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Motivation

We want to study (chordal) Loewner evolution with driving function
B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with a given
covariance matrix Σ.

Natural generalization of SLE.

Lots of interesting properties not seen for real parameter values.

Deep connections between SLE and Liouville quantum gravity (LQG),
with lots of applications.

Extensions of LQG to complex parameter values:

Area measure: complex Gaussian multiplicative chaos e(α+iβ)h dx dy
(Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).
Metric: “supercritical LQG metric”, corresponds to γ ∈ C, |γ| = 2
(Ding, Gwynne, Holden, Pfeffer, Remy, etc.).

Can we extend SLE/LQG relationships to complex parameter values?
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Loewner evolution with complex driving function

Outline

1 Loewner evolution with complex driving function

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

4 Open problems
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Loewner evolution with complex driving function

Loewner evolution with complex driving function

Wt

Lt

Rt

gt

(chordal) Loewner equation with
continuous driving function
W : [0,∞) → C:

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z ,

for each z ∈ C.

Defined up to time Tz ∈ [0,∞].

Left hull Lt := {z : Tz ≤ t}.
gt : C \ Lt → C \ Rt conformally.

Left hulls {Lt} are increasing, right hulls {Rt} are not.

C \ Lt and C \ Rt might not be connected.

Previously studied by Rohde-Schramm (unpublished), Tran (2017),
Lind-Utley (2021).
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Loewner evolution with complex driving function

Relationship to real Loewner evolution

Wt

gt

gt

Imaginary driving function

Real driving function

Wt

If W : [0,∞) → R, then Lt is symmetric
across the real axis and Rt ⊂ R (forward
Loewner evolution).

If W : [0,∞) → iR, then Lt ⊂ iR and Rt

is symmetric across the imaginary axis
(reverse Loewner evolution rotated by
π/2).

“Interpolation between forward and
reverse Loewner evolution”.

Ewain Gwynne (Chicago) Complex SLE 5 / 25
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Loewner evolution driven by complex Brownian motion

Outline

1 Loewner evolution with complex driving function

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

4 Open problems

Ewain Gwynne (Chicago) Complex SLE 6 / 25



Loewner evolution driven by complex Brownian motion

Loewner evolution driven by complex Brownian motion

Let Wt = B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with

covariance matrix Σ =

(
a c
c b

)
. Note that c ∈ [−

√
ab,

√
ab].

SLEΣ is the complex Loewner evolution driven by Wt , i.e.,

gt : C \ Lt → C \ Rt .

b = 0 corresponds to forward SLEa.

a = 0 corresponds to reverse SLEb.

c =
√
ab corresponds to a complex multiple of real BM.

c = 0 corresponds to independent real and imaginary parts (most
solvable case).

Ewain Gwynne (Chicago) Complex SLE 7 / 25



Loewner evolution driven by complex Brownian motion

Loewner evolution driven by complex Brownian motion

Let Wt = B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with

covariance matrix Σ =

(
a c
c b

)
. Note that c ∈ [−

√
ab,

√
ab].

SLEΣ is the complex Loewner evolution driven by Wt , i.e.,

gt : C \ Lt → C \ Rt .

b = 0 corresponds to forward SLEa.

a = 0 corresponds to reverse SLEb.

c =
√
ab corresponds to a complex multiple of real BM.

c = 0 corresponds to independent real and imaginary parts (most
solvable case).

Ewain Gwynne (Chicago) Complex SLE 7 / 25



Loewner evolution driven by complex Brownian motion

Loewner evolution driven by complex Brownian motion

Let Wt = B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with

covariance matrix Σ =

(
a c
c b

)
. Note that c ∈ [−

√
ab,

√
ab].

SLEΣ is the complex Loewner evolution driven by Wt , i.e.,

gt : C \ Lt → C \ Rt .

b = 0 corresponds to forward SLEa.

a = 0 corresponds to reverse SLEb.

c =
√
ab corresponds to a complex multiple of real BM.

c = 0 corresponds to independent real and imaginary parts (most
solvable case).

Ewain Gwynne (Chicago) Complex SLE 7 / 25



Loewner evolution driven by complex Brownian motion

Loewner evolution driven by complex Brownian motion

Let Wt = B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with

covariance matrix Σ =

(
a c
c b

)
. Note that c ∈ [−

√
ab,

√
ab].

SLEΣ is the complex Loewner evolution driven by Wt , i.e.,

gt : C \ Lt → C \ Rt .

b = 0 corresponds to forward SLEa.

a = 0 corresponds to reverse SLEb.

c =
√
ab corresponds to a complex multiple of real BM.

c = 0 corresponds to independent real and imaginary parts (most
solvable case).

Ewain Gwynne (Chicago) Complex SLE 7 / 25



Loewner evolution driven by complex Brownian motion

Loewner evolution driven by complex Brownian motion

Let Wt = B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with

covariance matrix Σ =

(
a c
c b

)
. Note that c ∈ [−

√
ab,

√
ab].

SLEΣ is the complex Loewner evolution driven by Wt , i.e.,

gt : C \ Lt → C \ Rt .

b = 0 corresponds to forward SLEa.

a = 0 corresponds to reverse SLEb.

c =
√
ab corresponds to a complex multiple of real BM.

c = 0 corresponds to independent real and imaginary parts (most
solvable case).

Ewain Gwynne (Chicago) Complex SLE 7 / 25



Loewner evolution driven by complex Brownian motion

Loewner evolution driven by complex Brownian motion

Let Wt = B1
t + iB2

t , where (B1,B2) is a 2d Brownian motion with

covariance matrix Σ =

(
a c
c b

)
. Note that c ∈ [−

√
ab,

√
ab].

SLEΣ is the complex Loewner evolution driven by Wt , i.e.,

gt : C \ Lt → C \ Rt .

b = 0 corresponds to forward SLEa.

a = 0 corresponds to reverse SLEb.

c =
√
ab corresponds to a complex multiple of real BM.

c = 0 corresponds to independent real and imaginary parts (most
solvable case).

Ewain Gwynne (Chicago) Complex SLE 7 / 25



Loewner evolution driven by complex Brownian motion

Forward/reverse duality

Wt

Lt

Rt

gt

Recall that time t hull for forward SLE
d
=

time t hull for reverse SLE.

Lemma: if Rt is the right hull driven by
W , then Rt = i L̃t , where W̃s = iWt−s .

Rt for SLEΣ has the same law as i L̃t for
SLE

Σ̃
where

Σ̃ =

(
b −c
−c a

)
.

So, it suffices to consider left hulls.

Ewain Gwynne (Chicago) Complex SLE 8 / 25
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Loewner evolution driven by complex Brownian motion

Differences with real SLE

Lt

Rt

gt

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that a, b ̸= 0. For
each z ∈ C, a.s. z is disconnected from ∞
by (Lt)t≥0 at a time strictly before the
smallest t for which z ∈ Lt .

C \ Lt and C \ Rt are not connected.

Recall that SLE for real κ is generated by a curve, i.e., Lt = set
disconnected from ∞ by η([0, t]) for some curve η.

Not well-posed for SLEΣ.

We expect that there is no “reasonable” way to associate a curve
with SLEΣ.

Ewain Gwynne (Chicago) Complex SLE 9 / 25
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Loewner evolution driven by complex Brownian motion

Simulation for a = 2, b = 2, c = 0

ft

Simulation by M. Park.
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Loewner evolution driven by complex Brownian motion

Phases

Disconnect

Swallow

Hit

Let z ∈ C and let Tz = inf{t : z ∈ Lt}. We say
that z is

Disconnected if Tz = ∞ but z is disconnected
from ∞ by Lt for some t (does not occur for real
SLE).
Swallowed if Tz < ∞ and
limt→T−

z
dist(z , Lt) > 0 (SLEκ for κ ∈ (4, 8)).

Hit if Tz < ∞ and limt→T−
z
dist(z , Lt) = 0

(SLEκ for κ ≥ 8).

Theorem (Gwynne-Pfeffer)

For each Σ, exactly one of the following holds.

For each z ∈ C, a.s. z is disconnected (thin
phase).

For each z ∈ C, a.s. z is swallowed.

For each z ∈ C, a.s. z is hit.

Ewain Gwynne (Chicago) Complex SLE 11 / 25
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Loewner evolution driven by complex Brownian motion
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Loewner evolution driven by complex Brownian motion

Simulation for a = 4, b = 2, c =
√
8 (thin phase)

ft
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Loewner evolution driven by complex Brownian motion

Simulation for a = 7, b = 2, c = 0 (swallowing phase)

ft

Ewain Gwynne (Chicago) Complex SLE 13 / 25



Loewner evolution driven by complex Brownian motion

Simulation for a = 16, b = 3, c = 0 (hitting phase)

ft
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Loewner evolution driven by complex Brownian motion

Phases

∃ explicit functions fΣ, gΣ s.t. the following is true. Let

I1 =

∫ 2π

0
fΣ(x) dx , I2 :=

∫ 2π

0
gΣ(x) dx .

Thin phase ⇔ I1 ≥ 0.
Swallowing phase ⇔ I1 < 0, I2 > 0.
Hitting phase ⇔ I1 < 0, I2 < 0.
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a
−
b =

4

a
−
b =

8

4 8

For c = 0 (real and imaginary
parts are independent), the
phase boundaries are lines.

Extends phases of SLEa for
a > 0.

When c ̸= 0, only have
numerical approximations of
phase boundaries.
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Loewner evolution driven by complex Brownian motion

Features of the proof

Let ft(z) = gt(z)− B1
t − iB2

t .

“Complex Bessel process”: dft(z) =
2

ft(z)
dt − dB1

t − idB2
t .

Markov property: For each t, s > 0, ft+s = ft,t+s ◦ ft , where
ft,t+s

d
= fs and ft,t+s is independent from ft .

Lt

Rt

ft

Rt,t+s

ft,t+sLt,t+s

Rt+s

Lt+s

ft+s

Proofs based on stochastic calculus + Markov property + complex
analysis estimates.

Very different from proofs for SLEκ, since no reference domain or tip.
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Liouville quantum gravity with complex parameters

Outline

1 Loewner evolution with complex driving function

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

4 Open problems
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Liouville quantum gravity with complex parameters

Liouville quantum gravity (LQG)

Let h be the Gaussian free field on a domain U ⊂ C.

For γ ∈ (0, 2], LQG is the study of the random Riemannian metric
tensor

eγh(x+iy)(dx2 + dy2).

Let {hϵ}ϵ>0 be a continuous mollification of h with
Var hϵ(z) ∼ log ϵ−1.
LQG area measure: limϵ→0 ϵ

γ2/2eγhϵ(x+iy) dx dy (Kahane,
Rhodes-Vargas, Duplantier-Sheffield, etc.).
LQG metric: let dγ > 2 be the “fractal dimension of LQG” and let

Dϵ
h(z ,w) = inf

P:z→w

∫ 1

0
e(γ/dγ)hϵ(P(t))|P ′(t)| dt,

where the inf is over piecewise C 1 paths from z to w .
Dh = limϵ→0 a

−1
ϵ Dϵ

h (Ding-Dunlap-Dubédat-Falconet, Gwynne-Miller).
Euclidean topology, but very different geometry.
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h (Ding-Dunlap-Dubédat-Falconet, Gwynne-Miller).
Euclidean topology, but very different geometry.

Ewain Gwynne (Chicago) Complex SLE 18 / 25



Liouville quantum gravity with complex parameters

Liouville quantum gravity (LQG)

Let h be the Gaussian free field on a domain U ⊂ C.
For γ ∈ (0, 2], LQG is the study of the random Riemannian metric
tensor

eγh(x+iy)(dx2 + dy2).

Let {hϵ}ϵ>0 be a continuous mollification of h with
Var hϵ(z) ∼ log ϵ−1.
LQG area measure: limϵ→0 ϵ

γ2/2eγhϵ(x+iy) dx dy (Kahane,
Rhodes-Vargas, Duplantier-Sheffield, etc.).
LQG metric: let dγ > 2 be the “fractal dimension of LQG” and let

Dϵ
h(z ,w) = inf

P:z→w

∫ 1

0
e(γ/dγ)hϵ(P(t))|P ′(t)| dt,

where the inf is over piecewise C 1 paths from z to w .
Dh = limϵ→0 a

−1
ϵ Dϵ
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Liouville quantum gravity with complex parameters

Complex Gaussian multiplicative chaos

Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et.
al.):

lim
ϵ→0

ϵ(α+iβ)2/2e(α+iβ)hϵ(z) d2z or lim
ϵ→0

ϵα
2/2−β2/2eαhϵ(z)+iβh̃ϵ(z) d2z .

Complex
GMC is
non-trivial

2

√
2

α

β

Non-trivial limit when either α2 + β2 < 2
or α ∈ [1, 2] and α+ β ≤ 2.

Complex distribution (not a measure).

For other values of α, β, can re-scale
differently to get a white noise.
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Liouville quantum gravity with complex parameters

Supercritical LQG metric

For γ ∈ (0, 2], we have γ/dγ ≤ 2/d2 ≈ 0.41.

For ξ > 2/d2, can still define

Dϵ
h(z ,w) = inf

P:z→w

∫ 1

0
eξhϵ(P(t))|P ′(t)| dt,

where the inf is over piecewise C 1 paths from z to w .

Dh = limϵ→0 a
−1
ϵ Dϵ

h exists and is a metric on C, except that
Dh(z ,w) = ∞ for some z ,w ∈ C (Ding-Gwynne).

LQG coordinate change for γ ∈ (0, 2]: ϕ∗h = h ◦ ϕ+ Q log |ϕ′| for
ϕ : U → V conformal, Q = 2/γ + γ/2 > 2.

Supercritical metric satisfies LQG coordinate change with
Q = Q(ξ) ∈ (0, 2).

If Q = 2/γ + γ/2, then γ ∈ C with |γ| = 2.

“γ is complex, but γ/dγ is real”.
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Liouville quantum gravity with complex parameters

Parameter range for “complex LQG”

Complex
GMC is
non-trivial

2

√
2

α

β

Supercritical
LQG metric

2
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Liouville quantum gravity with complex parameters

Singular points

Let Dh be the limit of LFPP for ξ > 2/d2.

z ∈ C is a singular point if Dh(z ,w) = ∞ for all w ∈ C \ {z}.
“Infinite spikes”.

For each fixed z ∈ C, a.s. z is not a singular point.

If z ,w ∈ C are non-singular points, then
Dh(z ,w) < ∞.

Paths between typical points avoid the singular
points.

Set of singular points is uncountable and Euclidean-dense.

Dh does not induce the Euclidean topology.
Dh-metric ball has positive Lebesgue measure but empty Euclidean
interior.

For ξ = 2/d2, no singular points, Euclidean topology.
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Liouville quantum gravity with complex parameters

Simulation for ξ = 1.6
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Open problems

Outline

1 Loewner evolution with complex driving function

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

4 Open problems
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Open problems

Open problems

Relationship to “LQG with complex parameter
values”:

Complex Gaussian multiplicative chaos.
Supercritical LQG metric.

Relationship to GFF, Brownian loop soups, SLE
with real κ, etc.?

Is there a natural discrete model which converges
to SLEΣ?

Transience?

Hausdorff dimension of the SLEΣ hull, its outer
boundary, etc.

Can we describe the outer boundary of SLEΣ?
(Outer boundary of SLEκ is SLE16/κ).
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