Ewain Gwynne (based on joint work with Josh Pfeffer, simulations by Minjae Park)

University of Chicago

We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:
	- **Area measure:** complex Gaussian multiplicative chaos $e^{(\alpha+i\beta)h}$ dx dy (Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:
	- **Area measure:** complex Gaussian multiplicative chaos $e^{(\alpha+i\beta)h}$ dx dy (Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).
	- Metric: "supercritical LQG metric", corresponds to $\gamma \in \mathbb{C}$, $|\gamma| = 2$ (Ding, Gwynne, Holden, Pfeffer, Remy, etc.).

- We want to study (chordal) Loewner evolution with driving function $B_t^1 + i B_t^2$, where (B^1, B^2) is a 2d Brownian motion with a given covariance matrix Σ.
- Natural generalization of SLE.
- Lots of interesting properties not seen for real parameter values.
- Deep connections between SLE and Liouville quantum gravity (LQG), with lots of applications.
- Extensions of LQG to complex parameter values:
	- **Area measure:** complex Gaussian multiplicative chaos $e^{(\alpha+i\beta)h}$ dx dy (Aru, Junnila, Lacoin, Rhodes, Saksman, Vargas, Webb, etc.).
	- Metric: "supercritical LQG metric", corresponds to $\gamma \in \mathbb{C}$, $|\gamma| = 2$ (Ding, Gwynne, Holden, Pfeffer, Remy, etc.).
- Can we extend SLE/LQG relationships to complex parameter values?

Outline

1 [Loewner evolution with complex driving function](#page-9-0)

[Loewner evolution driven by complex Brownian motion](#page-20-0)

[Liouville quantum gravity with complex parameters](#page-58-0)

[Open problems](#page-91-0)

 W_t

 g_t

 R_t

Loewner evolution with complex driving function

(chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

 W_t

 g_t

 R_t

Loewner evolution with complex driving function

• (chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

• Defined up to time $T_z \in [0, \infty]$.

 W_t

 g_t

 R_t

Loewner evolution with complex driving function

• (chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{ z : T_z \leq t \}.$

• (chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

• Defined up to time $T_z \in [0, \infty]$.

• Left hull
$$
L_t := \{ z : T_z \leq t \}.
$$

 $g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.

 W_t

 g_t

 R_t

(chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{ z : T_z \leq t \}.$

 $g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.

 W_t

 g_t

 R_t

• Left hulls $\{L_t\}$ are increasing, right hulls $\{R_t\}$ are not.

(chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{ z : T_z \leq t \}.$
- $g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.

 W_t

 g_t

- Left hulls $\{L_t\}$ are increasing, right hulls $\{R_t\}$ are not.
- $\bullet \mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ might not be connected.

 R_t

(chordal) Loewner equation with continuous driving function $W : [0, \infty) \to \mathbb{C}$:

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \ g_0(z) = z,
$$

for each $z \in \mathbb{C}$.

- Defined up to time $T_z \in [0, \infty]$.
- Left hull $L_t := \{ z : T_z \leq t \}.$
- $g_t: \mathbb{C} \setminus L_t \to \mathbb{C} \setminus R_t$ conformally.

 W_t

 g_t

- Left hulls $\{L_t\}$ are increasing, right hulls $\{R_t\}$ are not.
- $\bullet \mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ might not be connected.

 R_t

Previously studied by Rohde-Schramm (unpublished), Tran (2017), Lind-Utley (2021).

Ewain Gwynne (Chicago) [Complex SLE](#page-0-0) 4/25

Relationship to real Loewner evolution

Ewain Gwynne (Chicago) [Complex SLE](#page-0-0) 5/25

Relationship to real Loewner evolution

- If $W : [0, \infty) \to \mathbb{R}$, then L_t is symmetric across the real axis and $R_t \subset \mathbb{R}$ (forward Loewner evolution).
- If $W : [0, \infty) \to i\mathbb{R}$, then $L_t \subset i\mathbb{R}$ and R_t is symmetric across the imaginary axis (reverse Loewner evolution rotated by $\pi/2$).

Relationship to real Loewner evolution

- If $W : [0, \infty) \to \mathbb{R}$, then L_t is symmetric across the real axis and $R_t \subset \mathbb{R}$ (forward Loewner evolution).
- If $W : [0, \infty) \to i\mathbb{R}$, then $L_t \subset i\mathbb{R}$ and R_t is symmetric across the imaginary axis (reverse Loewner evolution rotated by $\pi/2$).
- **•** "Interpolation between forward and
	- reverse Loewner evolution".

Outline

2 [Loewner evolution driven by complex Brownian motion](#page-20-0)

[Liouville quantum gravity with complex parameters](#page-58-0)

[Open problems](#page-91-0)

• Let
$$
W_t = B_t^1 + iB_t^2
$$
, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$. Note that $c \in [-\sqrt{ab}, \sqrt{ab}]$.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \left(\begin{array}{cc} a & c \ c & b \end{array} \right)$. Note that $c \in [-\frac{1}{2}, \frac{1}{2}]$ √ ab, √ ab].
- SLE_Σ is the complex Loewner evolution driven by \mathcal{W}_t , i.e.,

$$
g_t:\mathbb{C}\setminus L_t\to\mathbb{C}\setminus R_t.
$$

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \left(\begin{array}{cc} a & c \ c & b \end{array} \right)$. Note that $c \in [-\frac{1}{2}, \frac{1}{2}]$ √ ab, √ ab].
- SLE_Σ is the complex Loewner evolution driven by \mathcal{W}_t , i.e.,

$$
g_t:\mathbb{C}\setminus L_t\to\mathbb{C}\setminus R_t.
$$

 \bullet $b = 0$ corresponds to forward SLE_a.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \left(\begin{array}{cc} a & c \ c & b \end{array} \right)$. Note that $c \in [-\frac{1}{2}, \frac{1}{2}]$ √ ab, √ ab].
- SLE_Σ is the complex Loewner evolution driven by \mathcal{W}_t , i.e.,

$$
g_t:\mathbb{C}\setminus L_t\to\mathbb{C}\setminus R_t.
$$

- \bullet $b = 0$ corresponds to forward SLE_a.
- $a = 0$ corresponds to reverse SLE_b.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \left(\begin{array}{cc} a & c \ c & b \end{array} \right)$. Note that $c \in [-\frac{1}{2}, \frac{1}{2}]$ √ ab, √ ab].
- SLE_Σ is the complex Loewner evolution driven by \mathcal{W}_t , i.e.,

$$
g_t:\mathbb{C}\setminus L_t\to\mathbb{C}\setminus R_t.
$$

- \bullet $b = 0$ corresponds to forward SLE_a.
- $a = 0$ corresponds to reverse SLE_b. √
- $c =$ ab corresponds to a complex multiple of real BM.

- Let $W_t = B_t^1 + iB_t^2$, where (B^1, B^2) is a 2d Brownian motion with covariance matrix $\Sigma = \left(\begin{array}{cc} a & c \ c & b \end{array} \right)$. Note that $c \in [-\frac{1}{2}, \frac{1}{2}]$ √ ab, √ ab].
- SLE_Σ is the complex Loewner evolution driven by \mathcal{W}_t , i.e.,

$$
g_t:\mathbb{C}\setminus L_t\to\mathbb{C}\setminus R_t.
$$

- \bullet $b = 0$ corresponds to forward SLE_a.
- $a = 0$ corresponds to reverse SLE_b. √
- $c =$ ab corresponds to a complex multiple of real BM.
- \bullet $c = 0$ corresponds to independent real and imaginary parts (most solvable case).

• Recall that time t hull for forward SLF $\stackrel{d}{=}$ time t hull for reverse SLE.

- Recall that time t hull for forward SI $E \stackrel{d}{=}$ time t hull for reverse SLE.
	- **Lemma:** if R_t is the right hull driven by *W*, then $R_t = iL_t$, where $W_s = iW_{t-s}$.

- Recall that time t hull for forward SLE $\stackrel{a}{=}$ time t hull for reverse SLE.
	- **Lemma:** if R_t is the right hull driven by W, then $R_t = iL_t$, where $W_s = iW_{t-s}$.
- R_t for SLE_Σ has the same law as $i\tilde{L}_t$ for $SLE_{\tilde{\Sigma}}$ where

$$
\widetilde{\Sigma} = \left(\begin{array}{cc} b & -c \\ -c & a \end{array} \right).
$$

- Recall that time t hull for forward SLE $\stackrel{d}{=}$ time t hull for reverse SLE.
	- **Lemma:** if R_t is the right hull driven by W, then $R_t = iL_t$, where $W_s = iW_{t-s}$.
- R_t for SLE $_\Sigma$ has the same law as iL_t for $\mathsf{SLE}_{\widetilde{\mathsf{\Sigma}}}$ where

$$
\widetilde{\Sigma} = \left(\begin{array}{cc} b & -c \\ -c & a \end{array} \right).
$$

• So, it suffices to consider left hulls.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that a, $b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that a, $b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq0}$ at a time strictly before the smallest t for which $z \in L_t$.

 $\bullet \mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that a, $b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

 $\bullet \mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.

• Recall that SLE for real κ is generated by a curve, i.e., $L_t = \text{set}$ disconnected from ∞ by $\eta([0, t])$ for some curve η .

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that a, $b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

- $\bullet \mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.
- Recall that SLE for real κ is generated by a curve, i.e., $L_t = \text{set}$ disconnected from ∞ by $\eta([0, t])$ for some curve η .
- Not well-posed for SLE_z .

Theorem (Gwynne-Pfeffer)

Assume that Σ is such that a, $b \neq 0$. For each $z \in \mathbb{C}$, a.s. z is disconnected from ∞ by $(L_t)_{t\geq 0}$ at a time strictly before the smallest t for which $z \in L_t$.

- $\bullet \mathbb{C} \setminus L_t$ and $\mathbb{C} \setminus R_t$ are not connected.
- Recall that SLE for real κ is generated by a curve, i.e., $L_t = \text{set}$ disconnected from ∞ by $\eta([0, t])$ for some curve η .
- Not well-posed for SLE_z .
- We expect that there is no "reasonable" way to associate a curve with $SLE₅$.
Simulation for $a = 2, b = 2, c = 0$

Simulation by M. Park.

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is
	- Disconnected if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).

Hit

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- Disconnected if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).
- Swallowed if $T_z < \infty$ and $\lim_{t\to T_z^-}$ dist $(z, L_t) > 0$ (SLE_{κ} for $\kappa \in (4, 8)$).

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- Disconnected if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).
- Swallowed if $T_z < \infty$ and $\lim_{t\to T_{\leq}} dist(z,L_t) > 0$ (SLE_{κ} for $\kappa \in (4,8)$).
- **Hit** if $T_z < \infty$ and $\lim_{t \to T_z^-} \text{dist}(z, L_t) = 0$ (SLE_{κ} for $\kappa \geq 8$).

Hit

• Let $z \in \mathbb{C}$ and let $T_z = \inf\{t : z \in L_t\}$. We say that z is

- Disconnected if $T_z = \infty$ but z is disconnected from ∞ by L_t for some t (does not occur for real SLE).
- Swallowed if $T_z < \infty$ and $\lim_{t\to T_{\overline{z}}}$ dist $(z,L_t)>0$ (SLE_{κ} for $\kappa\in(4,8)$).
- Hit if $T_z < \infty$ and $\lim_{t \to T_z^-} \text{dist}(z, L_t) = 0$ (SLE_{κ} for $\kappa \geq 8$).

Theorem (Gwynne-Pfeffer)

For each $Σ$, exactly one of the following holds.

- For each $z \in \mathbb{C}$, a.s. z is disconnected (thin phase).
- For each $z \in \mathbb{C}$, a.s. z is swallowed.
- For each $z \in \mathbb{C}$, a.s. z is hit.

Ewain Gwynne (Chicago) [Complex SLE](#page-0-0) 11 / 25

Simulation for $a = 4, b = 2, c =$ √ 8 (thin phase)

Simulation for $a = 7$, $b = 2$, $c = 0$ (swallowing phase)

Simulation for $a = 16$, $b = 3$, $c = 0$ (hitting phase)

• \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

• \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

• Thin phase $\Leftrightarrow I_1 \geq 0$.

• \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

- Thin phase $\Leftrightarrow I_1 > 0$.
- Swallowing phase \Leftrightarrow $I_1 < 0$, $I_2 > 0$.

 $\bullet \exists$ explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

- Thin phase $\Leftrightarrow I_1 > 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0, I_2 > 0$.
- Hitting phase \Leftrightarrow $I_1 < 0$, $I_2 < 0$.

 $\bullet \exists$ explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

- Thin phase $\Leftrightarrow I_1 > 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0$, $I_2 > 0$.
- \bullet Hitting phase \Leftrightarrow $I_1 < 0$, $I_2 < 0$.

 \bullet \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

- Thin phase $\Leftrightarrow I_1 > 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0$, $I_2 > 0$.
- Hitting phase $\Leftrightarrow I_1 < 0$, $I_2 < 0$.

• For $c = 0$ (real and imaginary parts are independent), the phase boundaries are lines.

 \bullet \exists explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

- Thin phase $\Leftrightarrow I_1 > 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0$, $I_2 > 0$.
- Hitting phase $\Leftrightarrow I_1 < 0$, $I_2 < 0$.

- For $c = 0$ (real and imaginary parts are independent), the phase boundaries are lines.
- \bullet Extends phases of SLE_a for $a > 0$.

 $\bullet \exists$ explicit functions f_{Σ} , g_{Σ} s.t. the following is true. Let

$$
I_1 = \int_0^{2\pi} f_{\Sigma}(x) dx, \quad I_2 := \int_0^{2\pi} g_{\Sigma}(x) dx.
$$

- Thin phase $\Leftrightarrow I_1 > 0$.
- Swallowing phase $\Leftrightarrow I_1 < 0$, $I_2 > 0$.
- Hitting phase $\Leftrightarrow I_1 < 0$, $I_2 < 0$.

- For $c = 0$ (real and imaginary parts are independent), the phase boundaries are lines.
- Extends phases of SLE₂ for $a > 0$.
- When $c \neq 0$, only have numerical approximations of phase boundaries.

• Let
$$
f_t(z) = g_t(z) - B_t^1 - iB_t^2
$$
.

- Let $f_t(z) = g_t(z) B_t^1 iB_t^2$.
- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.

• Let
$$
f_t(z) = g_t(z) - B_t^1 - iB_t^2
$$
.

- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.
- **Markov property:** For each $t, s > 0$, $f_{t+s} = f_{t,t+s} \circ f_t$, where $f_{t,t+s} \stackrel{d}{=} f_s$ and $f_{t,t+s}$ is independent from f_t .

• Let
$$
f_t(z) = g_t(z) - B_t^1 - iB_t^2
$$
.

- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.
- **Markov property:** For each $t, s > 0$, $f_{t+s} = f_{t,t+s} \circ f_t$, where

 $f_{t,t+s} \stackrel{d}{=} f_s$ and $f_{t,t+s}$ is independent from f_t .

• Proofs based on stochastic calculus $+$ Markov property $+$ complex analysis estimates.

• Let
$$
f_t(z) = g_t(z) - B_t^1 - iB_t^2
$$
.

- "Complex Bessel process": $df_t(z) = \frac{2}{f_t(z)} dt dB_t^1 idB_t^2$.
- **Markov property:** For each $t, s > 0$, $f_{t+s} = f_{t,t+s} \circ f_t$, where

 $f_{t,t+s} \stackrel{d}{=} f_s$ and $f_{t,t+s}$ is independent from f_t .

- Proofs based on stochastic calculus $+$ Markov property $+$ complex analysis estimates.
- \bullet Very different from proofs for SLE_{κ} , since no reference domain or tip.

Ewain Gwynne (Chicago) [Complex SLE](#page-0-0) 16 / 25

Outline

[Loewner evolution driven by complex Brownian motion](#page-20-0)

3 [Liouville quantum gravity with complex parameters](#page-58-0)

[Open problems](#page-91-0)

• Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.

- Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$
e^{\gamma h(x+iy)}(dx^2+dy^2).
$$

- Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$
e^{\gamma h(x+iy)}(dx^2+dy^2).
$$

• Let ${h_{\epsilon}}_{\epsilon>0}$ be a continuous mollification of h with $\mathsf{Var}\,h_\epsilon\!\left(\mathsf{z}\right) \sim \mathsf{log}\,\epsilon^{-1}.$

- Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$
e^{\gamma h(x+iy)}(dx^2+dy^2).
$$

- Let ${h_{\epsilon}}_{\epsilon>0}$ be a continuous mollification of h with $\mathsf{Var}\,h_\epsilon\!\left(\mathsf{z}\right) \sim \mathsf{log}\,\epsilon^{-1}.$
- **LQG** area measure: $\lim_{\epsilon\to 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).

- Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$
e^{\gamma h(x+iy)}(dx^2+dy^2).
$$

- Let ${h_{\epsilon}}_{\epsilon>0}$ be a continuous mollification of h with $\mathsf{Var}\,h_\epsilon\!\left(\mathsf{z}\right) \sim \mathsf{log}\,\epsilon^{-1}.$
- **LQG** area measure: $\lim_{\epsilon\to 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).
- LQG metric: let $d_{\gamma} > 2$ be the "fractal dimension of LQG" and let

$$
D_h^{\epsilon}(z,w)=\inf_{P:z\to w}\int_0^1e^{(\gamma/d_{\gamma})h_{\epsilon}(P(t))}|P'(t)|\,dt,
$$

where the inf is over piecewise C^1 paths from z to $w.$

- Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$
e^{\gamma h(x+iy)}(dx^2+dy^2).
$$

- Let ${h_{\epsilon}}_{\epsilon>0}$ be a continuous mollification of h with $\mathsf{Var}\,h_\epsilon\!\left(\mathsf{z}\right) \sim \mathsf{log}\,\epsilon^{-1}.$
- **LQG** area measure: $\lim_{\epsilon\to 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).
- LQG metric: let $d_{\gamma} > 2$ be the "fractal dimension of LQG" and let

$$
D_h^{\epsilon}(z,w)=\inf_{P:z\to w}\int_0^1e^{(\gamma/d_{\gamma})h_{\epsilon}(P(t))}|P'(t)|\,dt,
$$

where the inf is over piecewise C^1 paths from z to $w.$

 $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ (Ding-Dunlap-Dubédat-Falconet, Gwynne-Miller).

- Let h be the Gaussian free field on a domain $U \subset \mathbb{C}$.
- For $\gamma \in (0, 2]$, LQG is the study of the random Riemannian metric tensor

$$
e^{\gamma h(x+iy)}(dx^2+dy^2).
$$

- Let ${h_{\epsilon}}_{\epsilon>0}$ be a continuous mollification of h with $\mathsf{Var}\,h_\epsilon\!\left(\mathsf{z}\right) \sim \mathsf{log}\,\epsilon^{-1}.$
- **LQG** area measure: $\lim_{\epsilon\to 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(x+iy)} dx dy$ (Kahane, Rhodes-Vargas, Duplantier-Sheffield, etc.).
- LQG metric: let $d_{\gamma} > 2$ be the "fractal dimension of LQG" and let

$$
D_h^{\epsilon}(z,w)=\inf_{P:z\to w}\int_0^1e^{(\gamma/d_{\gamma})h_{\epsilon}(P(t))}|P'(t)|\,dt,
$$

where the inf is over piecewise C^1 paths from z to $w.$

 $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_{\epsilon}^{-1} D_h^{\epsilon}$ (Ding-Dunlap-Dubédat-Falconet, Gwynne-Miller). • Euclidean topology, but very different geometry. Ewain Gwynne (Chicago) [Complex SLE](#page-0-0) 18 / 25

Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$
\lim_{\epsilon \to 0} \epsilon^{(\alpha + i\beta)^2/2} e^{(\alpha + i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2 - \beta^2/2} e^{\alpha h_{\epsilon}(z) + i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.
$$

Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$
\lim_{\epsilon \to 0} \epsilon^{(\alpha + i\beta)^2/2} e^{(\alpha + i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2 - \beta^2/2} e^{\alpha h_{\epsilon}(z) + i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.
$$

• Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$
\lim_{\epsilon \to 0} \epsilon^{(\alpha + i\beta)^2/2} e^{(\alpha + i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2 - \beta^2/2} e^{\alpha h_{\epsilon}(z) + i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.
$$

Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$
\lim_{\epsilon \to 0} \epsilon^{(\alpha + i\beta)^2/2} e^{(\alpha + i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2 - \beta^2/2} e^{\alpha h_{\epsilon}(z) + i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.
$$

- Non-trivial limit when either $\alpha^2+\beta^2 < 2$ or $\alpha \in [1,2]$ and $\alpha + \beta \leq 2$.
- Complex distribution (not a measure).

• Complex GMC (Lacoin, Rhodes, Vargas, Junnila, Saksman, Webb et. al.):

$$
\lim_{\epsilon \to 0} \epsilon^{(\alpha + i\beta)^2/2} e^{(\alpha + i\beta)h_{\epsilon}(z)} d^2 z \quad \text{or} \quad \lim_{\epsilon \to 0} \epsilon^{\alpha^2/2 - \beta^2/2} e^{\alpha h_{\epsilon}(z) + i\beta \widetilde{h}_{\epsilon}(z)} d^2 z.
$$

- Non-trivial limit when either $\alpha^2+\beta^2 < 2$ or $\alpha \in [1,2]$ and $\alpha + \beta \leq 2$.
- Complex distribution (not a measure).
- For other values of α , β , can re-scale differently to get a white noise.

Supercritical LQG metric

• For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
• For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.

• For $\xi > 2/d_2$, can still define

$$
D_h^{\epsilon}(z,w)=\inf_{P:z\to w}\int_0^1e^{\xi h_{\epsilon}(P(t))}|P'(t)|\,dt,
$$

- For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
- For $\xi > 2/d_2$, can still define

$$
D_h^{\epsilon}(z, w) = \inf_{P: z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,
$$

where the inf is over piecewise C^1 paths from $\mathsf z$ to $\mathsf w.$

 $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_\epsilon^{-1} D_h^\epsilon$ exists and is a metric on $\mathbb C$, except that $D_h(z, w) = \infty$ for some z, $w \in \mathbb{C}$ (Ding-Gwynne).

- For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
- For $\xi > 2/d_2$, can still define

$$
D_h^{\epsilon}(z, w) = \inf_{P: z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,
$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_\epsilon^{-1} D_h^\epsilon$ exists and is a metric on $\mathbb C$, except that $D_h(z, w) = \infty$ for some z, $w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0,2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi: U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.

- For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
- For $\xi > 2/d_2$, can still define

$$
D_h^{\epsilon}(z, w) = \inf_{P: z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,
$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_\epsilon^{-1} D_h^\epsilon$ exists and is a metric on $\mathbb C$, except that $D_h(z, w) = \infty$ for some z, $w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0,2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi: U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.
- Supercritical metric satisfies LQG coordinate change with $Q = Q(\xi) \in (0, 2)$.

- For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
- For $\xi > 2/d_2$, can still define

$$
D_h^{\epsilon}(z, w) = \inf_{P: z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,
$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_\epsilon^{-1} D_h^\epsilon$ exists and is a metric on $\mathbb C$, except that $D_h(z, w) = \infty$ for some z, $w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0,2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi: U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.
- Supercritical metric satisfies LQG coordinate change with $Q = Q(\xi) \in (0, 2)$.
- If $Q = 2/\gamma + \gamma/2$, then $\gamma \in \mathbb{C}$ with $|\gamma| = 2$.

- For $\gamma \in (0, 2]$, we have $\gamma/d_{\gamma} \leq 2/d_2 \approx 0.41$.
- For $\xi > 2/d_2$, can still define

$$
D_h^{\epsilon}(z, w) = \inf_{P: z \to w} \int_0^1 e^{\xi h_{\epsilon}(P(t))} |P'(t)| dt,
$$

- $D_h = \lim_{\epsilon \to 0} \mathfrak{a}_\epsilon^{-1} D_h^\epsilon$ exists and is a metric on $\mathbb C$, except that $D_h(z, w) = \infty$ for some z, $w \in \mathbb{C}$ (Ding-Gwynne).
- LQG coordinate change for $\gamma \in (0,2]$: $\phi^* h = h \circ \phi + Q \log |\phi'|$ for $\phi: U \to V$ conformal, $Q = 2/\gamma + \gamma/2 > 2$.
- Supercritical metric satisfies LQG coordinate change with $Q = Q(\xi) \in (0, 2).$
- If $Q = 2/\gamma + \gamma/2$, then $\gamma \in \mathbb{C}$ with $|\gamma| = 2$.
- " γ is complex, but γ/d_{γ} is real".

Parameter range for "complex LQG"

• Let D_h be the limit of LFPP for $\xi > 2/d_2$.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
	- "Infinite spikes".

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
	- "Infinite spikes".

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}.$
	- "Infinite spikes".

• For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}$.
	- "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If z, $w \in \mathbb{C}$ are non-singular points, then $D_h(z,w) < \infty$.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}.$
	- "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If z, $w \in \mathbb{C}$ are non-singular points, then $D_h(z,w) < \infty$.
	- Paths between typical points avoid the singular points.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}.$
	- "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If z, $w \in \mathbb{C}$ are non-singular points, then $D_h(z,w) < \infty$.
	- Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}.$
	- "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If z, $w \in \mathbb{C}$ are non-singular points, then $D_h(z,w) < \infty$.
	- Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.
	- \bullet D_h does not induce the Euclidean topology.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}.$
	- "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If z, $w \in \mathbb{C}$ are non-singular points, then $D_h(z,w) < \infty$.
	- Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.
	- \bullet D_h does not induce the Euclidean topology.
	- \bullet D_h -metric ball has positive Lebesgue measure but empty Euclidean interior.

- Let D_h be the limit of LFPP for $\xi > 2/d_2$.
- $z \in \mathbb{C}$ is a singular point if $D_h(z, w) = \infty$ for all $w \in \mathbb{C} \setminus \{z\}.$
	- "Infinite spikes".

- For each fixed $z \in \mathbb{C}$, a.s. z is not a singular point.
- If z, $w \in \mathbb{C}$ are non-singular points, then $D_h(z,w) < \infty$.
	- Paths between typical points avoid the singular points.
- Set of singular points is uncountable and Euclidean-dense.
	- \bullet D_h does not induce the Euclidean topology.
	- \bullet D_h -metric ball has positive Lebesgue measure but empty Euclidean interior.
- For $\xi = 2/d_2$, no singular points, Euclidean topology.

Simulation for $\xi = 1.6$

Outline

[Loewner evolution driven by complex Brownian motion](#page-20-0)

[Liouville quantum gravity with complex parameters](#page-58-0)

• Relationship to "LQG with complex parameter values":

- Relationship to "LQG with complex parameter values":
	- **Complex Gaussian multiplicative chaos.**

- Relationship to "LQG with complex parameter values":
	- Complex Gaussian multiplicative chaos.
	- Supercritical LQG metric.

- Relationship to "LQG with complex parameter values":
	- Complex Gaussian multiplicative chaos.
	- Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ , etc.?

- Relationship to "LQG with complex parameter values":
	- **Complex Gaussian multiplicative chaos.**
	- Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ , etc.?
- Is there a natural discrete model which converges to $SLE₅$?

- Relationship to "LQG with complex parameter values":
	- **Complex Gaussian multiplicative chaos.**
	- Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ , etc.?
- Is there a natural discrete model which converges to $SLE₅$?
- **•** Transience?

- Relationship to "LQG with complex parameter values":
	- **Complex Gaussian multiplicative chaos.**
	- Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ , etc.?
- Is there a natural discrete model which converges to SLE_z ?
- **•** Transience?
- Hausdorff dimension of the SLE_{Σ} hull, its outer boundary, etc.

- Relationship to "LQG with complex parameter values":
	- **Complex Gaussian multiplicative chaos.**
	- Supercritical LQG metric.
- Relationship to GFF, Brownian loop soups, SLE with real κ , etc.?
- Is there a natural discrete model which converges to SLE_z ?
- **•** Transience?
- Hausdorff dimension of the SLE_{Σ} hull, its outer boundary, etc.
- Can we describe the outer boundary of $SLE₅$? (Outer boundary of SLE_{κ} is $SLE_{16/\kappa}$).