ON LOG-CFT FOR UST AND SLE(8)

Eveliina Peltola

< eveliina.peltola @ aalto.fi >
< eveliina.peltola @ hcm.uni-bonn.de >

Aalto University, Department of Mathematics and Systems Analysis and

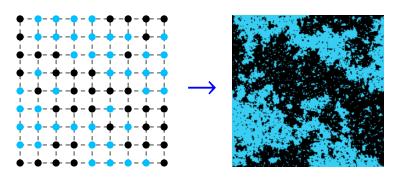
University of Bonn (IAM) & Hausdorff Center for Math (HCM),

MARCH 2022 @ MSRI

Joint work w/ Mingchang Liu & Hao Wu (Vienna / Tsinghua)

CONFORMAL INVARIANCE "CONJECTURE"

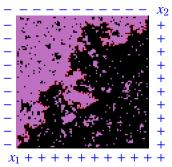
Any (reasonable) **critical lattice model** converges in the scaling limit to **a conformal field theory (CFT)**.



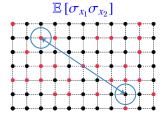
CFT: conformally invariant quantum field theory

What is this supposed to mean?

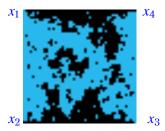
Conformal invariance in terms of observables



Scaling limit $\delta \to 0$ at critical temperature $T = T_c$ \Rightarrow conformal invariance?



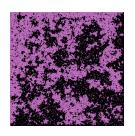
correlations (e.g. between spins)

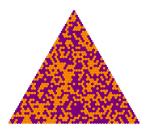


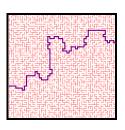
probabilities of topological events

Lattice correlations — CFT correlation functions?

Convergence results use model-specific tools. Many open questions.





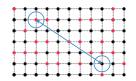


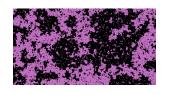
Some correlation functions have explicit formulas, but this is rare.

Problem: CFT not understood mathematically!

Lattice correlations — CFT correlation functions?

- ► Consider models with *continuous phase transition* at critical point.
- ► E.g. Ising $\mathbb{P}[(\sigma_x)_{x \in V}] \propto \exp(\beta_c \sum_{x \sim y} \sigma_x \sigma_y)$ for random spins $\sigma_x = \pm 1$, nearest neighbor interaction $(x \sim y)$ on finite graph (V, E) on $\delta \mathbb{Z}^2$





Thm. (spins in Ising model)

$$\delta^{-n/8} \mathbb{E} \left[\sigma_{z_1} \cdots \sigma_{z_n} \right] \stackrel{\delta \to 0}{\longrightarrow} F(z_1, \dots, z_n)$$

[Hongler, Smirnov '13 (energy); Chelkak, Hongler, Izyurov '15 (spin); CHI '21 (gen.)]

Proof relies on solutions of Riemann bdry value problems (discrete holomorphicity). Uses specific fermionic structures and techniques.

Lattice correlations — CFT correlation functions?

► Certain correlations in critical models satisfy (BPZ) PDEs: e.g.

$$\left\{\frac{8}{3}\frac{\partial^{2}}{\partial z_{j}^{2}} + \sum_{i \neq j} \left(\frac{2}{z_{i} - z_{j}}\frac{\partial}{\partial z_{i}} - \frac{1/8}{(z_{i} - z_{j})^{2}}\right)\right\} F(z_{1}, \dots, z_{n}) = 0 \qquad \forall \ 1 \leq j \leq n$$
for "Ising CFT" spin correlations ($\kappa = 3$)
$$F(z_{1}, \dots, z_{n}) = \lim_{\delta \to 0} \delta^{-n/8} \mathbb{E}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right] \qquad [Izyurov \ '20]$$

► They also satisfy **conformal covariance** rule of primary fields:

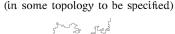
$$F(f(z_1),\ldots,f(z_n)) = \left(\prod_{j=1}^n \left| f'(z_j) \right|^{-1/8} \right) F(z_1,\ldots,z_n) \quad \forall f \text{ conformal map}$$

These are general features of so-called CFT primary fields that are *degenerate* at level two.

- ▶ Also: $SLE(\kappa)$ partition functions, certain Liouville correlators, ...
- ► (Higher order (level) PDEs arise in *fusion*.)

Scaling limits of critical interfaces — $SLE(\kappa)$ curves

- $\kappa > 0$ labels universality class
- convergence weakly for proba. measures on curves



(critical) interface $\stackrel{\delta \to 0}{\longrightarrow}$ Schramm-Loewner evolution, $\mathrm{SLE}(\kappa)$

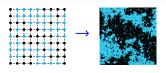
Usual proof strategy:

- 1. tightness (e.g. control via crossing estimates)
- 2. identification of the limit (e.g. via discrete holomorphic observable)

Conformal invariance "conjecture" in SLE context

Boundary conditions:

"disorder" fields in CFT?



Any (reasonable) **critical lattice model** converges in the scaling limit to **a conformal field theory (CFT)**.

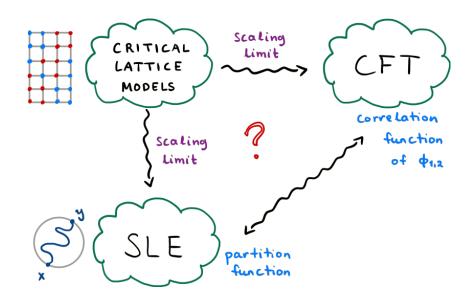
- ► [Cardy 84'; Bauer & Bernard '02]: SLE(κ) curve started at x should be generated by *certain CFT primary field* denoted $\phi_{1,2}(x)$.
- ▶ Why? Correlation functions give rise to (local) $SLE(\kappa)$ -mgles:

$$M_t(x; z_1, \ldots, z_n) = \left(\prod_{i=1}^n g_t'(z_i)^{\Delta_i}\right) F(W_t; g_t(z_1), \ldots, g_t(z_n))$$

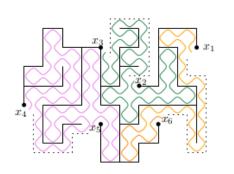
has zero drift iff F solves BPZ PDE related to $\phi_{1,2}$.

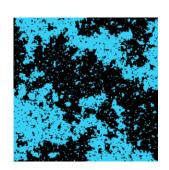
► Generally, s-1 curves at x conjecturally related to $\phi_{1,s}(x)$ (fusion). see Nam-Gyu's talk! [e.g. Duplantier & Saleur 87; Bauer & Saleur '89]

PLANAR MODELS



Crossing probabilities given by multiple $SLE(\kappa)$ pure partition functions

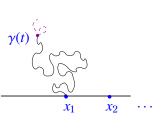




$$dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z}(W_t, V_t^{(2)}, V_t^{(3)}, \dots, V_t^{(N)}) dt$$

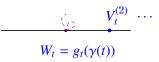
$$dV_t^{(i)} = \frac{2 dt}{V_t^{(i)} - W_t}$$

GROWING MULTIPLE SLES VIA LOEWNER EQUATION



$$g_t: \mathbb{H} \setminus \gamma[0,t] \to \mathbb{H}$$

- re-sampling symmetry (*Dubédat's comm*. relations): can grow one curve at a time
 [Dubédat '06-'07]
- driving process of one curve γ : image of tip
- interaction encoded in partition function Z
 - $dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z}(W_t, V_t^{(2)}, V_t^{(3)}, \dots) dt$
 - $dV_t^{(i)} = \frac{2 dt}{V_t^{(i)} W_t}$
 - $W_0 = x_1$, and $V_0^{(i)} = x_i$ for $i \neq 1$



Growing multiple SLEs via Loewner equation

y(t) É

 x_1

 $g_t: \mathbb{H} \setminus \gamma[0,t] \to \mathbb{H}$

 x_2

re-sampling symmetry (*Dubédat's comm.* relations): can grow one curve at a time
[Dubédat '06–'07]

• driving process of one curve γ : image of tip

$$ightharpoonup$$
 interaction encoded in partition function $\mathcal Z$

$$dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z}(W_t, V_t^{(2)}, V_t^{(3)}, \dots) dt$$

$$dV_t^{(i)} = \frac{2 dt}{V_t^{(i)} - W_t}$$

$$\left\{\frac{\kappa}{2}\frac{\partial^2}{\partial x_j^2} + \sum_{i \neq j} \left(\frac{2}{x_i - x_j}\frac{\partial}{\partial x_i} - \frac{6/\kappa - 1}{(x_i - x_j)^2}\right)\right\} \mathcal{Z}(x_1, \dots, x_{2N}) = 0$$

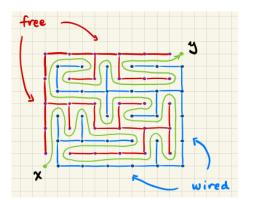
 $V_t^{(2)}$... & Möbius covariance:

$$W_t = g_t(\gamma(t))$$

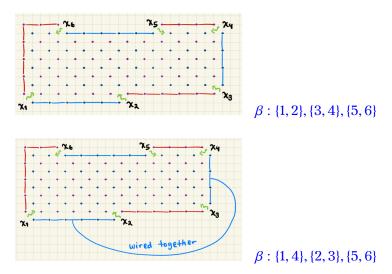
$$(\text{for } f: \mathbb{H} \to \mathbb{H} \text{ s.t. } f(x_1) < \dots < f(x_{2N}))$$

$$\mathcal{Z}(f(x_1), \dots, f(x_{2N})) = \left(\prod_{1 \le j \le 2N} \left| f'(x_j) \right|^{\frac{s-6}{2k}} \right) \mathcal{Z}(x_1, \dots, x_{2N})$$
9

Uniform spanning tree (UST) Peano curve - SLE(8)



Thm. [Lawler & Schramm & Werner '04] UST Peano curve on $(\Omega^{\delta,\diamond}; x^{\delta\diamond}, y^{\delta\diamond})$ converges weakly to SLE(8) in the scaling limit $\delta \to 0$ (in certain curve topology). More general *boundary conditions* labeled by planar link patterns (planar pair partitions) $\beta \in LP_N$:



Internal connectivities of Peano curves labeled similarly by $\alpha \in LP_N$

Crossing probabilities for UST on $\Omega^\delta \subset \delta \mathbb{Z}^2$

 $\blacktriangleright \ (\Omega^{\delta,\diamond}; x_1^{\delta\diamond}, \dots, x_{2N}^{\delta\diamond}) \ \stackrel{\delta \to 0}{\longrightarrow} \ (\Omega; x_1, \dots, x_{2N}) \ (\text{assuming } \mathit{C}^1\text{-Jordan domain})$

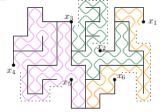
Thm. [Liu & P. & Wu '21]

[arXiv:2108.04421]

Connectivities of UST Peano curves on $(\Omega^{\delta,\diamond}; x_1^{\delta\diamond}, \dots, x_{2N}^{\delta\diamond})$ with b.c. β converge: for each possible $\alpha \in LP_N$,

$$\lim_{\delta \to 0} \mathbb{P}_{\beta}^{\delta} \left[\text{ connectivity} = \alpha \right] \quad = \quad \frac{\mathcal{Z}_{\alpha}^{(\kappa=8)}(\Omega; x_1, \dots, x_{2N})}{\mathcal{F}_{\beta}^{(\kappa=8)}(\Omega; x_1, \dots, x_{2N})}.$$

- $\{Z_{\alpha}^{(\kappa=8)}: \alpha \in LP_N\}$ "pure partition functions"
- $\{\mathcal{F}_{\beta}^{(\kappa=8)}: \beta \in LP_N\}$ partition functions for b.c.



also [Dubédat '07]

Crossing probabilities for UST on $\Omega^\delta \subset \delta \mathbb{Z}^2$

 $\blacktriangleright \ (\Omega^{\delta,\diamond}; x_1^{\delta\diamond}, \dots, x_{2N}^{\delta\diamond}) \ \stackrel{\delta \to 0}{\longrightarrow} \ (\Omega; x_1, \dots, x_{2N}) \ (\text{assuming C^1-Jordan domain})$

Thm. [Liu & P. & Wu '21]

[arXiv:2108.04421]

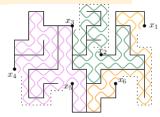
Connectivities of UST Peano curves on $(\Omega^{\delta,\diamond}; x_1^{\delta\diamond}, \dots, x_{2N}^{\delta\diamond})$ with b.c. β converge: for each possible $\alpha \in LP_N$,

$$\lim_{\delta \to 0} \mathbb{P}_{\beta}^{\delta} \left[\text{ connectivity} = \alpha \right] = \frac{\mathcal{Z}_{\alpha}^{(\kappa=8)}(\Omega; x_1, \dots, x_{2N})}{\mathcal{F}_{\beta}^{(\kappa=8)}(\Omega; x_1, \dots, x_{2N})}.$$

- $\{Z_{\alpha}^{(\kappa=8)}: \alpha \in LP_N\}$ "pure partition functions"
- $\{\mathcal{F}_{\beta}^{(\kappa=8)}: \beta \in LP_N\}$ partition functions for b.c.

Main inputs to the proof:

- convergence of Peano curves to SLE(8) variants
- combinatorial formulas for $\mathbb{P}^{\delta}_{\beta}[\alpha]$ by Kenyon & Wilson
- martingale argument to identify with $\mathcal{Z}_{\alpha}/\mathcal{F}_{\beta}$



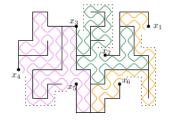
also [Dubédat '07]

Thm. [Liu & P. & Wu '21] (one curve [LSW04]; two curves: [HLW20]) UST Peano curves on $(\Omega^{\delta,\diamond}; x_1^{\delta\diamond}, \dots, x_{2N}^{\delta\diamond})$ with b.c. β $\stackrel{\delta \to 0}{\longrightarrow} \text{SLE}(8) \text{ with partition function } \mathcal{F}_{\beta}^{(\kappa=8)} \text{: e.g. curve starting at } x_1$

$$dW_t = \sqrt{8} dB_t + 8 \partial_1 \log \mathcal{F}_{\beta}^{(\kappa=8)}(\Omega; W_t, V_t^2, V_t^3, \dots, V_t^{2N}) dt, \qquad dV_t^i = \frac{2dt}{V_t^i - W_t}$$

"
$$\mathcal{F}_{\beta}^{(\kappa=8)} = \langle \Phi_{1,2}(x_1) \cdots \Phi_{1,2}(x_{2N}) \rangle_{\beta}$$
" lin. independent BCFT correlations

- ▶ BPZ PDEs, simultaneous positivity
- explicit logarithmic fusion rules!



also [Dubédat '07]

Thm. [Liu & P. & Wu '21] (one curve [LSW04]; two curves: [HLW20])

UST Peano curves on $(\Omega^{\delta,\diamond}; x_1^{\delta,\diamond}, \dots, x_{2N}^{\delta,\diamond})$ with b.c. β $\stackrel{\delta \to 0}{\longrightarrow}$ SLE(8) with partition function $\mathcal{F}_{\beta}^{(\kappa=8)}$: e.g. curve starting at x_1

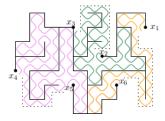
$$dW_{t} = \sqrt{8} dB_{t} + 8 \partial_{1} \log \mathcal{F}_{\beta}^{(\kappa=8)}(\Omega; W_{t}, V_{t}^{2}, V_{t}^{3}, \dots, V_{t}^{2N}) dt, \qquad dV_{t}^{i} = \frac{2dt}{V_{t}^{i} - W_{t}}$$

"
$$\mathcal{F}_{\beta}^{(\kappa=8)} = \langle \Phi_{1,2}(x_1) \cdots \Phi_{1,2}(x_{2N}) \rangle_{\beta}$$
" lin. independent BCFT correlations

- ▶ BPZ PDEs, simultaneous positivity
- explicit logarithmic fusion rules!

Main inputs to the proof:

- discrete holomorphic multi-point observable
 discrete bdry value problem
- solution for it related to $\mathcal{F}_{\beta}^{(\kappa=8)}$
- standard tightness arguments (cf. [LSW04, HLW20])



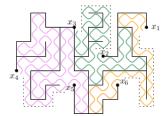
also [Dubédat '07]

Cor. [Liu & P. & Wu '21] (one curve [LSW04]; two curves: [HLW20]) UST Peano curves on $(\Omega^{\delta,\diamond}; x_1^{\delta\diamond}, \dots, x_{2N}^{\delta\diamond})$ conditioned to form connectivity α (regardless of b.c.!) $\stackrel{\delta \to 0}{\longrightarrow} \text{SLE}(8) \text{ with partition function } \mathcal{Z}_{\alpha}^{(\kappa=8)} \text{: e.g. curve starting at } x_1$

$$\mathrm{d}W_t = \sqrt{8} \, \mathrm{d}B_t + 8 \, \partial_1 \log \mathcal{Z}_{\alpha}^{(\kappa=8)}(\Omega; W_t, V_t^2, V_t^3, \dots, V_t^{2N}) \, \mathrm{d}t, \qquad \mathrm{d}V_t^i = \frac{2\mathrm{d}t}{V_t^i - W_t}$$

"
$$\mathcal{Z}_{\alpha}^{(\kappa=8)} = \langle \Phi_{1,2}(x_1) \cdots \Phi_{1,2}(x_{2N}) \rangle_{\alpha}$$
" lin. independent BCFT correlations

▶ BPZ PDEs, explicit *logarithmic* fusion



Cor. [Liu & P. & Wu '21] (one curve [LSW04]; two curves: [HLW20]) UST Peano curves on $(\Omega^{\delta,\diamond}; x_1^{\delta,\diamond}, \dots, x_{2N}^{\delta,\diamond})$

conditioned to form connectivity α (regardless of b.c.!)

 $\stackrel{\delta \to 0}{\longrightarrow}$ SLE(8) with partition function $\mathcal{Z}_{\alpha}^{(\kappa=8)}$: e.g. curve starting at x_1

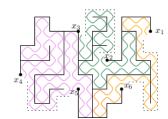
$$dW_t = \sqrt{8} dB_t + 8 \partial_1 \log \mathcal{Z}_{\alpha}^{(\kappa=8)}(\Omega; W_t, V_t^2, V_t^3, \dots, V_t^{2N}) dt, \qquad dV_t^i = \frac{2dt}{V_t^i - W_t}$$

"
$$\mathcal{Z}_{\alpha}^{(\kappa=8)} = \langle \Phi_{1,2}(x_1) \cdots \Phi_{1,2}(x_{2N}) \rangle_{\alpha}$$
" lin. independent BCFT correlations

▶ BPZ PDEs, explicit logarithmic fusion

Main inputs to the proof:

- know all connection probabilities $\mathbb{P}_{\beta}[\alpha] = \mathcal{Z}_{\alpha}/\mathcal{F}_{\beta}$
- know limit of unconditioned Peano curves: p.f. \mathcal{F}_{β}
- thus: conditioned p.f. is $\mathbb{P}_{\beta}[\alpha]\mathcal{F}_{\beta} = \mathcal{Z}_{\alpha}$
- tightness as before



Partition functions for $\kappa = 8$

Construction of solutions in integral form (Coulomb gas formalism):

▶ N = 2: four-point function [Cardy's formula]

$$\mathcal{F}_{\bigcirc,(x_1, x_2, x_3, x_4)} = \pi^2 (x_4 - x_1)^{1/4} (x_3 - x_2)^{1/4} \left(\frac{x_{21} x_{43}}{x_{31} x_{42}}\right)^{1/4} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; \frac{x_{21} x_{43}}{x_{31} x_{42}}\right)$$

Partition functions for $\kappa = 8$

Construction of solutions in integral form (Coulomb gas formalism):

▶ N = 2: four-point function [Cardy's formula]

$$\mathcal{F}_{\bigcirc,(x_1,x_2,x_3,x_4)} = \pi^2 (x_4 - x_1)^{1/4} (x_3 - x_2)^{1/4} \left(\frac{x_{21}x_{43}}{x_{31}x_{42}}\right)^{1/4} {}_2F_1\left(\frac{1}{2},\frac{1}{2},1;\frac{x_{21}x_{43}}{x_{31}x_{42}}\right)$$

▶ general *N*: multi-point function

$$\mathcal{F}_{\beta}(x_1,\ldots,x_{2N}) = \prod_{1 \le i < j \le 2N} (x_i - x_j)^{1/4} \int_{\Gamma_{\beta}} \prod_{1 \le r \le N} \prod_{1 \le j \le 2N} (w_r - x_j)^{-1/2} \prod_{1 \le r < s \le N} (w_r - w_s) dw_1 \cdots dw_N$$

where Γ_{β} are certain integration contours determined from β cf. [Dubédat '07]

Partition functions for $\kappa = 8$

Construction of solutions in integral form (Coulomb gas formalism):

▶ N = 2: four-point function [Cardy's formula]

$$\mathcal{F}_{\text{----}}(x_1,x_2,x_3,x_4) = \pi^2 \left(x_4 - x_1\right)^{1/4} \left(x_3 - x_2\right)^{1/4} \left(\frac{x_{21}x_{43}}{x_{31}x_{42}}\right)^{1/4} \, {}_2F_1\!\left(\frac{1}{2},\frac{1}{2},1;\frac{x_{21}x_{43}}{x_{31}x_{42}}\right)$$

▶ general *N*: multi-point function

$$\mathcal{F}_{\beta}(x_1,\ldots,x_{2N}) = \prod_{1 \le i < j \le 2N} (x_i - x_j)^{1/4} \int_{\Gamma_{\beta}} \prod_{1 \le r \le N} \prod_{1 \le j \le 2N} (w_r - x_j)^{-1/2} \prod_{1 \le r < s \le N} (w_r - w_s) dw_1 \cdots dw_N$$

where Γ_{β} are certain integration contours determined from β cf. [Dubédat '07]

• pure partition functions: $\mathcal{Z}_{\alpha} := \sum_{\beta \in \mathrm{LP}_N} \mathcal{M}_{\alpha,\beta}^{-1} \mathcal{F}_{\beta}$

$$(\alpha, \beta) = \bigcirc$$
 evaluates to $\mathcal{M}_{\alpha\beta} := \begin{cases} 1 \text{ if } (\alpha, \beta) \text{ has 1 loop;} \\ 0 \text{ else} \end{cases}$

(meander matrices [DiFrancesco-Golinelli-Guitter 90s; Flores-Kleban-Simmons-Ziff '17])

Logarithmic fusion for SLE(8) boundary field $\Phi_{1,2}$

Thm. [Han & Liu & Wu '20; Liu & P. & Wu '21] Explicit fusion rules from SLE(8) pure partition functions $\mathcal{Z}_{\alpha}^{(\kappa=8)}$:

"singlet channel"

inglet channel"
$$\frac{\mathcal{Z}_{\alpha}(x_{1},\ldots,x_{2N})}{|x_{j+1}-x_{j}|^{1/4}\log|x_{j+1}-x_{j}|}$$

$$\xrightarrow{x_{j},x_{j+1}\to\xi} \mathcal{Z}_{\alpha\setminus\{j,j+1\}}(x_{1},\ldots,x_{j-1},x_{j+2},\ldots,x_{2N}) \quad \text{if } \{j,j+1\}\in\alpha$$

Logarithmic fusion for SLE(8) boundary field $\Phi_{1,2}$

Thm. [Han & Liu & Wu '20; Liu & P. & Wu '21] Explicit fusion rules from SLE(8) pure partition functions $Z_{\alpha}^{(\kappa=8)}$:

• "singlet channel"

$$\frac{\mathcal{Z}_{\alpha}(x_{1}, \dots, x_{2N})}{|x_{j+1} - x_{j}|^{1/4} \log |x_{j+1} - x_{j}|}$$

$$\xrightarrow{x_{j}, x_{j+1} \to \xi} \quad \mathcal{Z}_{\alpha\setminus\{i, i+1\}}(x_{1}, \dots, x_{i-1}, x_{i+2}, \dots, x_{2N}) \quad \text{if } \{j, j+1\} \in \alpha$$

• "triplet channel" (NB: limit is **independent of** ξ)

$$\frac{\mathcal{Z}_{\boldsymbol{\alpha}}(x_1,\ldots,x_{2N})}{|x_{j+1}-x_j|^{1/4}}$$

$$\overset{x_{j},x_{j+1}\to\xi}{\longrightarrow} \quad \pi \; \mathcal{Z}_{\varphi(\alpha)\setminus\{j,j+1\}}(x_{1},\ldots,x_{j-1},x_{j+2}\ldots,x_{2N}) \qquad \text{if } \{j,j+1\}\notin\alpha \qquad \qquad \underbrace{\qquad \qquad }_{}$$

where $\wp(\alpha)$ is obtained from α by "tying" the points j and j+1:

Logarithmic fusion for SLE(8) boundary field $\Phi_{1,2}$

Consequence. [Liu & P. & Wu '21]

For any CFT boundary fields describing SLE(8) curves, OPE product has explicit form

$$\Phi_{1,2}(z) \; \Phi_{1,2}(w) \; \sim \; (z-w)^{-1/4} \, \big(\pi \, \Phi_{1,1}(z) - \log(z-w) \, \tilde{\Phi}_{1,3}(z)\big).$$

Compare with fusion of two simple Virasoro modules with c = -2:

• for simple module $S_{1,2}$ (corresponding to $\Phi_{1,2}$ with $\kappa = 8$):

$$0 \longrightarrow S_{1,1} \stackrel{\iota}{\longrightarrow} S_{1,2} \boxtimes S_{1,2} \stackrel{\pi}{\longrightarrow} S_{1,3} \longrightarrow 0$$

where $S_{1,2} \boxtimes S_{1,2}$ is so-called *staggered module* (not semisimple)

- $S_{1,1}$ corresponding to $\Phi_{1,1}$ and $S_{1,3}$ corresponding to its "log-partner" $\tilde{\Phi}_{1,3}$ [Gurarie '93; Gaberdiel & Kausch '96; Rohsiepe '96; Kytölä & Ridout '09]
- also agree with bdry-arm exponents for SLE(8) [Wu & Zhan 17]

HEURISTICS: FUSION AND OPE IN CFT

- "multiplication of fields" given by operator product expansion (OPE)
- e.g. for primary fields $\Phi_{1,2}$,

"
$$\Phi_{1,2}(z) \; \Phi_{1,2}(w) \sim \frac{c_1}{(w-z)^{\Delta_{1,1}}} \; \Phi_{1,1}(w) \; + \; \frac{c_2}{(w-z)^{\Delta_{1,3}}} \; \Phi_{1,3}(w) \; ", \qquad \text{as } |z-w| \to 0,$$

- $c_1, c_2 \in \mathbb{C}$ structure constants
- $\Delta_{1,1} = 2h_{1,2}(\kappa) h_{1,1}(\kappa) = \frac{6-\kappa}{\kappa}$ and $\Delta_{1,3} = 2h_{1,2}(\kappa) h_{1,3}(\kappa) = -\frac{2}{\kappa}$

Works well for generic $\kappa \notin \mathbb{Q}$. However:

HEURISTICS: FUSION AND OPE IN CFT

- "multiplication of fields" given by operator product expansion (OPE)
- e.g. for primary fields $\Phi_{1,2}$,

"
$$\Phi_{1,2}(z) \; \Phi_{1,2}(w) \sim \frac{c_1}{(w-z)^{\Delta_{1,1}}} \; \Phi_{1,1}(w) + \frac{c_2}{(w-z)^{\Delta_{1,3}}} \; \Phi_{1,3}(w) \; ", \qquad \text{as } |z-w| \to 0,$$

- $c_1, c_2 \in \mathbb{C}$ structure constants
- $\Delta_{1,1} = 2h_{1,2}(\kappa) h_{1,1}(\kappa) = \frac{6-\kappa}{\kappa}$ and $\Delta_{1,3} = 2h_{1,2}(\kappa) h_{1,3}(\kappa) = -\frac{2}{\kappa}$

Works well for generic $\kappa \notin \mathbb{Q}$. However:

- anomaly: $\kappa = 8 \implies \Delta_{1,1} = \Delta_{1,3}$

"
$$\Phi_{1,2}(z) \; \Phi_{1,2}(w) \sim c_1(z,w) \; \Phi_{1,1}(w) + c_2(z,w) \; \Phi_{1,3}(w)$$
", as $|z-w| \to 0$,

for some functions $c_1(z_1, z_2)$ and $c_2(z_1, z_2)$ allowing logarithms

HEURISTICS: LOGARITHMIC FIELDS

▶ Virasoro algebra \mathfrak{V} ir: Lie algebra generated by $(L_n)_{n\in\mathbb{N}}$ and C

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{C}{12}n(n^2-1)\delta_{n+m,0}, \qquad [C, L_n] = 0$$

▶ Verma module $V_{h,c} = \mathfrak{V}ir.v$ universal highest weight module

$$L_0 v = h v$$
, $L_n v = 0$ for $n \ge 1$, $C.v = c v$,

► CFT: Hilbert space is direct sum of some Vir-modules

HEURISTICS: LOGARITHMIC FIELDS

▶ Virasoro algebra \mathfrak{V} ir: Lie algebra generated by $(L_n)_{n\in\mathbb{N}}$ and C

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{C}{12}n(n^2-1)\delta_{n+m,0}, \qquad [C, L_n] = 0$$

▶ Verma module $V_{h,c} = \mathfrak{V}ir.v$ universal highest weight module

$$L_0 v = h v$$
, $L_n v = 0$ for $n \ge 1$, $C.v = c v$,

- ► CFT: Hilbert space is direct sum of some Vir-modules
- ► Unitarity? E.g. $V_{h,c}$ unitary for $0 \le c < 1$ if $c = c(\kappa)$ and $h = h_{r,s}(\kappa)$; $V_{h,c}$ non-unitary if c < 0 (e.g. c = -2 for UST) \longrightarrow non-reflection positive!

HEURISTICS: LOGARITHMIC FIELDS

▶ Virasoro algebra \mathfrak{V} ir: Lie algebra generated by $(L_n)_{n\in\mathbb{N}}$ and C

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{C}{12}n(n^2-1)\delta_{n+m,0}, \qquad [C, L_n] = 0$$

► Verma module $V_{h,c} = \mathfrak{V}ir.v$ universal highest weight module

$$L_0 v = h v$$
, $L_n v = 0$ for $n \ge 1$, $C.v = c v$,

- ► CFT: Hilbert space is direct sum of some Vir-modules
- ► Unitarity? E.g. $V_{h,c}$ unitary for $0 \le c < 1$ if $c = c(\kappa)$ and $h = h_{r,s}(\kappa)$; $V_{h,c}$ non-unitary if c < 0 (e.g. c = -2 for UST) \longrightarrow non-reflection positive!
- $\blacktriangleright \text{ e.g. in } 0 \longrightarrow S_{1,1} \stackrel{\iota}{\longrightarrow} S_{1,2} \boxtimes S_{1,2} \stackrel{\pi}{\longrightarrow} S_{1,3} \longrightarrow 0 \text{ we have }$

$$L_0 v_{1,3} = v_{1,1}, \qquad L_n v_{1,3} = 0 \text{ for } n \ge 1$$

 $\implies \{v_{1,1}, v_{1,3}\}$ form *Jordan cell* for $L_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ in $S_{1,2} \boxtimes S_{1,2}$

COMMENTS AND QUESTIONS

History:

- ▶ Dubédat '06–'07: Euler integrals & Commuting SLEs
- ▶ Kenyon & Wilson '11: combinatorial method to calculate UST crossing probabilities in the discrete, while it doesn't relate to CFT.
- ▶ Predictions for crossing formulas in the physics literature.

[Cardy 80s, Flores-Kleban-Simmons-Ziff '17]

What's new?

- ▶ Proba construction of bdry correlations with any number points.
- Explicit structure constants and (log!) fusion rules for primaries.
- ▶ In contrast to Liouville or unitary minimal models, CFT with c = -2 is non-unitary (so Osterwalder-Schrader axioms will fail).
- **Q**: UST natural for imaginary geometry. [Miller-Sheffield '12] Understand the boundary "fields" from that framework?
- ▶ NB: Found correlation functions are explicit!

