(\gamma, \beta_{-} + \beta_{+} - \frac{2}{\gamma} - \gamma\right) \text{ known explicitly (1st shift equation),} \\ \frac{f(\beta_{-} - \frac{\gamma}{2}, \beta_{+})}{f(\beta_{-}, \beta_{+})} &= f\left(\frac{2}{\gamma} + \frac{\gamma}{2}, \beta_{-} + \beta_{+} - \frac{2}{\gamma} - \gamma\right) \text{ known explicitly (2nd shift equation).} \end{split}$$

- The shift equations uniquely characterize f.
- Shift equations also play an essential role in LCFT (Teschner'95, Kupianen-Rhodes-Vargas'17, Remy-Zhu'20)

Thanks for your attention!

э