The Loewner equation with complex-valued driving functions

Joan Lind – University of Tennessee joint work with Jeffrey Utley

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Introduction to the Loewner equation

- Loewner hulls with complex-valued driving functions
- Phase transition for complex-driven Loewner hulls
- Differences between complex-driven Loewner hulls and real-driven Loewner hulls

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Brief history

Bieberbach conjecture (1916): For $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ conformal on \mathbb{D} , then $|a_n| \leq n$.

Charles Loewner introduced the Loewner equation in 1923 to prove the n = 3 case.

Louis des Branges again used the Loewner equation when he proved the conjecture in 1985.

In 2000, Oded Schramm introduced Schramm-Loewner Evolution, ${\sf SLE}_\kappa.$

The chordal Loewner equation

growing families of 2-d sets

real-valued functions

A D > A P > A B > A B >

э

From functions to growing families of sets

For a continuous, real-valued function $\lambda(t)$ and $z \in \mathbb{H}$, consider

$$rac{\partial}{\partial t}g_t(z) = rac{2}{g_t(z) - \lambda(t)}, \quad g_0(z) = z$$

From functions to growing families of sets

For a continuous, real-valued function $\lambda(t)$ and $z \in \mathbb{H}$, consider

$$rac{\partial}{\partial t}g_t(z) = rac{2}{g_t(z) - \lambda(t)}, \quad g_0(z) = z$$

Loewner hulls: $K_t = \{z \in \mathbb{H} : g_s(z) = \lambda(s) \text{ for some } s \leq t\}.$

From functions to growing families of sets

For a continuous, real-valued function $\lambda(t)$ and $z \in \mathbb{H}$, consider

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - \lambda(t)}, \quad g_0(z) = z$$

Loewner hulls: $K_t = \{z \in \mathbb{H} : g_s(z) = \lambda(s) \text{ for some } s \leq t\}.$

Theorem: g_t is a conformal map from $\mathbb{H} \setminus K_t$ onto \mathbb{H} .

Loewner equation visual

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - \lambda(t)}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Loewner flow

$$\frac{\partial}{\partial t}g_t(z) = 2 \frac{\operatorname{Re} g_t(z) - \lambda(t)}{|g_t(z) - \lambda(t)|^2} - 2i \frac{\operatorname{Im} g_t(z)}{|g_t(z) - \lambda(t)|^2}$$

Example 1

Loewner hull generated by $\lambda(t) \equiv 0$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example 2

Loewner hull generated by $\lambda(t) = c\sqrt{t}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question: When are the Loewner hulls a simple curve?

Question: When are the Loewner hulls a simple curve?

Lip(1/2) functions:

$$|\lambda(t) - \lambda(s)| \leq M |t-s|^{1/2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all t, s is the domain of λ . The smallest such M is $||\lambda||_{1/2}$.

Question: When are the Loewner hulls a simple curve?

Lip(1/2) functions:

$$|\lambda(t) - \lambda(s)| \leq M |t-s|^{1/2}$$

for all t, s is the domain of λ . The smallest such M is $||\lambda||_{1/2}$.

Answer: (Marshall, Rohde) There exists $C_0 > 0$ so that for $\lambda \in \text{Lip}(1/2)$ with $||\lambda||_{1/2} < C_0$, then the Loewner hull is a quasislit γ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question: Do all Lip(1/2) driving functions generate simple curves?

Question: Do all Lip(1/2) driving functions generate simple curves?

Answer: (Marshall, Rohde) No. There is a non-simple example (a curve that spirals around a disc) that is generated by a Lip(1/2) driving function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question: What is the optimal value of C_0 for the Marshall-Rohde theorem?

Question: What is the optimal value of C_0 for the Marshall-Rohde theorem?

(ロ)、(型)、(E)、(E)、 E) の(()

Answer: (L) $C_0 = 4$.

Question: What is the optimal value of C_0 for the Marshall-Rohde theorem?

Answer: (L)
$$C_0 = 4$$
.

Key examples:
$$\lambda(t) = -c\sqrt{1-t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Loewner equation recap

real-valued functions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

Question: What happens with complex-valued driving functions?

Question: What happens with complex-valued driving functions?

Previous definition:

For a real-valued function $\lambda(t)$ and $z \in \mathbb{H}$, consider

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - \lambda(t)}, \quad g_0(z) = z$$

Loewner hulls: $K_t = \{z \in \mathbb{H} : g_s(z) = \lambda(s) \text{ for some } s \leq t\}.$

(ロ) (型) (E) (E) (E) (E) (O)

Question: What happens with complex-valued driving functions?

New definition:

For a complex-valued function $\lambda(t)$ and $z \in \mathbb{C}$, consider

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - \lambda(t)}, \quad g_0(z) = z$$

Loewner hulls: $L_t = \{z \in \mathbb{C} : g_s(z) = \lambda(s) \text{ for some } s \leq t\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Loewner flow

The Loewner flow transforms L_t into R_t .

Properties

Duality Property: The right hull R_t driven by $s \mapsto \lambda(s)$ is a rotation of the left hull driven by $s \mapsto -i\lambda(t-s)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Properties

Duality Property: The right hull R_t driven by $s \mapsto \lambda(s)$ is a rotation of the left hull driven by $s \mapsto -i\lambda(t-s)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Still have familiar properties:

- Scaling Property
- Translation Property
- Reflection Property
- Concatenation Property

Examples of left hulls L_t

 $\lambda(t) = 3\sqrt{t}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Examples of left hulls L_t

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Examples of left hulls L_t

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Question: When are the complex-driven Loewner hulls a simple curve?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question: When are the complex-driven Loewner hulls a simple curve?

Answer: (Tran) There exists $C_0 > 0$ so that for complex-valued $\lambda \in \text{Lip}(1/2)$ with $||\lambda||_{1/2} < C_0$, then the Loewner hull is a quasi-arc γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question: When are the complex-driven Loewner hulls a simple curve?

Answer: (Tran) There exists $C_0 > 0$ so that for complex-valued $\lambda \in \operatorname{Lip}(1/2)$ with $||\lambda||_{1/2} < C_0$, then the Loewner hull is a quasi-arc γ .

Question: What is the optimal value of C_0 for Tran's theorem?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fix complex-valued λ with small ${\rm Lip}(1/2)$ norm.

Consider the family of driving functions $\alpha\lambda$ for $\alpha\in\mathbb{D}$.

Question: What can we say about the Loewner hulls driven by $\alpha\lambda$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix complex-valued λ with small Lip(1/2) norm.

Consider the family of driving functions $\alpha\lambda$ for $\alpha\in\mathbb{D}$.

Question: What can we say about the Loewner hulls driven by $\alpha\lambda$?

Answer (Tran) There exists $\gamma: \mathbb{D} \times [0,1] \to \mathbb{C}$ so that

- For fixed $t \in [0, 1]$, the map $\alpha \mapsto \gamma(\alpha, t)$ is holomorphic.
- For fixed $\alpha \in \mathbb{D}$, the map $t \mapsto \gamma(\alpha, t)$ is injective.

$$\triangleright \ \gamma(0,t)=2i\sqrt{t}.$$

For α ∈ D ∩ ℝ, then γ^α = γ(α, ·) is generated by αλ from the Loewner equation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Answer: (Tran) There exists $\gamma:\mathbb{D} imes [0,1] o\mathbb{C}$ so that

- For fixed $t \in [0, 1]$, the map $\alpha \mapsto \gamma(\alpha, t)$ is holomorphic.
- For fixed $\alpha \in \mathbb{D}$, the map $t \mapsto \gamma(\alpha, t)$ is injective.
- $\triangleright \ \gamma(0,t)=2i\sqrt{t}.$
- For $\alpha \in \mathbb{D} \cap \mathbb{R}$, then $\gamma^{\alpha} = \gamma(\alpha, \cdot)$ is generated by $\alpha \lambda$ from the Loewner equation.

This implies that $F(\alpha, w) := \gamma(\alpha, -w^2/4)$ is a holomorphic motion of [0, 2i].

Answer: (Tran) There exists $\gamma:\mathbb{D} imes [0,1] o\mathbb{C}$ so that

- For fixed $t \in [0, 1]$, the map $\alpha \mapsto \gamma(\alpha, t)$ is holomorphic.
- For fixed $\alpha \in \mathbb{D}$, the map $t \mapsto \gamma(\alpha, t)$ is injective.
- $\triangleright \ \gamma(0,t)=2i\sqrt{t}.$
- For $\alpha \in \mathbb{D} \cap \mathbb{R}$, then $\gamma^{\alpha} = \gamma(\alpha, \cdot)$ is generated by $\alpha \lambda$ from the Loewner equation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This implies that $F(\alpha, w) := \gamma(\alpha, -w^2/4)$ is a holomorphic motion of [0, 2i].

Hence $\gamma^{\alpha}(t) = \gamma(\alpha, t)$ is a quasiarc.

Answer: (Tran) There exists $\gamma: \mathbb{D} \times [0,1] \to \mathbb{C}$ so that

- For fixed $t \in [0, 1]$, the map $\alpha \mapsto \gamma(\alpha, t)$ is holomorphic.
- For fixed $\alpha \in \mathbb{D}$, the map $t \mapsto \gamma(\alpha, t)$ is injective.
- $\triangleright \ \gamma(0,t)=2i\sqrt{t}.$
- For $\alpha \in \mathbb{D} \cap \mathbb{R}$, then $\gamma^{\alpha} = \gamma(\alpha, \cdot)$ is generated by $\alpha \lambda$ from the Loewner equation.

This implies that $F(\alpha, w) := \gamma(\alpha, -w^2/4)$ is a holomorphic motion of [0, 2i].

Hence $\gamma^{\alpha}(t) = \gamma(\alpha, t)$ is a quasiarc.

Think of γ^{α} as the "top curve" generated by $\alpha\lambda$ from the Loewner equation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A key idea of Tran's work

What could prevent a simple curve hull?

A key idea of Tran's work

What could prevent a simple curve hull?

Interaction between right hulls and left hulls during the Loewner flow.

Simple curve

No simple curve

A key idea of Tran's work

Tran prevents this interaction with a cone condition

Question: What is the optimal value of C_0 for Tran's theorem?

(ロ)、(型)、(E)、(E)、 E) の(()

Question: What is the optimal value of C_0 for Tran's theorem?

Does $C_0 = 4$, matching the real-valued case?

Question: What is the optimal value of C_0 for Tran's theorem?

Does $C_0 = 4$, matching the real-valued case?

Answer: (L, Utley) $C_0 < 3.723$.

Question: What is the optimal value of C_0 for Tran's theorem?

Does $C_0 = 4$, matching the real-valued case?

Answer: (L, Utley) $C_0 < 3.723$.

Determined from hulls driven by $c\sqrt{1-t}$ for $c \in \mathbb{C}$.

Three regimes for hulls driven by $c\sqrt{1-t}$ for $c \in \mathbb{C}$ (L, Utley):

- Simple curve
- Bubble
- Transitional

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Simple curve regime

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bubble regime

Transitional regime

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Regimes for hulls driven by $c\sqrt{t}$ for $c \in \mathbb{C}$ (L, Utley):

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 2 line segments
- ▶ 1 line segment

Regimes for hulls driven by $c\sqrt{t}$ for $c \in \mathbb{C}$ (L, Utley):

- 2 line segments
- 1 line segment

Note: The left hulls driven by $c\sqrt{t}$ are related to the right hulls driven by $\hat{c}\sqrt{1-t}$.

Hulls driven by $c\sqrt{\tau+t}$

Regimes for hulls driven by $c\sqrt{\tau+t}$ for $\tau > 0, c \in \mathbb{C}$ (L, Utley):

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Simple curve
- Transitional

Hulls driven by $c\sqrt{\tau+t}$

Regimes for hulls driven by $c\sqrt{\tau+t}$ for $\tau > 0, c \in \mathbb{C}$ (L, Utley):

- Simple curve
- Transitional

Note: For *c* in the transitional regime, the left hull L_{t_0} generated by $c\sqrt{\tau+t}$ will be non-simple for t_0 large enough.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ Real-valued: Ⅲ \ K_t will always be simply connected.
 Complex-valued: ℂ \ L_t may not be connected.

▶ Real-valued: ℍ \ K_t will always be simply connected.
 Complex-valued: ℂ \ L_t may not be connected.

Real-valued: If λ ∈ Cⁿ, then K_t is a simple curve.
 Complex-valued: The hull of a Cⁿ driving function may not be a simple curve.

▶ Real-valued: ℍ \ K_t will always be simply connected.
 Complex-valued: ℂ \ L_t may not be connected.

- Real-valued: If λ ∈ Cⁿ, then K_t is a simple curve.
 Complex-valued: The hull of a Cⁿ driving function may not be a simple curve.
- Real-valued: If K_t is a simple curve, the corresponding L_t grows from two ends.

Complex-valued: L_t may be a simple curve growing from only one end.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Real-valued: ℍ \ K_t will always be simply connected.
 Complex-valued: ℂ \ L_t may not be connected.

- Real-valued: If λ ∈ Cⁿ, then K_t is a simple curve.
 Complex-valued: The hull of a Cⁿ driving function may not be a simple curve.
- Real-valued: If K_t is a simple curve, the corresponding L_t grows from two ends.

Complex-valued: L_t may be a simple curve growing from only one end.

Real-valued: K_t grows continuously
 Complex-valued: L_t may not grow continuously

Another example

Hull driven by $\lambda(t) = t e^{2\pi i \cdot t}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Tools

Tools used to analyze Loewner hulls driven by $c\sqrt{1-t}$:

Implicit solution

Tran's work

Concatenation property

Duality between left hulls and right hulls

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Holomorphic motions

Other work with complex-valued drivers

Ewain Gwynne and Joshua Pfeffer have studied Loewner evolution driven by complex Brownian motion.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Thank you

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @