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Brief history

Bieberbach conjecture (1916):
For f (z) = z + a2z

2 + a3z
3 + · · · conformal on D, then |an| ≤ n.

Charles Loewner introduced the Loewner equation in 1923 to prove
the n = 3 case.

Louis des Branges again used the Loewner equation when he
proved the conjecture in 1985.

In 2000, Oded Schramm introduced Schramm-Loewner Evolution,
SLEκ.
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From functions to growing families of sets

For a continuous, real-valued function λ(t) and z ∈ H, consider

∂

∂t
gt(z) =

2

gt(z)− λ(t)
, g0(z) = z

Loewner hulls: Kt = {z ∈ H : gs(z) = λ(s) for some s ≤ t}.

Theorem: gt is a conformal map from H \ Kt onto H.
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Loewner flow
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Example 1

Loewner hull generated by λ(t) ≡ 0.



Example 2

Loewner hull generated by λ(t) = c
√
t.



Simple curve Loewner hulls

Question: When are the Loewner hulls a simple curve?

Lip(1/2) functions:

|λ(t)− λ(s)| ≤ M |t − s|1/2

for all t, s is the domain of λ. The smallest such M is ||λ||1/2.

Answer: (Marshall, Rohde) There exists C0 > 0 so that for
λ ∈ Lip(1/2) with ||λ||1/2 < C0, then the Loewner hull is a
quasislit γ.
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Question: Do all Lip(1/2) driving functions generate simple curves?

Answer: (Marshall, Rohde) No. There is a non-simple example (a
curve that spirals around a disc) that is generated by a Lip(1/2)
driving function.
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Question: What is the optimal value of C0 for the Marshall-Rohde
theorem?

Answer: (L) C0 = 4.

Key examples: λ(t) = −c
√
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Complex-valued driving functions

Question: What happens with complex-valued driving functions?

Previous definition:

For a real-valued function λ(t) and z ∈ H, consider

∂

∂t
gt(z) =

2

gt(z)− λ(t)
, g0(z) = z

Loewner hulls: Kt = {z ∈ H : gs(z) = λ(s) for some s ≤ t}.



Complex-valued driving functions

Question: What happens with complex-valued driving functions?

Previous definition:

For a real-valued function λ(t) and z ∈ H, consider

∂

∂t
gt(z) =

2

gt(z)− λ(t)
, g0(z) = z

Loewner hulls: Kt = {z ∈ H : gs(z) = λ(s) for some s ≤ t}.



Complex-valued driving functions

Question: What happens with complex-valued driving functions?

New definition:

For a complex-valued function λ(t) and z ∈ C, consider

∂
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2

gt(z)− λ(t)
, g0(z) = z

Loewner hulls: Lt = {z ∈ C : gs(z) = λ(s) for some s ≤ t}.



Complex-valued driving functions

With real-valued driving functions: gt : H \ Kt → H
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With complex-valued driving functions: gt : C \ Lt → C \ Rt
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Loewner flow

The Loewner flow transforms Lt into Rt .
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Properties

Duality Property: The right hull Rt driven by s 7→ λ(s) is a
rotation of the left hull driven by s 7→ −iλ(t − s).

Still have familiar properties:

I Scaling Property

I Translation Property

I Reflection Property

I Concatenation Property
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Examples of left hulls Lt
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Examples of left hulls Lt

λ(t) = 2e iπ/4
√
t λ(t) = (3.31 + 1.15i)

√
1− t



Simple curve Loewner hulls

Question: When are the complex-driven Loewner hulls a simple
curve?

Answer: (Tran) There exists C0 > 0 so that for complex-valued
λ ∈ Lip(1/2) with ||λ||1/2 < C0, then the Loewner hull is a
quasi-arc γ.

Question: What is the optimal value of C0 for Tran’s theorem?
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Tran’s approach

Fix complex-valued λ with small Lip(1/2) norm.

Consider the family of driving functions αλ for α ∈ D.

Question: What can we say about the Loewner hulls driven by αλ?

Answer (Tran) There exists γ : D× [0, 1]→ C so that

I For fixed t ∈ [0, 1], the map α 7→ γ(α, t) is holomorphic.

I For fixed α ∈ D, the map t 7→ γ(α, t) is injective.

I γ(0, t) = 2i
√
t.

I For α ∈ D ∩R, then γα = γ(α, ·) is generated by αλ from the
Loewner equation.
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A key idea of Tran’s work

What could prevent a simple curve hull?

I Interaction between right hulls and left hulls during the
Loewner flow.
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A key idea of Tran’s work

Tran prevents this interaction with a cone condition
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Question: What is the optimal value of C0 for Tran’s theorem?

Does C0 = 4, matching the real-valued case?

Answer: (L, Utley) C0 < 3.723.

Determined from hulls driven by c
√

1− t for c ∈ C.
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Three regimes for hulls driven by c
√

1− t for c ∈ C (L, Utley):

I Simple curve

I Bubble

I Transitional
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Hulls driven by c
√
t

Regimes for hulls driven by c
√
t for c ∈ C (L, Utley):

I 2 line segments

I 1 line segment

Note: The left hulls driven by c
√
t are related to the right hulls

driven by ĉ
√

1− t.
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Hulls driven by c
√
τ + t

Regimes for hulls driven by c
√
τ + t for τ > 0, c ∈ C (L, Utley):

I Simple curve

I Transitional

Note: For c in the transitional regime, the left hull Lt0 generated
by c
√
τ + t will be non-simple for t0 large enough.
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Complex-driven hulls versus real-driven hulls

I Real-valued: H \ Kt will always be simply connected.

Complex-valued: C \ Lt may not be connected.

I Real-valued: If λ ∈ Cn, then Kt is a simple curve.

Complex-valued: The hull of a Cn driving function may not
be a simple curve.

I Real-valued: If Kt is a simple curve, the corresponding Lt
grows from two ends.

Complex-valued: Lt may be a simple curve growing from only
one end.

I Real-valued: Kt grows continuously

Complex-valued: Lt may not grow continuously
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Another example

Hull driven by λ(t) = te2πi ·t



Tools

Tools used to analyze Loewner hulls driven by c
√

1− t:

I Implicit solution

I Tran’s work

I Concatenation property

I Duality between left hulls and right hulls

I Holomorphic motions



Other work with complex-valued drivers

Ewain Gwynne and Joshua Pfeffer have studied Loewner evolution
driven by complex Brownian motion.



Thank you


