Critical Liouville quantum gravity and Brownian half-plane excursions Analysis and geometry of random spaces workshop, MSRI (March 2022)

Ellen Powell, Durham University. Based on joint work with Juhan Aru, Nina Holden & Xin Sun

Aim of the talk

Critical Mating of Trees?

Correspondence between the following objects:

Brownian half-plane excursion

©Wendelin Werner

Critical LQG

©Timothy Budd

-

Duplantier-Miller-Sheffield's mating of trees

Encodes SLE/loop decorated γ -quantum surfaces by a correlated planar Brownian motion: $\gamma \in (0,2)$

Disc version (D-M-S, Ang-Gwynne)

Unit boundary length γ -LQG disc

Quantum gravity discs

- LQG disc = random measure on unit disc of $\mathbb C$
- Gaussian multiplicative chaos measure of variant of Gaussian free field (GFF)

- Can measure quantum areas of regions and quantum lengths of curves
- Unit boundary length disc, boundary of the disc has quantum boundary length = 1
- (Conjectured/proven) scaling limit of random planar map models (Gwynne, Holden, Miller, Sheffield, Sun...)
- $\gamma \in (0,2) \leftrightarrow \text{discrete model}, \gamma = 2$ is critical

The approximate density of a Liouville quantum gravity measure ©Jason Miller

Duplantier-Miller-Sheffield's mating of trees

Encodes **SLE/loop** decorated *γ*-quantum surfaces by a correlated planar Brownian motion: $\gamma \in (0,2)$

Unit boundary length γ -LQG disc $\kappa = 16/\gamma^2 > 4$

What happens as $\gamma \uparrow 2, \kappa \downarrow 4$?

ing/space-filling SLE	Correlated Brownian cone excursion
e of $\rho = \kappa - 6$ e SLE($\kappa; \rho$) roaches -2 ves start ning round the hdary very tinuous space- g curve enerates	Correlation $= -\cos(\pi\gamma^{2}/4) \rightarrow 1$ Variance $= ((2 - \gamma)\sin(\pi\gamma^{2}/4))^{-1} \rightarrow \infty$

LQG disc

Branching/spa

- Take a (2γ) -boundary length γ -quantum disc
- **Rescale** boundary lengths and areas by $(2 \gamma)^{-1}$
- Field + GMC measures converge to unit boundary length critical LQG disc

- Branching SL
 converges to
 uniform CLE
 Werner and W
- Order converging sequence of in coin tosses in branch points exploration tree

Theorem (Aru-Holden-P.-Sun '21)

Limits exists simultaneously in law when objects are coupled as in mating of trees correspondence

Limit gives coupling between critical LQG disc + branching uniform CLE₄ exploration and Brownian half plane excursion

ace-filling SLE	Correlated Brownian cone excursion
LE(κ ; κ – 6)	 Take Brownian excursion for new discs
the branching	with rescaled QA and QBL
E ₄ exploration of	 Shear transformation so components
Wu	become independent
rges to a independent indexed by the s of the ree.	• Limit as $\gamma \uparrow 2$ is a Brownian half-plane excursion

Uniform CLE₄ exploration Werner & Wu

Uniform Exploration

- Construct each branch from a PPP of SLE4
 bubbles rooted uniformly only the boundary of the unit disk
- Add them in to the unit disk chronologically

©David Wilson

Branching Version

- Target invariance property means can couple towards dense set of target points
- Also decide order by flipping a coin when two points are disconnected

Brownian half-plane excursions

(0,0)

- Planar Brownian motion started at (1,0) and conditioned to exit the upper half plane at the origin
- Given its duration (specified law), the x coordinate is a Brownian bridge and the y coordinate is an independent Brownian excursion from $0 \mapsto 0$
- The y coordinate defines a Brownian CRT (and therefore a **branching** structure)
- In fact, there is an embedded **growth** fragmentation

Brownian half-plane excursions Growth fragmentations and Cauchy processes (Aïdekon & Da Silva)

- At each height $h \ge 0$ have collection of "displacements" of sub-excursions above h
- These have **signs**
- Built from an **explicit** self-similar Markov process with index 1, starting at 1, and with positive and negative jumps
- For each jump of this Markov process, introduce a new cell of mass = signed size of jump. Then start a new copy of the process/minus the process starting from this value.

Correspondence (= Main Theorem)

CLE₄ decorated critical LQG disk

Branching structure defined by exploration

Order defined by independent coin tosses

Boundary lengths of discovered disks

Areas of discovered disk

Parity of nesting

Some notion of "quantum" distance from boundary

... and in this coupling, the Brownian excursion is a deterministic function of the CLE (+exploration) + LQG + coin tosses

There exists a coupling so that the following correspondences hold...

Brownian half-plane excursion
Branching structure in the associated CRT
Order defined by chronology
Displacements of sub-excursions above heights
Durations of sub-excursions above heights
Sign of subexcursion
Height

Open Questions

- To what extent does the Brownian excursion encode the whole CLE decorated LQG picture?
- CLE₄ of Sheffield, Wu, Watson.
- Can one obtain any rigorous scaling limit results?

• Is there a link between our "distance" from the boundary (encoded by height) and the conformally invariant metric on

Thanks!