Ewain Gwynne (based on joint work with Josh Pfeffer, simulations by Minjae Park)

University of Chicago

• We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:
 - Area measure: complex Gaussian multiplicative chaos e^{(α+iβ)h} dx dy (Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:
 - Area measure: complex Gaussian multiplicative chaos $e^{(\alpha+i\beta)h} dx dy$ (Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).
 - Metric: "supercritical LQG metric", corresponds to $\gamma \in \mathbb{C}$, $|\gamma| = 2$ (Ding, Gwynne, Holden, Pfeffer, Remy, etc.).

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ .
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:
 - Area measure: complex Gaussian multiplicative chaos e^{(α+iβ)h} dx dy (Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).
 - Metric: "supercritical LQG metric", corresponds to $\gamma \in \mathbb{C}$, $|\gamma| = 2$ (Ding, Gwynne, Holden, Pfeffer, Remy, etc.).
- Can we extend SLE/LQG relationships to complex parameter values?

Outline

1 Loewner evolution with complex driving function

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

4 Open problems

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

• Defined up to time $T_z \in [0, \infty]$.

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{z : T_z \le t\}.$

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{z : T_z \le t\}.$

• $g_t : \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{z : T_z \le t\}.$

• $g_t : \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.

• Left hulls $\{L_t\}$ are increasing, **right hulls** $\{R_t\}$ are not.

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{z : T_z \le t\}.$
- $g_t : \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.
- Left hulls $\{L_t\}$ are increasing, **right hulls** $\{R_t\}$ are not.
- $\mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ might not be connected.

(chordal) Loewner equation with continuous driving function
 W : [0,∞) → C:

$$\partial_t g_t(z) = rac{2}{g_t(z) - W_t}, \ g_0(z) = z,$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{z : T_z \le t\}.$
- $g_t : \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.
- Left hulls $\{L_t\}$ are increasing, **right hulls** $\{R_t\}$ are not.
- $\mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ might not be connected.
- Previously studied by Rohde-Schramm (unpublished), Tran (2017), Lind-Utley (2021).

Ewain Gwynne (Chicago)

 g_t

Complex SLE

Relationship to real Loewner evolution

Relationship to real Loewner evolution

- If W : [0,∞) → ℝ, then L_t is symmetric across the real axis and R_t ⊂ ℝ (forward Loewner evolution).
- If W : [0,∞) → iℝ, then L_t ⊂ iℝ and R_t is symmetric across the imaginary axis (reverse Loewner evolution rotated by π/2).

Relationship to real Loewner evolution

- If W : [0,∞) → ℝ, then L_t is symmetric across the real axis and R_t ⊂ ℝ (forward Loewner evolution).
- If W : [0,∞) → iℝ, then L_t ⊂ iℝ and R_t is symmetric across the imaginary axis (reverse Loewner evolution rotated by π/2).
- "Interpolation between forward and
 - reverse Loewner evolution".

Outline

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

Open problems

• Let
$$W_t = B_t^1 + iB_t^2$$
, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.
- SLE_{Σ} is the complex Loewner evolution driven by W_t , i.e.,

$$g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t.$$

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.
- SLE_{Σ} is the complex Loewner evolution driven by W_t , i.e.,

$$g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t.$$

• b = 0 corresponds to forward SLE_a.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.
- SLE_Σ is the complex Loewner evolution driven by W_t, i.e.,

$$g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t.$$

- b = 0 corresponds to forward SLE_a.
- a = 0 corresponds to reverse SLE_b.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.
- SLE_Σ is the complex Loewner evolution driven by W_t, i.e.,

$$g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t.$$

- *b* = 0 corresponds to forward SLE_{*a*}.
- a = 0 corresponds to reverse SLE_b.
- $c = \sqrt{ab}$ corresponds to a complex multiple of real BM.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.
- SLE_Σ is the complex Loewner evolution driven by W_t, i.e.,

$$g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t.$$

- b = 0 corresponds to forward SLE_a.
- a = 0 corresponds to reverse SLE_b.
- $c = \sqrt{ab}$ corresponds to a complex multiple of real BM.
- c = 0 corresponds to independent real and imaginary parts (most solvable case).

 Recall that time t hull for forward SLE = time t hull for reverse SLE.

- Recall that time t hull for forward SLE = time t hull for reverse SLE.
- **Lemma:** if R_t is the right hull driven by W, then $R_t = i\widetilde{L}_t$, where $\widetilde{W}_s = iW_{t-s}$.

- Recall that time t hull for forward SLE = time t hull for reverse SLE.
- **Lemma:** if R_t is the right hull driven by W, then $R_t = i\widetilde{L}_t$, where $\widetilde{W}_s = iW_{t-s}$.
- R_t for SLE_{Σ} has the same law as $i\tilde{L}_t$ for SLE_{$\tilde{\Sigma}$} where

$$\widetilde{\Sigma} = \left(egin{array}{cc} b & -c \ -c & a \end{array}
ight).$$

- Recall that time t hull for forward SLE = time t hull for reverse SLE.
- **Lemma:** if R_t is the right hull driven by W, then $R_t = i\widetilde{L}_t$, where $\widetilde{W}_s = iW_{t-s}$.
- R_t for SLE_{Σ} has the same law as $i\tilde{L}_t$ for SLE_{$\tilde{\Sigma}$} where

$$\widetilde{\Sigma} = egin{pmatrix} b & -c \ -c & a \end{pmatrix}.$$

• So, it suffices to consider left hulls.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that $a, b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that $a, b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

• $\mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that $a, b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

• $\mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.

Recall that SLE for real κ is generated by a curve, i.e., L_t = set disconnected from ∞ by η([0, t]) for some curve η.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that $a, b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

- $\mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.
- Recall that SLE for real κ is generated by a curve, i.e., L_t = set disconnected from ∞ by η([0, t]) for some curve η.
- Not well-posed for SLE_{Σ} .

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that $a, b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

- $\mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.
- Recall that SLE for real κ is generated by a curve, i.e., L_t = set disconnected from ∞ by η([0, t]) for some curve η.
- Not well-posed for SLE_{Σ} .
- We expect that there is no "reasonable" way to associate a curve with $\mathsf{SLE}_\Sigma.$
Loewner evolution driven by complex Brownian motion

Simulation for a = 2, b = 2, c = 0

Simulation by M. Park.

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is
 - **Disconnected** if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).

 Hit

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- **Disconnected** if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).
- Swallowed if $T_z < \infty$ and $\lim_{t \to T_z^-} \operatorname{dist}(z, L_t) > 0$ (SLE_{κ} for $\kappa \in (4, 8)$).

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- **Disconnected** if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).
- Swallowed if $T_z < \infty$ and $\lim_{t \to T_z^-} \operatorname{dist}(z, L_t) > 0$ (SLE_{κ} for $\kappa \in (4, 8)$).
- **Hit** if $\hat{T}_z < \infty$ and $\lim_{t \to T_z^-} \text{dist}(z, L_t) = 0$ (SLE_{κ} for $\kappa \ge 8$).

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- **Disconnected** if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).
- Swallowed if $T_z < \infty$ and $\lim_{t \to T_z^-} \operatorname{dist}(z, L_t) > 0$ (SLE_{κ} for $\kappa \in (4, 8)$).
- Hit if $\hat{T}_z < \infty$ and $\lim_{t \to T_z^-} \text{dist}(z, L_t) = 0$ (SLE_{κ} for $\kappa \ge 8$).

Theorem (Gwynne-Pfeffer)

For each Σ , exactly one of the following holds.

- For each z ∈ ℂ, a.s. z is disconnected (thin phase).
- For each $z \in \mathbb{C}$, a.s. z is swallowed.
- For each $z \in \mathbb{C}$, a.s. z is hit.

Ewain Gwynne (Chicago)

Complex SLE

Loewner evolution driven by complex Brownian motion

Simulation for $a = 4, b = 2, c = \sqrt{8}$ (thin phase)

Simulation for a = 7, b = 2, c = 0 (swallowing phase)

Loewner evolution driven by complex Brownian motion

Simulation for a = 16, b = 3, c = 0 (hitting phase)

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

• \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

• Thin phase $\Leftrightarrow I_1 \ge 0$.

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

- Thin phase $\Leftrightarrow I_1 \ge 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0.$

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

- Thin phase $\Leftrightarrow I_1 \ge 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0.$
- Hitting phase \Leftrightarrow $I_1 < 0$, $I_2 < 0$.

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

- Thin phase $\Leftrightarrow I_1 \ge 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0.$
- Hitting phase \Leftrightarrow $I_1 < 0$, $I_2 < 0$.

• \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

Complex SLE

- Thin phase $\Leftrightarrow I_1 \ge 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0.$
- Hitting phase \Leftrightarrow $I_1 < 0$, $I_2 < 0$.

• For *c* = 0 (real and imaginary parts are independent), the phase boundaries are lines.

15 / 25

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

- Thin phase $\Leftrightarrow I_1 \ge 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0.$
- Hitting phase $\Leftrightarrow I_1 < 0, I_2 < 0.$

- For *c* = 0 (real and imaginary parts are independent), the phase boundaries are lines.
- Extends phases of SLE_a for a > 0.

• \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$I_1 = \int_0^{2\pi} f_{\Sigma}(x) \, dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) \, dx.$$

Complex SLE

- Thin phase $\Leftrightarrow I_1 \ge 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0.$
- Hitting phase \Leftrightarrow $I_1 < 0$, $I_2 < 0$.

- For *c* = 0 (real and imaginary parts are independent), the phase boundaries are lines.
- Extends phases of SLE_a for a > 0.
- When c ≠ 0, only have numerical approximations of phase boundaries.

• Let
$$f_t(z) = g_t(z) - B_t^1 - iB_t^2$$
.

- Let $f_t(z) = g_t(z) B_t^1 iB_t^2$.
- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.

• Let
$$f_t(z) = g_t(z) - B_t^1 - iB_t^2$$
.

- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.
- Markov property: For each t, s > 0, $f_{t+s} = f_{t,t+s} \circ f_t$, where $f_{t,t+s} \stackrel{d}{=} f_s$ and $f_{t,t+s}$ is independent from f_t .

• Let
$$f_t(z) = g_t(z) - B_t^1 - iB_t^2$$
.

- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.
- Markov property: For each t, s > 0, $f_{t+s} = f_{t,t+s} \circ f_t$, where

 $f_{t,t+s} \stackrel{d}{=} f_s$ and $f_{t,t+s}$ is independent from f_t .

 Proofs based on stochastic calculus + Markov property + complex analysis estimates.

• Let
$$f_t(z) = g_t(z) - B_t^1 - iB_t^2$$
.

- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.
- Markov property: For each t, s > 0, $f_{t+s} = f_{t,t+s} \circ f_t$, where

 $f_{t,t+s} \stackrel{d}{=} f_s$ and $f_{t,t+s}$ is independent from f_t .

- Proofs based on stochastic calculus + Markov property + complex analysis estimates.
- Very different from proofs for SLE_{κ} , since no reference domain or tip.

Ewain Gwynne (Chicago)

Complex SLE

Outline

2 Loewner evolution driven by complex Brownian motion

3 Liouville quantum gravity with complex parameters

Open problems

• Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.

- Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$e^{\gamma h(x+iy)}(dx^2+dy^2).$$

- Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$e^{\gamma h(x+iy)}(dx^2+dy^2).$$

• Let $\{h_{\epsilon}\}_{\epsilon>0}$ be a continuous mollification of h with Var $h_{\epsilon}(z) \sim \log \epsilon^{-1}$.

- Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For γ ∈ (0,2], LQG is the study of the random Riemannian metric tensor

$$e^{\gamma h(x+iy)}(dx^2+dy^2).$$

- Let $\{h_{\epsilon}\}_{\epsilon>0}$ be a continuous mollification of h with Var $h_{\epsilon}(z) \sim \log \epsilon^{-1}$.
- LQG area measure: $\lim_{\epsilon \to 0} e^{\gamma^2/2} e^{\gamma h_{\epsilon}(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).

- Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$e^{\gamma h(x+iy)}(dx^2+dy^2).$$

- Let $\{h_{\epsilon}\}_{\epsilon>0}$ be a continuous mollification of h with Var $h_{\epsilon}(z) \sim \log \epsilon^{-1}$.
- LQG area measure: $\lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_{\epsilon}(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).
- LQG metric: let $d_{\gamma}>$ 2 be the "fractal dimension of LQG" and let

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{(\gamma/d_{\gamma})h_{\epsilon}(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

- Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$e^{\gamma h(x+iy)}(dx^2+dy^2).$$

- Let $\{h_{\epsilon}\}_{\epsilon>0}$ be a continuous mollification of h with Var $h_{\epsilon}(z) \sim \log \epsilon^{-1}$.
- LQG area measure: $\lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_{\epsilon}(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).
- LQG metric: let $d_{\gamma}>$ 2 be the "fractal dimension of LQG" and let

$$D_h^\epsilon(z,w) = \inf_{P:z \to w} \int_0^1 e^{(\gamma/d_\gamma)h_\epsilon(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

• $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ (Ding-Dunlap-Dubédat-Falconet, Gwynne-Miller).

- Let *h* be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$e^{\gamma h(x+iy)}(dx^2+dy^2).$$

- Let $\{h_{\epsilon}\}_{\epsilon>0}$ be a continuous mollification of h with Var $h_{\epsilon}(z) \sim \log \epsilon^{-1}$.
- LQG area measure: $\lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_{\epsilon}(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).
- LQG metric: let $d_{\gamma}>$ 2 be the "fractal dimension of LQG" and let

$$D_h^\epsilon(z,w) = \inf_{P:z \to w} \int_0^1 e^{(\gamma/d_\gamma)h_\epsilon(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

D_h = lim_{e→0} a_e⁻¹D_h^e (Ding-Dunlap-Dubédat-Falconet, Gwynne-Miller).
Euclidean topology, but very different geometry.

Ewain Gwynne (Chicago)

Complex SLE

• Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$\lim_{\epsilon \to 0} \epsilon^{(\alpha+i\beta)^2/2} e^{(\alpha+i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2-\beta^2/2} e^{\alpha h_{\epsilon}(z)+i\beta \tilde{h}_{\epsilon}(z)} d^2 z.$$

• Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$\lim_{\epsilon \to 0} \epsilon^{(\alpha+i\beta)^2/2} e^{(\alpha+i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2-\beta^2/2} e^{\alpha h_{\epsilon}(z)+i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.$$

 Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$\lim_{\epsilon \to 0} \epsilon^{(\alpha+i\beta)^2/2} e^{(\alpha+i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2-\beta^2/2} e^{\alpha h_{\epsilon}(z)+i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.$$

 Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$\lim_{\epsilon \to 0} \epsilon^{(\alpha+i\beta)^2/2} e^{(\alpha+i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2-\beta^2/2} e^{\alpha h_{\epsilon}(z)+i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.$$

- Non-trivial limit when either $\alpha^2 + \beta^2 < 2$ or $\alpha \in [1, 2]$ and $\alpha + \beta \leq 2$.
- Complex distribution (not a measure).

 Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$\lim_{\epsilon \to 0} \epsilon^{(\alpha+i\beta)^2/2} e^{(\alpha+i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2-\beta^2/2} e^{\alpha h_{\epsilon}(z)+i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.$$

- Non-trivial limit when either $\alpha^2 + \beta^2 < 2$ or $\alpha \in [1, 2]$ and $\alpha + \beta \leq 2$.
- Complex distribution (not a measure).
- For other values of α, β, can re-scale differently to get a white noise.

Supercritical LQG metric

• For $\gamma \in (0,2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
• For $\gamma \in$ (0,2], we have $\gamma/d_{\gamma} \leq 2/d_2 \approx$ 0.41.

• For $\xi > 2/d_2$, can still define

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,$$

- For $\gamma \in (0,2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 pprox 0.41.$
- For $\xi > 2/d_2$, can still define

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

• $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ exists and is a metric on \mathbb{C} , except that $D_h(z, w) = \infty$ for some $z, w \in \mathbb{C}$ (Ding-Gwynne).

- For $\gamma \in (0,2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 pprox 0.41.$
- For $\xi > 2/d_2$, can still define

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ exists and is a metric on \mathbb{C} , except that $D_h(z, w) = \infty$ for some $z, w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0, 2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi : U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.

- For $\gamma \in (0,2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 pprox 0.41.$
- For $\xi > 2/d_2$, can still define

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ exists and is a metric on \mathbb{C} , except that $D_h(z, w) = \infty$ for some $z, w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0,2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi : U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.
- Supercritical metric satisfies LQG coordinate change with $Q = Q(\xi) \in (0, 2)$.

- For $\gamma \in (0,2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 pprox 0.41.$
- For $\xi > 2/d_2$, can still define

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ exists and is a metric on \mathbb{C} , except that $D_h(z, w) = \infty$ for some $z, w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0, 2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi : U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.
- Supercritical metric satisfies LQG coordinate change with $Q = Q(\xi) \in (0, 2)$.
- If $Q = 2/\gamma + \gamma/2$, then $\gamma \in \mathbb{C}$ with $|\gamma| = 2$.

- For $\gamma \in (0,2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 pprox 0.41.$
- For $\xi > 2/d_2$, can still define

$$D_h^{\epsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ exists and is a metric on \mathbb{C} , except that $D_h(z, w) = \infty$ for some $z, w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0,2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi : U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.
- Supercritical metric satisfies LQG coordinate change with $Q = Q(\xi) \in (0, 2)$.
- If $Q = 2/\gamma + \gamma/2$, then $\gamma \in \mathbb{C}$ with $|\gamma| = 2$.
- " γ is complex, but γ/d_{γ} is real".

Parameter range for "complex LQG"

• Let D_h be the limit of LFPP for $\xi > 2/d_2$.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

• For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If $z, w \in \mathbb{C}$ are non-singular points, then $D_h(z, w) < \infty$.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If $z, w \in \mathbb{C}$ are non-singular points, then $D_h(z, w) < \infty$.
 - Paths between typical points avoid the singular points.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If $z, w \in \mathbb{C}$ are non-singular points, then $D_h(z, w) < \infty$.
 - Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If $z, w \in \mathbb{C}$ are non-singular points, then $D_h(z, w) < \infty$.
 - Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.
 - D_h does not induce the Euclidean topology.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If $z, w \in \mathbb{C}$ are non-singular points, then $D_h(z, w) < \infty$.
 - Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.
 - D_h does not induce the Euclidean topology.
 - *D_h*-metric ball has positive Lebesgue measure but empty Euclidean interior.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
 - "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If $z, w \in \mathbb{C}$ are non-singular points, then $D_h(z, w) < \infty$.
 - Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.
 - D_h does not induce the Euclidean topology.
 - *D_h*-metric ball has positive Lebesgue measure but empty Euclidean interior.
- For $\xi = 2/d_2$, no singular points, Euclidean topology.

Simulation for $\xi = 1.6$

Outline

- Loewner evolution with complex driving function
- 2 Loewner evolution driven by complex Brownian motion
- 3 Liouville quantum gravity with complex parameters

• Relationship to "LQG with complex parameter values":

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.
 - Supercritical LQG metric.

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.
 - Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ, etc.?

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.
 - Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ, etc.?
- Is there a natural discrete model which converges to ${\sf SLE}_{\Sigma}?$

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.
 - Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ, etc.?
- Is there a natural discrete model which converges to ${\sf SLE}_{\Sigma}?$
- Transience?

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.
 - Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ, etc.?
- Is there a natural discrete model which converges to ${\sf SLE}_{\Sigma}?$
- Transience?
- Hausdorff dimension of the SLE_Σ hull, its outer boundary, etc.

- Relationship to "LQG with complex parameter values":
 - Complex Gaussian multiplicative chaos.
 - Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ, etc.?
- Is there a natural discrete model which converges to ${\sf SLE}_{\Sigma}?$
- Transience?
- Hausdorff dimension of the SLE_Σ hull, its outer boundary, etc.
- Can we describe the outer boundary of SLE_Σ? (Outer boundary of SLE_κ is SLE_{16/κ}).