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Random Riemannian Geometry and Conformal Invariance

Let a compact Riemannian manifold (M, g) of dimension n be given and
denote its conformal class by

(M, [g ]) := {(M, g ′) : g ′ = e2ϕg , ϕ ∈ C(M)}.

Consider probability measures PM,g on ”fields” (continuous functions, distribu-
tions) on M such that

PM,g′ = PM,g if g ′ = e2ϕg for some ϕ ∈ C(M)

h
(d)
= h′ ◦ Φ if Φ : M → M ′ is an isometry and h and h′ are distributed

according to PM,g and PM′,g′ , resp.

Throughout the sequel, fix M.



Random Riemannian Geometry and Conformal Invariance

Typically, Pg is a Gaussian field, informally given as

dPg (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh

with (non-existing) uniform distribution dh on C(M), normalizing constant Zg ,
and bilinear form eg .
Rigorous definition (on spaces of distributions rather than continuous
functions) via Bochner–Minlos Theorem∫

e i〈u,h〉 dPg (h) = exp
(
− 1

2
kg (u, u)

)
where kg (u, u)1/2 := suph

〈u,h〉
eg (h,h)1/2 norm dual to eg .

Conformal Invariance Requirement

eg (u, u) = ee2ϕg (u, u) ∀ϕ, ∀u.

In case n = 2, celebrated property of the Dirichlet energy

Eg (u, u) :=

∫
M

∣∣∇gu
∣∣2 d volg .
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Random Riemannian Geometry and Conformal Invariance

In case n = 2:

Gaussian Free Field [Sheffield, Miller, ...],

dPg (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh

with conformally invariant Dirichlet energy

eg (u, u) =

∫
M

∣∣∇gu
∣∣2 d volg = ee2ϕg (u, u) ∀ϕ, ∀u.

Liouville Quantum Gravity: random measure

eγh(x)− γ
2

2
Eh(x)2

d vol(x)

rigorously defined as weak limit of RHS with h replaced by regular
approximations (h`)`∈N

Links to Schramm–Loewner evolution [Lawler/Schramm/Werner, ...],
convergence to Brownian map: universal scaling limit of planar random graphs
[LeGall, Miermond]



Random Riemannian Geometry and Conformal Invariance

Gaussian fields dPg (h) = 1
Zg

exp
(
− 1

2
eg (h, h)

)
dh with conformally invariant

energy
eg (u, u) = ee2ϕg (u, u) ∀ϕ, ∀u.

In n 6= 2, Dirichlet energy no longer conformally invariant:

Ee2ϕg (u, u) =

∫
M

∣∣∇gu
∣∣2 e(n−2)ϕd volg .

In n = 4, more promising: bi-Laplacian energy

ẽg (u, u) :=

∫
M

(
∆gu

)2
d volg .

Still not conformally invariant but close to:

ẽe2ϕg (u, u) :=

∫
M

(
∆gu + 2∇gϕ∇gu

)2
d volg = ẽg (u, u) + low order terms.

Conformally invariant energy

eg (u, u) = c

∫
M

(
−∆gu

)n/2
d volg + low order terms

Paneitz (n = 4), Graham/Jenne/Mason/Sparling (even n)



Paneitz Energy on 4-Manifolds

From now on: (M, g) is 4-dimensional smooth, compact, connected
Riemannian manifold without boundary

Def. Paneitz Energy, bilinear form on L2(M, volg ) with domain H2(M)

eg (u, u) =
1

8π2

∫
M

[
(∆gu)2 − 2Ricg (∇gu,∇gu) +

2

3
scalg ·|∇gu|2

]
d volg

for every 4-dimensional Einstein manifold with Ricg = k g , k ∈ R,

eg (u, u) =
1

8π2

∫
M

[
(∆gu)2 +

2

3
k |∇gu|2

]
d volg

for the 4-sphere M = S4

eg (u, u) =
1

8π2

∫
M

[
(∆gu)2 + 2|∇gu|2

]
d volg

for the 4-torus M = T4

eg (u, u) =
1

8π2

∫
M

(∆gu)2 d volg



Paneitz Energy on 4-Manifolds

Theorem

The Paneitz energy

eg (u, u) =
1

8π2

∫
M

[
(∆gu)2 − 2Ricg (∇gu,∇gu) +

2

3
scalg ·|∇gu|2

]
d volg

is conformally invariant: ∀ϕ ∈ C∞(M), ∀u ∈ H2(M)

eg (u, u) = ee2ϕg (u, u).



Paneitz Energy on 4-Manifolds

Definition

The 4-manifold (M, g) is called admissible if eg > 0 on H̊2(M).

Admissibility is a conformal invariance.

eg (u, u) =
1

8π2

∫
M

[
(∆gu)2 − 2Ricg (∇gu,∇gu) +

2

3
scalg ·|∇gu|2

]
d volg

Large classes of 4-manifolds are admissible

all compact Einstein 4-manifolds with Ric ≥ 0 are admissible.

all compact hyperbolic 4-manifolds with spectral gap λ1 > 2 are
admissible.

If M1,M2 are compact hyperbolic Riemannian surfaces with λ1(M1) ≤ 2
3
, then

M = M1 ×M2 is not admissible.

Integrable functions (or distributions) u on M will be called grounded if∫
M
u d volg = 0 (or 〈u, 1〉 = 0, resp.).

Grounded Sobolev spaces H̊s(M, g) = (−∆g )−s/2L̊2(M, volg ) for s ∈ R,
usual Sobolev spaces Hs(M, g) = (1−∆)−s/2L2(M, volg ) = H̊s(M, g)⊕ R · 1

Laplacian −∆ : Hs → H̊s−2; grounded Green operator G̊g : H̊s → H̊s+2
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Paneitz Energy and Co-Biharmonic Green Kernel

Assume (M, g) is admissible. Then Paneitz operator

pg =
1

8π2

[
∆2

g + div

(
2Ricg −

2

3
scalg

)
∇
]

is a self-adjoint positive operator on L2(M, volg ) with domain H4(M).

Let (ψj)j∈N0 be complete ONB of L2(M, volg ) of eigenfunctions for pg with
eigenvalues (νj)j∈N0 . Define operator kg on H−4(M) , inverse to pg on L̊2, by

kg : u 7→ kgu :=
∑
j∈N

1

νj
〈u, ψj〉ψj ,

and associated bilinear form with domain H−2(M) by

kg (u, v) := 〈u, kgv〉L2 =
∑
j∈N

1

νj
〈u, ψj〉 〈v , ψj〉.



Paneitz Energy and Co-Biharmonic Green Kernel

Assume (M, g) is admissible.

Theorem

kg is an integral operator with an integral kernel kg which is grounded, symmetric,
and satisfies ∣∣∣kg (x , y) + log dg (x , y)

∣∣∣ ≤ C0.

Theorem

Assume that g ′ := e2ϕg for some ϕ ∈ C∞(M). Then the co-biharmonic Green
kernel kg′ for the metric g ′ is given by

kg′(x , y) = kg (x , y)− 1

2
φ̄(x)− 1

2
φ̄(y)

with φ̄ ∈ C∞(M) defined by

φ̄ :=
2

volg′(M)

∫
kg (., z) dvolg′(z)− 1

volg′(M)2

∫∫
kg (z ,w) dvolg′(z) dvolg′(w)



Co-Biharmonic Gaussian Field

Definition

A co-biharmonic Gaussian field on (M, g) is a linear family
{
〈h, u〉

}
u∈H−2 of

centered Gaussian random variables (defined on some probability space) with

E
[
〈h, u〉 〈h, v〉

]
= kg (u, v) ∀u, v ∈ H−2(M).

Let a probability space (Ω,F,P) be given and an i.i.d. sequence (ξj)j∈N of
N (0, 1) random variables. Furthermore, let (ψj)j∈N0 and (νj)j∈N0 denote the
sequences of eigenfunctions and eigenvalues for pg (counted with multiplicities).

Theorem

A co-biharmonic field is given by

h :=
∑
j∈N

ν
−1/2
j ξj ψj .



Co-Biharmonic Gaussian Field

Theorem

A co-biharmonic field is given by

h :=
∑
j∈N

ξj ·
√

kg ψj =
∑
j∈N

ν
−1/2
j ξj ψj .

More precisely,

1 For each ` ∈ N, a centered Gaussian random variable h` with values in
C∞(M) is given by

h` :=
∑̀
j=1

ν
−1/2
j ξj ψj .

2 The convergence h` → h holds in L2(P) × H−ε(M) for every ε > 0. In
particular, for a.e. ω and every ε > 0,

hω ∈ H−ε(M),

3 For every u ∈ H−2(M), the family (〈u, h`〉)`∈N is a centered L2(P)-bounded
martingale and

〈u, h`〉 → 〈u, h〉 in L2(P) as `→∞.



Co-Biharmonic Gaussian Field

Core arguments of the proof:

E
[
〈u, h`〉2

]
=
∑̀
j=1

1

νj

〈
u, ψj

〉2 →
∞∑
j=1

1

νj

〈
u, ψj

〉2
=
〈
u, ku〉 = k(u, u).

Thus (〈u, h`〉)`∈N is an L2-bounded martingale. Convergence follows readily.

For ε > 0, since h =
∑

j ξj ·
√

kψj and since G̊ (s) for s > n/2 = 2 is a bounded
function,

E
[
‖h‖2

H−ε

]
= E

[∥∥G̊εh
∥∥2

L2

]
=
∑
j

∥∥∥G̊ε
√

kψj

∥∥∥2

L2
∼
∑
j

∥∥∥G̊1+εψj

∥∥∥2

L2

=

∫
M

∥∥∥G̊ (1+ε)(., z)
∥∥∥2

d volg (z) =

∫
M

G̊ (2+2ε)(z , z) d volg (z) <∞

This proves that ‖h‖H−ε <∞ for a.e. ω.
The convergence h` → h in H−ε(M) follows similarly.



Co-Biharmonic Gaussian Field

A co-biharmonic Gaussian field on (M, g) can be regarded as a random
variable with values in H̊−ε(M) for any ε > 0.

Given a grounded white noise Ξ on (M, g), then h :=
√

kg Ξ is a
co-biharmonic Gaussian field on (M, g).

If (M, g) is Ricci flat (e.g. torus) then
√

kg = c G̊g is the grounded Green

operator. For general n,
√

kg = c G̊
n/4
g .

Theorem

Let h : Ω → H−ε(M) denote a co-biharmonic Gaussian field for (M, g) and let
g ′ = e2ϕg with ϕ ∈ C∞(M). Then

h′ := h − 1

volg′(M)

〈
h, 1
〉
H−ε(M,g′),Hε(M,g′)

is a co-biharmonic Gaussian field for (M, g ′).



Liouville Quantum Gravity Measure

Fix an admissible manifold (M, g) and a co-polyharmonic Gaussian field
h : Ω→ D′. Our naive goal is to study the ‘random geometry’ (M, gh)
obtained by the random conformal transformation,

gh = e2hg ,

and in particular to study the associated ‘random volume measure’ given as

d volgh (x) = enh(x)d volg (x). (1)

It easily can be seen that — due to the singular nature of the noise h — all
approximating sequences of this measure diverge as long as no additional
renormalization is built in.

A more tractable goal is to study (for suitable γ ∈ R) the random measure µh

formally given as

dµh(x) = eγh(x)− γ
2

2
E[h(x)2]d volg (x). (2)

Since h is not a function but only a distribution, both (1) and (2) are ill-defined.

However, replacing h by finite-dimensional noise approximations h` as before,
leads to a sequence (µh`) of random measures on M which as `→∞, almost
surely, converges to a random measure µh.
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Liouville Quantum Gravity Measure

For ` ∈ N define a random measure µ` = ρ` volg on M with density

ρ`(x) := exp
(
γh`(x)− γ2

2
k`(x , x)

)
where as before h` :=

∑̀
j=1

ν
−1/2
j ξj ψj and k`(x , x) := E

[
h2
`(x)

]
=
∑̀
j=1

ν−1
j ψ2

j (x).

Theorem

If |γ| <
√

2n, then there exists a random measure µ on M with µ` → µ. More
precisely, for every u ∈ C(M),∫

M

u dµ` −→
∫
M

u dµ in L1(P) and P-a.s. as `→∞.

The random measure µ := lim
`→∞

µ` is called Liouville Quantum Gravity measure.



Liouville Quantum Gravity Measure

Choose symmetric Markov kernels q` on M with q`(x , .) volg → δx as `→∞,
put h` = 〈h, q`(x , .)〉, k`(x , y) =

∫∫
k(x ′, y ′)q`(x , x

′)q`(y , y
′)dy ′dx ′, and

dµ`(x) = exp
(
γh`(x)− γ2

2
k`(x , x)

)
d volg (x).

Theorem

If |γ| <
√
n, then for every u ∈ Cb(M),

(
Y`
)
`∈N :=

(∫
M

u dµ`

)
`∈N

is L2-bounded martingale

Proof: Assume 0 ≤ u ≤ 1. Then

sup
`

E
[
Y`

2
]

= sup
`

E
[ ∫∫

eγh`(x)+γh`(y)− γ
2

2
k`(x,x)− γ

2

2
k`(y,y) · u(x)u(y) dx dy

]
= sup

`

∫∫
eγ

2 k`(x,y) · u(x)u(y) dx dy
]

≤
∫∫

eγ
2 k(x,y) dx dy

=

∫∫
1

d(x , y)γ2 dx dy +O(1)

due to the log divergence of k. The latter integral is finite if and only if γ2 < n.



Liouville Quantum Gravity Measure

A key property of the Liouville Quantum Gravity measure is its quasi-invariance
under conformal transformations.

Theorem

Let µ be the Liouville Quantum Gravity measure for (M, g), and µ′ be the
Liouville Quantum Gravity measure for (M, g ′) where g ′ = e2ϕg for some ϕ ∈
C∞(M). Then

µ′
(d)
= e−γξ+ γ

2

2
ϕ̄+nϕ µ

where ξ := 1
v′ 〈h, e

nϕ〉 and ϕ̄ := 2
v′ kg (enϕ) − 1

v′2
kg (enϕ, enϕ) with v ′ :=

volg′(M).

All the previous results extend verbatim to Riemannian manifolds of even
dimension n, now with a conformally invariant energy functional eg generated
by the co-polyharmonic operator

pg = an (−∆g )n/2 + low order terms

introduced by Graham, Jenne, Mason, Sparling (rather than the Paneitz
operator). Its inverse has an integral kernel kg with the two key properties

conformal invariance (modulo additive corrections)

log divergence.
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Liouville Brownian Motion, Random Paneitz Operator

If γ <
√

2 then a.s. the LQG measure µ does not charge sets of vanishing
H1-capacity

−→ Dirichlet form
∫
M
|∇u|2d volg on L2(M, µ)

−→ Liouville Brownian motion (random time change of BM)

If γ <
√

2n then a.s. the LQG measure µ does not charge sets of vanishing
Hn/2-capacity

−→ energy form
∫
u((−∆)n/2 + l .o.t.)u d volg on L2(M, µ)

−→ random Paneitz operators, conformally invariant



Discrete Approximations

Now let M be the continuous torus Tn ∼= [0, 1)n and consider its discrete
approximations Tn

L
∼= {0, 1

L
, . . . , L−1

L
}n for L ∈ N.

Polyharmonic Gaussian Field on the discrete torus Tn
L

centered Gaussian field (hL(v))v∈Tn
L

with covariance function

kL(u, v) =
1

an
G̊

n/2
L (u, v) =

1

an

∑
z∈Zn

L
\{0}

1

λ
n/2
L,z

· cos
(

2π z · (v − u)
)

where λL,z = 4L2 ∑n
k=1 sin2

(
πzk/L

)
and Zn

L = {z ∈ Zn : 0 < ‖z‖∞ < L/2}.

Given iid standard normals (ξz)z∈Zn
L

and Fourier basis functions

ϕz(x) = 1√
2

cos(2πxz) and ϕ−z(x) = 1√
2

sin(2πxz), a Polyharmonic Gaussian
Field is given as

hL =
1√
an

∑
z∈Zn

L
\{0}

1

λ
n/4
L,z

· ξz ϕz .

Given white noise on Tn
L, i.e. iid centered Gaussian variables (Ξ(v))v∈Tn

L
with

variance Ln/2, then

hL =
1√
an

G̊
n/4
L Ξ.



Discrete Approximations

The law of the ”ungrounded” Polyharmonic Gaussian Field is given explicitly as

cn exp

(
− an

2N

∥∥∥(−∆L)n/4h
∥∥∥2
)
dLN(h)

on RN ∼= RTn
L where N = Ln.

Convergence of fields hL → h as L→∞: tested against f ∈
⋃

s>n/2

Hs(Tn)

Convergence of Fourier extension of hL to h: in each H−ε(Tn) and also
tested against f ∈ H−n/2(Tn)

Theorem (Convergence of Liouville Quantum Gravity Measures )

Assume γ <
√

n/e and L = 3`.

µL → µ weakly on Tn in P-probabilty.

Convergence of ”reduced LQG measures” on Tn
L for all γ <

√
2n.



Polyakov-Liouville Measure and Conformal Field Theory

Aim: rigorous meaning to the Polyakov–Liouville measure ν∗g , informally given
as

1

Zg
exp

(
− Sg (h)

)
dh

with (non-existing) uniform distribution dh on the set of fields and action

Sg (h) :=

∫
M

(1

2

∣∣√pg h
∣∣2 + ΘQgh +

Θ∗

volg (M)
h + meγh

)
d volg . (3)

Here pg is the co-polyharmonic operator, Qg denotes Branson’s curvature, and
m,Θ,Θ∗, γ are parameters.

In the case n = 2, Qg is the usual curvature and
∫ ∣∣√pg h

∣∣2d volg is the
Dirichlet energy

∫
|∇h|2d volg .

With the Polyakov–Liouville action, this ansatz

for the measure ν∗g (dh) = 1
Z∗g

e−Sg (h)dh reflects the coupling of the gravitational

field with a matter field. It can be regarded as quantization of the the classical
Einstein–Hilbert action SEH

g (h) = 1
2κ

∫
M

(
Rg − 2Λ

)
dx or, more precisely, of its

coupling with a matter field

SEH
g (h) =

∫
M

[
1

2κ

(
Rg − 2Λ

)
+ LM

]
dx .
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∫
|∇h|2d volg . With the Polyakov–Liouville action, this ansatz

for the measure ν∗g (dh) = 1
Z∗g

e−Sg (h)dh reflects the coupling of the gravitational

field with a matter field. It can be regarded as quantization of the the classical
Einstein–Hilbert action SEH

g (h) = 1
2κ

∫
M

(
Rg − 2Λ

)
dx or, more precisely, of its

coupling with a matter field

SEH
g (h) =

∫
M

[
1

2κ

(
Rg − 2Λ

)
+ LM

]
dx .
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In the case n = 4, Qg = − 1
6
∆g scalg − 1

2
|Ricg |2 + 1

6
scal2g . In general, total

Q-curvature is conformally invariant, and if g ′ = e2ϕg then

enϕQg′ = Qg +
1

an
pgϕ.

Informal ansatz

ν∗g (dh) =
1

Z∗g
exp

(
−
∫
M

(1

2

∣∣√pg h
∣∣2 +ΘQgh+

Θ∗

volg (M)
h+meγh

)
d volg

)
dh

Rigorous

dν∗g (h) := exp
(
−Θ〈h,Qg 〉 −Θ∗〈h〉g −m µh(M)

)
d ν̂g (h)

with d ν̂g = law of ungrounded co-polyharmonic Gaussian field = image of
dνg (h)⊗ dL1(t) under map (h, t) 7→ h + t, informally characterized as

d ν̂g (h) =
1

Zg
exp

(
− 1

2
eg (h, h)

)
dh,

and µh denotes the Liouville Quantum Gravity measure on the n-manifold M.
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dν∗g (h) := exp
(
−Θ〈h,Qg 〉 −Θ∗〈h〉g −m µh(M)

)
d ν̂g (h)

with d ν̂g = law of ungrounded co-polyharmonic Gaussian field and µh =
Liouville Quantum Gravity measure.

Theorem

Assume that 0 < γ <
√

2n and ΘQ(M) + Θ∗ < 0. Then ν∗g is a finite measure.

Theorem

If Θ = an
n
γ

, and Θ∗ = γ, then ν∗g is conformally quasi-invariant modulo shift:

ν∗e2ϕg = Z(g , ϕ) · T∗ν∗g ∀ϕ (4)

with explicitly given conformal anomaly Z(g , ϕ).

For n = 2: David, Kupiainen, Rhodes, Vargas ’16 for surfaces of genus 0,
David, Rhodes, Vargas ’16 for surfaces of genus 1, and Garban, Rhodes, Vargas
’19 for surfaces of higher genus.


