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CONFORMAL INVARIANCE “CONJECTURE’

Any (reasonable) critical lattice model converges in

the scaling limit to a conformal field theory (CFT).

CFT: conformally invariant quantum field theory

What is this supposed to mean?



CONFORMAL INVARIANCE IN TERMS OF OBSERVABLES

interfaces: random curves
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LATTICE CORRELATIONS — CFT CORRELATION FUNCTIONS?

Convergence results use model-specific tools. Many open questions.

Some correlation functions have explicit formulas, but this is rare.

Problem: CFT not understood mathematically!



LATTICE CORRELATIONS — CFT CORRELATION FUNCTIONS?

» Consider models with continuous phase transition at critical point.

» E.g. Ising P[(0y)xev] exp(ﬂc > o-x0'y) for random spins o, = %1,
X~y

nearest neighbor interaction (x ~ y) on finite graph (V, E) on 572

()
e

0—0
Thm. (spins in Ising model) 5B E [ -0,] — F(z1,...,2,)

[Hongler, Smirnov ‘13 (energy); Chelkak, Hongler, Izyurov '15 (spin); CHI "21 (gen.)]

Proof relies on solutions of Riemann bdry value problems (discrete

holomorphicity). Uses specific fermionic structures and techniques.



LATTICE CORRELATIONS — CFT CORRELATION FUNCTIONS?

» Certain correlations in critical models satisfy (BPZ) PDEs: e.g.

2
{86 +Z( 2 9 1/8 )}F(z1 ..... =0 Vi<j<n
i#j

§6_z2, zi—zjﬁ_z,-_(zl-—zj)z
for “Ising CFT” spin correlations (k = 3) 8 [Izyurov '20]
F(zi,. . 20) = lim 6B E[o, - 0,] 82

6—0

» They also satisfy conformal covariance rule of primary fields:

F(f(z),..., f(z) = (H |f’(Z_,~)|_1/8) F(zi,...»20) ¥ f conformal map
j=1

These are general features of so-called
CFT primary fields that are degenerate at level two.

» Also: SLE(«x) partition functions, certain Liouville correlators, ...

» (Higher order (level) PDEs arise in fusion.)



SCALING LIMITS OF CRITICAL INTERFACES — SLE(k) CURVES

» k > 0 labels universality class
» convergence weakly for proba. measures on curves
(in some topology to be specified)
Cgf‘”ii Fod
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.. . 50 )
(critical) interface ”, Schramm-Loewner evolution, SLE(x)

Usual proof strategy:
1. tightness (e.g. control via crossing estimates)

2. identification of the limit (e.g. via discrete holomorphic observable)



CONFORMAL INVARIANCE “CONJECTURE’ IN SLLE CONTEXT

Boundary conditions:
“disorder” fields in CFT?

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

> [Cardy 84 Bauer & Bernard '02]: SLE(k) curve started at x should be
generated by certain CFT primary field denoted ¢12(x).

» Why? Correlation functions give rise to (local) SLE(x)-mgles:
M(x 2,z = ([ &1@)™) FWs gz, git@))
j=1

has zero drift iff ' solves BPZ PDE related to ¢12.
» Generally, s — 1 curves at x conjecturally related to ¢y (x) (fusion).
see Nam-Gyu's talk! [e.e. Duplantier & Saleur 87’; Bauer & Saleur '89] 7



PLANAR MODELS
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CROSSING PROBABILITIES GIVEN BY

MULTIPLE SLE(K) PURE PARTITION FUNCTIONS

dW, = vk dB, + kdjlog Z(W,, VO, v®,

dv(l) — IZdt
! Vt( )7Wt



GROWING MULTIPLE SLLES viIA LOEWNER EQUATION

» re-sampling symmetry (Dubédat’s comm.
relations): can grow one curve at a time
Y 1 [Dubédat "06-07]
» driving process of one curve y: image of tip

» interaction encoded in partition function Z

X1 X2t AW, = VK dB, + kdilog Z(W,, VP, VP dr

@) _  _2dt
> th - V“)—W,
I3

» Wy = x1, and V((f) =x; fori#1

g tH\yl[0,f] - H

L

N

W = gi(y(0)



GROWING MULTIPLE SLLES viIA LOEWNER EQUATION

» re-sampling symmetry (Dubédat’s comm.
relations): can grow one curve at a time
Y 1 [Dubédat "06-07]
» driving process of one curve y: image of tip

» interaction encoded in partition function Z

X1 X2t AW, = VK dB, + kdilog Z(W,, VP, VP dr

@) _  _2dt
> th - V“)—W,
I3

» Wy = x1, and V((f) =x; fori#1
g H\y[0,f] - H » Z must satisfy system of (BPZ) PDEs Vj

K (92 2 ) 6//( 1
20 " Z (e x) =
{2 5x§ " Z (xi -x;0x;  (x;—x;)? )} (X1y...,Xon) =0

i#j

v ... vy .
P & Mobius covariance:

2

Wi = g,(y(1) (For f:H — H st f(x) <--- < f(xaw)
- Z(f),.., flan)) = ( 1_[ 1(x)) = ) Z(X1, ..., X) .

1< j<2N




UN1rorM SPANNING TREE (UST) PEANO cURVE — SLE(8)

Thm. [Lawler & Schramm & Werner '04]
UST Peano curve on (Q%°; x%°,y%°) converges weakly to SLE(8)
in the scaling limit 6 — O (in certain curve topology).

10



More general boundary conditions labeled by planar link patterns
(planar pair partitions) 8 € LPy:

EaEE G vuBmaETa
f+ H i
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s L3 B:11,2},{3,4},{5,6)
I———-A LY 'lsk) = %y
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!.
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wired “Yogether

B:{1,4},{2,3},{5,6}

Internal connectivities of Peano curves labeled similarly by @ € LPy
1



CROSSING PROBABILITIES FOR UST oN Q° C 672

0—0
> (Q0 xl y. . xéN) —> (;x1,...,X9n) (assuming C'-Jordan domain)

Thm. [Liu & P. & Wu 21] [arXiv:2108.04421]
Connectivities of UST Peano curves on (Q‘S’°;x‘15°, ... ng)

with b.c. S converge: for each possible @ € LPy,

-8
28 x, ..., xon)

lim ]P)‘S [ connectivity = a] =

om0 ‘FFEKZS)(Q; XiyerosXon)
(«=8) o X
» {Z, : a € LPy} “pure partition functions” R O
(k=8) . ... . CEH O
> {]:ﬁ : B € LPy} partition functions for b.c. %/ b

A Ve

also [Dubédat '07]
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CROSSING PROBABILITIES FOR UST oN Q° C 672

60—0
> (Q0 x‘fo, R ngv) —> (;x1,...,X9n) (assuming C'-Jordan domain)
Thm. [Liu & P. & Wu 21] [arXiv:2108.04421]
Connectivities of UST Peano curves on (Qé’°;x‘15°, ... ,xgjv)

with b.c. S converge: for each possible @ € LPy,

28 x, ..., xon)
fg“:*”(g; X, . ..

lim P [ connectivity = @] =
5—0 sl y =al

» {Z%¥. o € LPy} “pure partition functions”

g {‘F/(fKZS): B € LPy} partition functions for b.c.

Main inputs to the proof: " ’} 4

e convergence of Peano curves to SLE(8) variants
e combinatorial formulas for ]P’g [a] by Kenyon & Wilson
e martingale argument to identify with Z,/Fy also [Dubédat '07]

12



UST PEANO CURVES ON Q° c 6§72

Thm. [Liu & P. & Wu "21] (one curve [LSWO04]; two curves: [HLW20])

UST Peano curves on (Q‘S’°;x‘f°, ... ,xg})v) with b.c. 8

6—0 . .. . (k=8). .
—> SLE(8) with partition function fﬂ . e.g. curve starting at x;

2dt
Vi W,

dW, = V8 dB, + 80, log 7\ (W, VA VP, ... .VPN)dt,  dV} =

“]—"EKZS) = (D 2(x1) - - Py 2(x2n))s” lin. independent BCFT correlations

» BPZ PDEs, simultaneous positivity

» explicit logarithmic fusion rules!

also [Dubédat "07]
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UST PEANO CURVES ON Q° c 6§72

Thm. [Liu & P. & Wu "21] (one curve [LSWO04]; two curves: [HLW20])

UST Peano curves on (Q‘S’°;x‘f°, ... ,xg})v) with b.c. 8
50 . .. . =
S SLE(8) with partition function .7-";3'( 8. e.g. curve starting at x;

2dt
Vi W,

dW, = V8 dB, + 80, log 7\ (W, VA VP, ... .VPN)dt,  dV} =

“]—"EKZS) = (D 2(x1) - - Py 2(x2n))s” lin. independent BCFT correlations

» BPZ PDEs, simultaneous positivity

» explicit logarithmic fusion rules!

Main inputs to the proof:

e discrete holomorphic multi-point observable
~» discrete bdry value problem

e solution for it related to Fo="
e standard tightness arguments (cf. [LSWO04, HLW20])

also [Dubédat "07]
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UST PEANO CURVES ON Q° c 6§72

Cor. [Liu & P. & Wu 21] (one curve [LSWO04]; two curves: [HLW20])
UST Peano curves on (Q‘S’°;x‘f°, ... ,xg})\,
conditioned to form connectivity a (regardless of b.c.)

ﬂ) SLE(8) with partition function Z((,KZS): e.g. curve starting at x;

_ ; ; . 2dt
dW, = V8 dB, + 838, log ZX" VW, VA, V2, ...,V ™)dr, dVi= T
r t

“Z((,Kzs) = (D1 2(x1) - - - Dy 2(x2n))e” lin. independent BCFT correlations

» BPZ PDEs, explicit logarithmic fusion 0 ¢

T

N A

o~

NN
Y
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UST PEANO CURVES ON Q° c 6§72

Cor. [Liu & P. & Wu 21] (one curve [LSWO04]; two curves: [HLW20])

UST Peano curves on (Q‘S’°;x‘f°, ... ,xg})\,
conditioned to form connectivity a (regardless of b.c.)
0—0

— SLE(8) with partition function Z((,KZS): e.g. curve starting at x;

2dt
Vi W,

dW, = V8 dB, + 838, log ZX" VW, VA, V2, ...,V ™)dr, dVi=

“Z((,Kzs) = (D1 2(x1) - - - Dy 2(x2n))e” lin. independent BCFT correlations

» BPZ PDEs, explicit logarithmic fusion

Main inputs to the proof:

know all connection probabilities Psla] = Z,/Fp
know limit of unconditioned Peano curves: p.f. Fg
thus: conditioned p.f. is Pgla]Fp = Z,

tightness as before
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PARTITION FUNCTIONS FOR K = 8

Construction of solutions in integral form (Coulomb gas formalism):
» N=2: four-po'mt function [Cardy’s formula]

X21X43 \1/4 L 1 Xy
F oo (X1, X9, X3, Xy) = 7 (x4 — X1)1/4(X3 - X2)1/4(—) zFl(—, =L —)
X31X42 22 X31X42

15



PARTITION FUNCTIONS FOR K = 8

Construction of solutions in integral form (Coulomb gas formalism):
» N = 2: four-point function [Cardy’s formula]

X21X43 \1/4 L 1 Xy
F oo (X1, X9, X3, Xy) = 7 (x4 — X1)1/4(X3 - X2)1/4(—) zFl(—, =L —)
X31X42 2° 2 X3Xgo

» general N: multi-point function
Fp (X1, ooy Xoy) = l_[ (xi_xj)1/4f l_[ l—[ (Wr_xj)71/2 l_[ (Wr—wy) dwy -+ - dwy
1<i<j<2N s 1<r<N 1< j<2N 1<r<s<N

where I'y are certain integration contours determined from g cf. [Dubédat '07]
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PARTITION FUNCTIONS FOR K = 8

Construction of solutions in integral form (Coulomb gas formalism):
» N = 2: four-point function [Cardy’s formula]

X21X43 \1/4 L 1 Xy
F oo (X1, X9, X3, Xy) = 7 (x4 — X1)1/4(X3 - X2)1/4(—) zFl(—, =L —)

X31X42 X31X42

» general N: multi-point function

Fp (X1, ..., Xoy) = l_[ (xi—xj)”“f ]_[ 1—[ (w,—x,)"? l_[ (w,=wy) dwy -+ - dwy

1<i<j<2N s 1<r<N 1< j<2N 1<r<s<N

where I'y are certain integration contours determined from g cf. [Dubédat '07]

» pure partition functions: Z, := M;lﬁ Fp
BeLPy ’
1 if (@, B) has 1 loop;
(@,p) = h evaluates to M, := H @) has 1loop
N W W 0 else

(meander matrices [DiFrancesco-Golinelli-Guitter 90s; Flores-Kleban-Simmons-Ziff 17])

15



LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @

Thm. [Han & Liu & Wu 20; Liu & P. & Wu 21]
Explicit fusion rules from SLE(8) pure partition functions Z((IKZS):

» “singlet channel”
Zy(X1, .-, Xon)
|xj+1 - Xj|1/4 log |xj41 — x|

Xj,xjy1 =€ . ..
—_— Z(}'\{_/,/+l)(x1, s Xjo1y Xjg2s - e Xow) if{jj+lea ﬂ%—

16



LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @

Thm. [Han & Liu & Wu 20; Liu & P. & Wu 21]

Explicit fusion rules from SLE(8) pure partition functions Z(K 8.

» “singlet channel”
Zu(xly ) sz)

|xj+1 - Xj|1/4 log |xj41 — x|

il j+lea T3

» “triplet channel” (NB: limit is independent of &)

Xj,Xjsl &
o Zonje)(Xs - -5 Xjo1s Xjyns - ., Xon)

Xj,Xjy1 =&

i s Z\,;(ar)\(,‘__m)(xh e X X2 e Xon) if {j? Jj+ 1} ¢ a M

where p(a) is obtained from a by “tying” the points j and j+ 1

X

— —

by b j j+1 b b j g+l b 6 j+1

PN H/TT\H/\ o

2 Ji+ley Ji+1léy 4 Ji+1léy




LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @

Consequence. [Liu & P. & Wu 21]

For any CFT boundary fields describing SLE(8) curves,
OPE product has explicit form

D2(2) Pro(w) ~ (z—w) ™ (wDy(2) — log(z — w) Dy5(2)).

Compare with fusion of two simple Virasoro modules with ¢ = —2:
» for simple module S;o (corresponding to @2 with k = 8):
0 — S — S12® Sy — S5 — 0
where Sj9 ® S; o is so-called staggered module (not semisimple)
» Sy1 corresponding to @;; and S;3 corresponding to its “log-partner” CI)Lg

[Gurarie '93; Gaberdiel & Kausch '96; Rohsiepe '96; Kytola & Ridout '09]
» also agree with bdry-arm exponents for SLE(8) [Wu & Zhan '17]

17



Heuristics: Fusion aAND OPE N CFT

» “multiplication of fields” given by operator product expansion (OPE)
» e.g. for primary fields @2,

C1 Ca

“Dp(z) Dra(w) ~ o Dy (w) + PV Dy 3(w) 7, as |z—w[— 0,

> ¢1,c9 € C structure constants
> Ary = 2h12(0) — hig(k) = &5 and Ayg = 2h1(k) — hys(k) = -2

K

Works well for generic k ¢ Q. However:

18



Heuristics: Fusion aAND OPE N CFT

» “multiplication of fields” given by operator product expansion (OPE)
» e.g. for primary fields @2,

C1

“Qip(2) Qra(w) ~ W=t

Dy (w) + Dy 3(w) 7, as [z —w|— 0,

2
(w—2)™s

> ¢1,c9 € C structure constants
> Ary = 2h12(0) — hig(k) = &5 and Ayg = 2h1(k) — hys(k) = -2

K

Works well for generic k ¢ Q. However:

» anomaly: k =8 = A1 =A3
~» should use less restrictive form
FDo(z) Ora(w) ~ ci(z,w) Pri(w) + calz, w) Prs(w) 7, as |z—w|— 0,

for some functions ci(z1, z2) and ca(z1, z2) allowing logarithms
18



HEURISTICS: LOGARITHMIC FIELDS

» Virasoro algebra Bir: Lie algebra generated by (L,)en and C

C
[Ln» Lm] = (n - m)LrH—m + En(nz - 1) 5n+m,0v [C7 Ln] = 0

» Verma module Vi = Bir.y universal highest weight module

Lov = hv, Lyv=0forn>1, Cv=cv,

» CFT: Hilbert space is direct sum of some Bir-modules

19



HEURISTICS: LOGARITHMIC FIELDS

» Virasoro algebra Bir: Lie algebra generated by (L,)en and C

C
[Ln» Lm] = (n - m)LrH—m + En(nz - 1) 5n+m,0v [C7 Ln] = 0

» Verma module Vi = Bir.y universal highest weight module

Lov = hv, Lyv=0forn>1, Cv=cv,

» CFT: Hilbert space is direct sum of some Bir-modules
» Unitarity? E.g. V. unitary for 0 <c <1if ¢ = c(x) and h = h,5(k);
V.o non-unitary if ¢ <0 (e.g. ¢ =-2 for UST)

~» non-reflection positive!
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HEURISTICS: LOGARITHMIC FIELDS

» Virasoro algebra Bir: Lie algebra generated by (L,)en and C

C
[Ln» Lm] = (n - m)LrH—m + En(nz - 1) 5n+m,0v [C7 Ln] = 0

» Verma module Vi = Bir.y universal highest weight module

Lov = hv, Lyv=0forn>1, Cv=cv,

\4

CFT: Hilbert space is direct sum of some Bir-modules

v

Unitarity? E.g. Vo unitary for 0 < c <1if ¢ = c(k) and h = h, 4(x);
V.o non-unitary if ¢ <0 (e.g. ¢ =-2 for UST)
~» non-reflection positive!

. L m
»eg in 00— S — S;2®S12 — Si3 — 0 we have

LOV1,3 = Vi1, L,,Vlvg =0 forn > 1

- {V1,1,V1,3} form Jordan cell for Ly = 8 (1)) in SI,Z X SI,Z
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COMMENTS AND QUESTIONS

History:
» Dubédat '06-"07: Euler integrals & Commuting SLEs
» Kenyon & Wilson '11: combinatorial method to calculate UST
crossing probabilities in the discrete, while it doesn’t relate to CFT.
» Predictions for crossing formulas in the physics literature.
[Cardy 80s, Flores-Kleban-Simmons-Ziff '17]

What’s new?
» Proba construction of bdry correlations with any number points.
» Explicit structure constants and (log!) fusion rules for primaries.
» In contrast to Liouville or unitary minimal models, CFT with
¢ = =2 is non-unitary (so Osterwalder-Schrader axioms will fail).
» Q: UST natural for imaginary geometry. [Miller-Sheffield 12]
Understand the boundary “fields” from that framework?
» NB: Found correlation functions are explicit!
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