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Yang–Mills action

Let G be a compact Lie group contained in U(n) for some n, and let
g be its Lie algebra.

Let A be the space of smooth G -connections on the trivial principal
bundle Rd × G — that is, the set of all smooth A : Rd → gd .

The curvature form F of A is defined as

Fjk(x) =
∂Ak

∂xj
−
∂Aj

∂xk
+ [Aj(x),Ak(x)],

so that F is a d × d array of elements of g.

The Yang–Mills action of A is defined as

SYM(A) = −
∫
Rd

d∑
j ,k=1

Tr(Fjk(x)2)dx ,

provided that the integral is well-defined.
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Euclidean Yang–Mills theories

Heuristically, a Euclidean Yang–Mills theory on Rd with gauge group
G is a probability measure on A with density proportional to
e−βSYM(A) (with respect to a hypothetical Lebesgue measure on A),
where β is the coupling parameter. This hypothetical object is
sometimes called the Yang–Mills measure.

Construction of this measure for d = 4 would be a key step to the
solution of the Yang–Mills existence problem, which is one of the Clay
Millennium Prize problems.

This would give a rigorous mathematical foundation for the Standard
Model of quantum mechanics, which is our best available model for
the quantum world.
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Progress, so far

One common theme in the literature is to look at the problem in
dimensions two and three, instead of four.

The greatest amount of progress has been made in 2D. In fact, we
now know how to construct the Yang–Mills measures in 2D.

On the other hand, very few results are known in 3D and 4D.

Many of the above results are for compact manifolds, such as tori,
instead of Rd .
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Progress in 2D

Many authors have made contributions to understanding 2D
Euclidean Yang–Mills theories. An incomplete list, in chronological
order: Brydges, Fröhlich & Seiler ’79 ’80, Klimek & Kondracki ’87,
Gross, King & Sengupta ’89, Fine ’90 ’91, Sengupta ’92 ’93 ’97, Lévy
’03 ’10, Chevyrev ’19, Chandra, Chevyrev, Hairer & Shen ’20.

One of the most recent papers, Chevyrev ’19, constructs a space of
connections and a probability measure on this space of connections
that can be interpreted as a 2D Yang–Mills measure. Previous works
constructed measures on spaces of observables.

Chandra, Chevyrev, Hairer and Shen ’20 construct a state space and
a Markov process on this state space, such that the unique invariant
measure of this process can be interpreted as a 2D Yang–Mills
measure. It is not known whether the unique invariant measure exists.
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Results in 3D and 4D

U(1) theory is not difficult to construct in any dimension, since the
Yang–Mills measure is Gaussian.

The problem becomes far more challenging for non-Abelian theories.

The state of the art for 3D and 4D, for a general (non-Abelian) Lie
group, consists of the phase cell renormalization results of Ba laban
’83–’89, the phase cell renormalization results of Federbush ’86–’90,
and an alternative approach of Magnen, Rivasseau, and Sénéor ’93.

In a very recent preprint, Chandra, Chevyrev, Hairer and Shen ’22
proved the short-time existence of a stochastic PDE whose invariant
measure (if it exists and is unique) would be a candidate for 3D
Yang–Mills measures. (This is the stochastic quantization approach
of Parisi and Wu ’81.)

As of now, there is no construction of the Yang–Mills measure in 3D
and 4D, in the way that was done by the previously cited works in the
2D case.
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Next goal

To understand the main difficulty in constructing Euclidean
Yang–Mills theories in d ≥ 3, we have to first understand the
following:

gauge transforms and gauge invariance,
connections on a principal bundle,
Wilson loop observables,
the massless Gaussian free field and some of its properties, and
the Yang–Mills heat flow.
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Gauge transforms

Take any A ∈ A and any differentiable g : Rd → G .

For 1 ≤ j ≤ d , let

Ag
j (x) = g(x)−1Aj(x)g(x) + g(x)−1 ∂g

∂xj
.

The field Ag = (Ag
1 , . . . ,A

g
d) is a gauge transform of A. Each choice

of g induces a gauge transform.

It is a fact that A is also a gauge transform of Ag . The fields A and
Ag are gauge equivalent. This is an equivalence relation.

The space A of G -connections is not physically relevant. Rather, the
quotient space A/G of gauge equivalence classes is the physically
relevant space (where G is the set of gauge transforms).
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Gauge invariance

A function f on A is called gauge invariant if f (A) = f (A′) whenever
A and A′ are gauge equivalent.

For example, it is not difficult to check that the Yang–Mills action
SYM is gauge invariant.

Any physical observable must be gauge invariant.

The most important gauge invariant observables are Wilson loop
observables. Will be defined soon.
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What is a G -connection?

We have seen earlier that the Yang–Mills measure is supposed to be a
probability measure on some space of G -connections on a principal
bundle.

To fix ideas, let’s say our principal bundle is the trivial bundle
Td × G , where Td is the d-dimensional unit torus Rd/Zd .

One can think of the bundle as a copy of G sitting at each point in
Td .

The main role of G -connection A is to give a prescription for change
of coordinates — it prescribes how an element g ∈ G at a point
x ∈ Td transforms to some other element h ∈ G at a different point
y ∈ Td as we move along a curve ` from x to y .

We say that g is parallel transported to h along `. It is defined as
follows.

Sourav Chatterjee Some progress on 3D Yang–Mills 10 / 32



Parallel transport

Let A be a smooth G -connection on Td .

Given a piecewise C 1 path ` : [0, 1]→ Td , let φ : [0, 1]→ G be a
solution to the ODE

φ′(t) = φ(t)
d∑

j=1

Aj(`(t))`′j(t), φ(0) = id.

From standard ODE theory, φ exists and is unique.

The group element φ(1) is the parallel transport of the identity
element along the curve `.

When G = U(1), each Aj is a function from Td into the imaginary
axis. Hence, the parallel transport is simply the exponential of the line
integral

∫
`

∑
Ajdxj .

When G is non-Abelian, the Aj ’s are non-Abelian matrix-valued
functions.

In this case, φ(1) is a path ordered exponential of the line integral∫
`

∑
Ajdxj , defined as the solution of the above ODE.
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Observables

Any physical theory should have observables — that is, functions on
the state space whose values can be the result of experimental
measurements.

For gauge theories, the parallel transport maps defined by the
connections are the natural observables.

But they are not gauge invariant, and hence, unphysical.

Even if we take the parallel transport P`(A) induced by a connection
A along a loop `, it is not gauge invariant.

But, parallel transport along a loop is gauge covariant, meaning that
P`(A

g ) = g−1P`(A)g .

Thus, if χ is a character of G , then W`,χ(A) := χ(P`(A)) is gauge
invariant.

W`,χ is called a Wilson loop observable. Besides being
mathematically natural, they also have a great deal of physical
importance. Calculations related to Wilson loop observables come up
in the problems of quark confinement and mass gap.
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Massless Gaussian free field

For d ≥ 2, the massless Gaussian free field φ on the torus Td is a
random distribution with the property that for any smooth f and g ,
φ(f ) and φ(g) are jointly Gaussian random variables, with mean zero
and covariance

∫
f (x)G (x , y)g(y)dxdy , where G is the Green’s

function on Td .

Taking f = δx and g = δy , we get the formal expression
Cov(φ(x), φ(y)) = G (x , y), even though φ is not defined pointwise.

Note that the covariance blows up to infinity as y → x . This is
consistent with the fact that φ is infinity at any given point.
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A belief about Yang–Mills theories

Recall that Euclidean Yang–Mills theories are supposed to describe
random G -connections on principal bundles — let’s say, the trivial
bundle Td × G .

It is believed that these random connections are not really random
functions, but rather, random distributions.

Furthermore, it is believed that componentwise, these random
distributions have similar behavior as the massless Gaussian free field.

All this has been verified rigorously for 2D Euclidean Yang–Mills
theories (e.g., in the recent work of Chevyrev ’19), but not in higher
dimensions.
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Wilson loop observables for Yang–Mills theories

So, assuming that Yang–Mills theories behave like massless free fields,
let us consider the question of computing Wilson loop observables.

Recall that Wilson loop observables are defined using line integrals.

Let ` be a loop and suppose that we want to integrate a massless free
field φ along `.

The Green’s function G (x , y) blows up like log(1/|x − y |) as y → x
when d = 2, and like |x − y |2−d when d ≥ 3.

From this, one can show that the line integral of φ along ` is
well-defined in 2D, but blows up in higher dimensions.

Thus, we do not expect to be able to define Wilson loop observables
directly in d ≥ 3. Some indirect approach has to be taken.
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Renormalization

Since Wilson loop observables are unlikely to be definable for
Euclidean Yang–Mills theories in d ≥ 3, one idea is that we should
first make the theories smooth by some kind of regularization (also
called renormalization).

The problem is that we need the regularization to be gauge covariant,
meaning that if R(A) is the regularized version of a distributional
connection A, then R(Ag ) must equal R(A)g .

We need this so that the regularization is in fact acting on the
physical space A/G, rather than the unphysical space A.

A simple regularization, such as taking convolution with a smooth
kernel, is not going to work.

The works on Yang–Mills in the 80s focused on lattice approximations
of Yang–Mills theories and smoothing using a complicated
gauge-covariant procedure known as phase cell renormalization. This
program was not completed, which is why the Yang–Mills existence
problem is still open.
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Renormalization by Yang–Mills heat flow

An idea that has emerged in the last fifteen years is that Yang–Mills
theories can be regularized by the Yang–Mills heat flow, which is the
gradient flow of the Yang–Mills action. (Will be defined soon.)

The Yang–Mills heat flow has a long and illustrious history in
mathematics, playing an important role in the profound work of
Donaldson, among other things.

The idea of renormalization by the Yang–Mills heat flow appeared in
the works of physicists (Narayanan & Neuberger ’06, Lüscher ’10).

The advantage of the Yang–Mills heat flow over the ordinary heat
flow is that it is gauge covariant, which makes it a legitimate
smoothing apparatus for Yang–Mills theories.
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The Yang–Mills heat flow

Given a G -connection A on Td , recall that the curvature form F is
defined as

Fjk =
∂Ak

∂xj
−
∂Aj

∂xk
+ [Aj ,Ak ].

The Yang–Mills heat equation is the following nonlinear PDE, that
describes the evolution of a time-varying connection A(t):

∂Aj

∂t
= −

d∑
k=1

∂Fjk
∂xk

−
d∑

k=1

[Ak ,Fjk ],

holding for j = 1, . . . , d .
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The Zwanziger–DeTurck–Donaldson–Sadun flow

It is convenient to work with a variant of the Yang–Mills heat flow,
discovered independently by Zwanziger ’81, DeTurck ’83, Donaldson
’85, and Sadun ’87. This is the flow

∂tAi (t) = ∆Ai (t)

+
d∑

j=1

[Aj(t), 2∂jAi (t)− ∂iAj(t) + [Aj(t),Ai (t)]],

holding for i = 1, . . . , d . Let us call this the ZDDS flow.
It is related to the Yang–Mills heat flow as follows.
If C (t) solves the ZDDS equation and A(t) solves the Yang–Mills
heat equation with the same initial data, then C (t) = A(t)g(t) for a
time-varying gauge transform g(t).
Thus, the Yang–Mills heat flow and the ZDDS flow are the same on
the quotient space A/G.
For this reason, the ZDDS flow is also known as the Yang–Mills heat
flow in the DeTurck gauge.
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Yang–Mills heat flow with rough initial data

Recall that Yang–Mills theories are believed to be random
distributions with similar features as the massless Gaussian free field.

So, for renormalization using the Yang–Mills heat flow to be a valid
procedure, we need that solutions of the Yang–Mills heat flow, or
equivalently, the ZDDS flow, should exist for initial data that behaves
like a free field.

The nonlinearity of the PDEs make this a challenging problem.

Available PDE results do not allow initial data that is rougher than
H1. In particular, distributional initial data is not allowed.
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The program of Charalambous and Gross

Leonard Gross and Nelia Charalambous, in a series of papers between
2010 and 2017, increased the allowed roughness of the initial data to
H1/2 for the 3D Yang–Mills heat flow on a compact manifold.

The goal was to construct 3D Euclidean Yang–Mills theories as
trajectories of the Yang–Mills heat flow.

But H1/2 is still functional, rather than distributional, initial data.
The massless free field has regularity H−1/2−ε, for any ε > 0.

It is possible that a general existence theorem cannot do better than
H1/2 initial data in 3D.
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Taking the program to completion: Our contributions

Theorem (Cao & C., 2021a. Rough statement.)

It is possible to define the Zwanziger–DeTurck–Donaldson–Sadun variant
of the Yang–Mills heat flow on the 3D torus starting from free field initial
data. Moreover, the initial data need not be exactly the free field; it
suffices for it to be a random distribution having certain features of the
free field.

Theorem (Cao & C., 2021b. Rough statement.)

It is possible to construct a state space for Euclidean Yang–Mills theories
on the 3D torus as a set of trajectories of the Yang–Mills heat flow, and
have a criterion for the existence of a convergent subsequence of a given
sequence of probability measures on this space (i.e., an analogue of
Prokhorov’s theorem).
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PDEs with random initial data

The main idea in the proof of our first theorem is that the randomness
of the initial data helps ensure the existence of a solution, which may
not hold for deterministic initial data of comparable roughness.

The general idea to exploit the effects of probabilistic smoothing was
first used by Bourgain ’96 ’99 to analyze the nonlinear Schrödinger
equation with GFF initial data.

A similar idea was later used by Da Prato and Debussche ’02 ’03 in
the stochastic PDE setting.

There is by now a wide body of work building on this idea in many
different settings.

As far as we can tell, our work is the first to carry out such a program
for the Yang–Mills heat flow.

Sourav Chatterjee Some progress on 3D Yang–Mills 23 / 32



Proof sketch: Step 0

Write the ZDDS equation as

∂tAi (t) = ∆Ai (t) + Xi (A(t)), 1 ≤ i ≤ d ,

where

Xi (A(t)) :=
d∑

j=1

[Aj(t), 2∂jAi (t)− ∂iAj(t) + [Aj(t),Ai (t)]],

Given initial data A0 = (A0,1, . . . ,A0,d), it is equivalent to the
integral equation

Ai (t) = et∆A0,i +

∫ t

0
e(t−s)∆Xi (A(s))ds, 1 ≤ i ≤ d .
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Proof sketch: Step 1

This can be formulated as a fixed point equation A = W (A), where
A = (A1, . . . ,Ad) and

W (A)i (t) := et∆A0,i +

∫ t

0
e(t−s)∆Xi (A(s))ds.

The idea is to apply a contraction mapping argument.

For that, we need to (a) find a set of connections which is closed
under a norm topology and mapped into itself by W , and (b) show
that W is a contraction mapping on this set.

Finally, we need to show that steps (a) and (b) can be executed when
the components of A0 are massless free fields.
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Remark

Fixed point equations can be set up in many different ways.

In fact, this is how proofs of the existence of solutions to the
Yang–Mills heat equation and the ZDDS equation have been carried
out in all prior work.

However, the techniques of those papers do not allow distributional
initial data, so we need to set up the fixed point problem in a
different way.
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Proof sketch: Step 2 — defining the Banach space

For a C 1 connection A, define ‖A‖C0 to be the maximum of the
supremum norms of the components of A, and let ‖A‖C1 be the
maximum of the supremum norms of the components of A and all of
their first order derivatives.

Next, for a continuous flow {A(t)}0<t≤T on the space of C 1

connections, and given some γ ≥ 0, define

‖A‖Qγ
T

:= sup
0<t≤T

tγ‖A(t)‖C0 + sup
0<t≤T

t1/2+γ‖A(t)‖C1 .

It turns out that this norm is complete on the space of continuous
flows of C 1 connections in the time interval (0,T ], and hence defines
a Banach space.

Note that time 0 is intentionally left out, to allow for the possibility
that A(t) approaches a distribution as t ↓ 0.

Finiteness of the QγT norm means that ‖A(t)‖C0 = O(t−γ) and
‖A(t)‖C1 = O(t−1/2−γ) as t ↓ 0.
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Proof sketch: Step 3 — the contraction criterion

Given initial data A0, let B(t) := et∆A0 be the solution of the
ordinary heat equation with initial data A0.

Here A0 may be a distribution, as long as B(t) ∈ C 1 for t > 0.

Define
BγT ,R := {A : ‖A− B‖Qγ

T
≤ R}.

A lengthy calculation shows that if for some γ1 ∈ [0, 1/2) and
γ2 ∈ [0, 1/4) such that γ1 + γ2 < 1/2, we have

‖B(t)‖Qγ1
1
≤ R and ‖W (B(t))− B(t)‖Qγ2

1
≤ R,

then W is a contraction mapping on Bγ2

T ,3R for sufficiently small T
(depending on R, γ1 and γ2).

Thus, it has a fixed point in this set.

Any fixed point of W is a solution of the ZDDS equation with initial
data A0.
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What we have shown so far:

Let A0 be our initial data, which may be a distributional connection.

Let B(t) := et∆A0 be the solution of the ordinary heat equation with
initial data A0.

Let C (t) := W (B(t))− B(t), where W is the map (defined earlier)
whose fixed points are solutions of the ZDDS equation.

Suppose that for some γ1 ∈ [0, 1/2) and γ2 ∈ [0, 1/4) such that
γ1 + γ2 < 1/2, as t ↓ 0, we have

‖B(t)‖C0 = O(t−γ1), ‖B(t)‖C1 = O(t−1/2−γ1)

‖C (t)‖C0 = O(t−γ2), ‖C (t)‖C1 = O(t−1/2−γ2).

Then, the ZDDS equation has a short-time solution with initial data
A0.

This is valid in any dimension.
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Proof sketch: Step 4 — random distributional initial data

Suppose now that our initial data A0 is a random distribution.

It is not hard to see that for any x ∈ Td , B(t)(x) is a linear form in
the Fourier coefficients of A0, and C (t)(x) is a cubic form in in the
Fourier coefficients of A0.

Thus, we can hope to obtain upper bounds on the C 0 and C 1 norms
of B(t) and C (t) using chaining arguments from probability theory
(Fernique, Talagrand, Dudley, ...).

Let us specialize to the case where A0 is the d-dimensional massless
free field on the space of G -connections.

In this case, chaining arguments show that the four conditions listed
in the previous slide are satisfied for any γ1 > (d − 2)/4 and
γ2 > (d − 3)/2.

But we also need γ1 < 1/2, γ2 < 1/4, and γ1 + γ2 < 1/2. Thus, this
works for d = 3, but not d = 4.
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Constructing the state space

Having shown that short-time solutions of the 3D Yang–Mills heat
flow exist for free field initial data, the next step is to generalize the
result to initial data that is ‘similar to a free field’.

We have a generalization of that sort, that needs only exponential tail
bounds for linear and quadratic forms of the initial data A0 and some
features of two-point and four-point correlations.

The space of distributional gauge orbits is then constructed, following
an idea of Charalambous & Gross, as a space of trajectories of the
YM heat flow on the quotient space A/G in the time interval (0,∞)
(leaving out t = 0, to allow for distributional initial conditions).

A criterion for tightness of probability measures on this space is then
proved using Uhlenbeck compactness.
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What’s left to do:

The results presented here complete about half of the program
initiated by Charalambous and Gross for constructing 3D Euclidean
Yang–Mills theories.

The main thing that’s remaining to show is that a sequence of
approximations of a 3D non-Abelian Yang–Mills theory (such as, a
sequence of lattice gauge theories) does indeed behave like the free
field in the limit.

This would require proving various correlation decay estimates for the
approximate theories.

A number of estimates already exist in the papers from the 80s by
Ba laban and others.

Hopefully, it can be done.

Thanks for your attention!
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