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How to sample a random path?

Brownian Bridge

en =
√

2
nπ sin(nπt). {αn}: independent standard Gaussians.

B =
∑∞

n=1 αnen, (convergence in the uniform topology).
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How to sample a random surface?

Mn: uniformly sampled
triangulation/quadrangulation.

dn: graph distance.

An: counting measure on the
vertex set.

Le Gall (2011), Miermont (2011)

(Mn,dn,An) after proper scaling converge to a random metric
measure space in Gromov-Hausdorff-Prokhorov topology.

Brownian sphere: the limiting random sphere.
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Polyakov (1981), Quantum geometry of bosonic strings

“In my opinion at the present time we have to develop an art of
handling sums over random surfaces.”.

S: a topological surface, e.g. sphere, disk, annulus.

Quantum gravity on S = random geometry on S.

(S1,g1) and (S2,g2) are conformally equivalent
if ∃ ψ : S1 → S2 and a function ϕ on S2 s.t. ψ∗g1 = eϕg2.
ψ: conformal embedding. ϕ: conformal factor.

From random geometry to random function
A random geometry on S, conditioned on being,
conformally equivalent to a fixed (S,g), can be written
as (S,eϕg) for some random conformal factor ϕ.
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Conformal Embedding of Brownian Sphere

Polyakov’s idea in modern math language

Conformal embedding of Brownian sphere =
√

8/3-LQG on S2.

Liouville quantum gravity on the sphere and disk.
Mathematical status of Polyakov’s idea.
The case of annulus.
Relation to 2D statistical physics
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Gaussian Free Field on a Riemannian Manifold

{en}n≥1: non-constant eigenfunctions of the ∆ on (S,g)
normalized by e.g.

∫
|∇en|2dvg = 2π and

∫
endvg = 0.

Gaussian free field (GFF) on (S,g)

h :=
∑∞

n=1 αnen, {αn} i.i.d. standard Gaussians.

Convergence holds almost surely in H−1(S,g).
E[h(x)h(y)]= − log |x − y | + smooth.

h(z) is not well defined.

hε(z): average of h over
the circle {w : |w − z| = ε}.

Simulation of hε by H. Jackson.
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Random Geometry of γ-LQG

γ ∈ (0,2) h: a variant of GFF on a planar domain D

γ-LQG area

Ah := eγhd2z := limε→0 ε
γ2/2eγhεd2z.

Example of Gaussian multiplicative chaos
Kahane (1985), Duplantier-Sheffield & Rhodes-Vargas, around 2010

γ-LQG boundary length

Lh := e
γ
2 hd2z on ∂D. (Gaussian multiplicative chaos)

γ-LQG metric

dh := eξγh(dx2 + dy2). (more difficult but done)

Dubedat-Ding-Dunlap-Falconet & Gwynne-Miller (2019)
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Brownian Sphere and
√

8/3-LQG

Miller-Sheffield (2015)

There exists a variant of GFF ϕ on S2 such that
(dϕ,Aϕ) is isometric to Brownian sphere.

If uniform triangulations under conformal embedding converge,
the scaling limit has to be (dϕ,Aϕ).
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A Similar Story for Random Disk

Brownian disk under conformal
embedding =

√
8/3-LQG on D.

Brownian Disk:
Bettinelli-Miermont (2015)

Circle Packing:
a discrete conformal embedding

Miller-Sheffield (2015)
There exists a variant of GFF ϕ on D such that
(dϕ,Aϕ,Lϕ) is isometric to the Brownian disk.
If uniform triangulations under conformal embedding converge,
the scaling limit has to be (dϕ,Aϕ,Lϕ).
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Holden-S. (2019)

Gwynne-Miller-Sheffield (2018)

Poisson-Voronoi tessellation of Brownian disk under Tutte embedding
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What is the law of ϕ?

Polyakov (1981)
The conformal factor ϕ is governed by the Liouville field theory,
the 2D quantum field theory defined by Liouville action.

Liouville field theory is a conformal field theory, and is a locally
trivial but globally nontrivial perturbation of Gaussian free field.

Polyakov’s idea in model math language

The law of ϕ for Brownian sphere/disk embedded to (S,g)
is given by the Liouville field on (S,g) with γ =

√
8/3.

2D quantum gravity coupled with a conformal matter

Random surface of the sphere/disk topology sampled from
the uniform measure weighted by det(∆S,g)−c/2

=⇒ γ-LQG with c = 25− 6(γ2 + 2
γ )2.

γ =
√

8/3, c = 0 γ ∈ (0,2), c < 1
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Liouville (Conformal) Field Theory

David, Kupiainen, Rhodes, Vargas, Huang, Guillarmou, Remy

Liouville CFT has been constructed rigorously
by making sense of the defining path integral.

Before the Liouville CFT approach, ϕ for Brownian sphere/disk
were constructed by Sheffield via a more geometrical approach.

Aru-Huang-S., Circlé, Ang-Holden-S.
Two approaches agree.

Integrability of 2D CFT Belavin-Polyakov-Zamolodchikov ’84

2D CFT —> local conformal symmetry —> Virasoro algebra
—> exact solution of partition functions/correlation functions.

(Rigorous) Integrability of Liouville CFT

Bulk: Kupiainen-Rhodes-Vargas, Guillarmou-KRV.
Boundary: Remy, Remy-Zhu, Ang-Remy-S., Wu
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Random Annulus

an,bn: even integers with limn→∞
an

3n2 = a, limn→∞
bn

3n2 = b.
Qn: set of annular quadrangulations with bdy lengths an,bn.

Sample Qn from Qn with probability ∝ 12−#vertices.
View Qn as compact metric space: graph distance scaled by 1

n .

Definition: Brownian annulus with boundary lengths a,b

lim
n→∞

Qn in the Gromov-Hausdorff-Prokhorov topology.

Existence follows from work of Betinelli-Miermont.

Question: What’s the law of τ? 13 / 30



The Law of the Modulus of the Brownian Annulus

BA(a,b)#: law of the Brownian annulus with bdy lengths a,b.
Dedekind eta function: η(iτ) = e−

πτ
12

∏∞
k=1(1− e−2πkτ )

ρτ : density function for the positive random variable Xτ s.t.

E[X it
τ ] = 2πte−2πτ t2/3

3 sinh(2πt/3) .

Ang-Remy-S. ’22

BA(a,b)#[τ ∈ I] =
∫

I η(i2τ)ρτ (b
a ) dτ, ∀I ⊂ (0,∞).

BA =
∫∫∞

0
1√

ab(a+b)
BA(a,b)#. (free boundary)

LFτ : pushforward of Pτ × dx under (h, x) 7→ ϕ = h + x .
Pτ : law of GFF on Cτ . dx : Lebesgue measure on R

Ang-Remy-S. ’22

BA =
∫∞

0 (
√

2)−1η(2iτ)LFτ (dϕ)dτ.
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Polyakov ’81, David ’88, Distler-Kawai ’89
2D QG coupled with conformal matter can be decomposed into

Zmatter(τ)︸ ︷︷ ︸
matter CFT

×ZGFF(τ)LFτ (dφ)︸ ︷︷ ︸
Liouville CFT

×Zghost(τ)︸ ︷︷ ︸
ghost CFT

dτ.

ZGFF(τ) := 1√
2η(2iτ)

. Zghost(τ) := η(2iτ)2.

ZGFF(τ)Zghost(τ) = η(2iτ)/
√

2. Brownian annulus: Zmatter ≡ 1.

Origin of 26 in String Theory Polyakov ’81

Zmatter(Cτ ,g) = Zmatter(τ) det(∆g)−c/2

ZLiouville(Cτ ,g) = ZLiouville(τ) det(∆g)−cL/2, cL = 1 + 6(γ2 + 2
γ )2.

Zghost(Cτ ,g) = Zghost(τ) det(∆g)−(−26)/2.

c + cL + (−26) = 0 =⇒ c = 25− 6(γ2 + 2
γ )2.

Ghost field: non-physical, come from gauge fixing.
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2D Quantum Gravity and Statistical Physics

Ising Model on a graph.

Hamiltonian: H(σ) =
∑

i∼j σiσj .

Partition function:
Z (T ) =

∑
σ e−H(σ)/T .

Ising Model on 2D lattice.

Tc : critical temperature
for phase transition.

Z (Tc) ∼ (det ∆)−1/4

cIsing = 1/2.
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Physics: 2D QG coupled with conformal matter

Surface from uniform measure weighted by det(∆)−c/2

converge to γ-LQG with c = 25− 6(γ2 + 2
γ )2.

Math: Scaling Limit Conjecture

Random triangulation weighted by Ising partition function under
conformal embedding converge to

√
3-LQG.
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CFT and 2D Statical Physics
Many 2D statistical physics model (e.g. Ising)
enjoys conformal symmetry at their criticality.

Correlation function governed by a CFT.
Partition function ∼ (det ∆)−c/2 with c < 1.
c: central charge of the corresponding CFT.

BPZ, Cardy et. al. See book of Di Francesco-Mathieu-Sénécha.

Scaling Limit Conjecture: 2D QG+conformal matter
Random planar map weighted by statistical physics models
under conformal embedding converge to

Zmatter(τ)︸ ︷︷ ︸
matter CFT

×ZGFF(τ)LFτ (dφ)︸ ︷︷ ︸
Liouville CFT

×Zghost(τ)︸ ︷︷ ︸
ghost CFT

dτ.

c = 25− 6(γ2 + 2
γ )2.
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Knizhnik-Polyakov-Zamolodchikov (KPZ) Relation

Question: if we have n2 vertices on
the lattice, what is the size of the
boundary connecting cluster?

Answer: ∼ n91/48

On weighted random triangulation,
the answer is nsome quantum exponent.

91/48 = KPZ(quantum exponent).
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Physics Verification of the Scaling Limit Conjecture

In physics, scaling exponent can be computed by e.g.
Algebraic CFT principle (BPZ, Cardy)
Coulomb gas method (Nienhuis, di Francesco-Saleur-Zuber)
Transfer matrix/quantum group (Andrews, Baxter, and Forrester)

KPZ ’88, David ’88, Distler-Kawai ’89
Derived KPZ relation from matter-Liouville-ghost decomposition
of 2D quantum gravity coupled with conformal matter.

Douglas, Gross, Kazakov, Kostov, Migdal, Shenker ... ∼ 90s

Derive KPZ relation for random planar maps weighted by
statistical physics models using enumeration techniques for
planar maps such as random matrix.

Two approaches give the same exponents.
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KPZ relation provides a powerful framework to study fractals.

Mandelbrot (1982)
conjectured that the
frontier of the planar
Brownian motion has
fractal dimension 4/3.

(Image by Schramm)

Duplantier (1998): Physics “Proof” of Mandelbrot’s conjecture
The quantum dimension of the Brownian frontier on the
Brownian disk is 1/2. KPZ (1/2) = 4/3.

Many predictions on scaling dimensions in physics via CFT
and/or KPZ are derived by Schramm-Loewner evolution (SLE).
e.g. Mandelbrot conjecture: Lawler-Schramm-Werner (2000).
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SLE and Conformal Loop Ensemble

Schramm (1999)
Random interfaces in
many 2D statical physics
models should converge
to SLEκ with κ > 0.

limit

A few scaling limit results, many more conjectures.

Percolation→ SLE6, Ising model→ CLE3 (Smirnov et. al.)
c = 25− 6(

√
κ

2 + 2√
κ

)2 κ = 6, c = 0; κ = 3, c = 1
2 .
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Triangulation + Ising CLE3 +
√

3-LQG

Scaling Limit Conjecture: 2D QG + conformal matter
Random planar map + statistical physics models under
conformal embedding converge to (SLEκ/CLEκ) + (γ-LQG).
c = 25− 6(

√
κ

2 + 2√
κ

)2 c = 25− 6(γ2 + 2
γ )2.

Holden-S. ’19: triangulation+ percolation, Cardy-Smirnov embedding
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Although the scaling limit conjecture is open in most cases,
the limiting object: SLE/CLE + LQG is well understood:

quantum zipper Sheffield (2010)
mating of trees Duplantier-Miller-Sheffield (2014)

Applications include
all scaling limit results on random planar maps→ LQG.
rigorous KPZ derivation of SLE exponents/dimensions.
Duplantier-Sheffield, Gwynne-Holden-Miller.

Proof ingredients for Ang-Remy-S. ’22

BA =
∫∞

0
1√

2η(2iτ)
LFτ (dϕ)dτ.

SLE/CLE + LQG.
Integrability of random planar maps. (Bernardi-Fusy)
Integrability of boundary Liouville CFT. (Remy, Wu)
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CFT and Integrability of SLE/CLE

The predictive power of CFT goes beyond exponent/dimension.

Cardy’s formula for percolation
2Γ(2/3)
Γ(1/3)2×F (1

3 ,
2
3 ; 4

3 , z)

z: cross ratio
F : hypergeometric function.

Proof: Cardy-Smirnov embedding.

Cardy formula for SLE6

expresses the probability
of an SLE6 event.

Ito’s calculus problem.

Similar results: Watts’ formula, Schramm’s formula, etc.
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Cardy’s formula for CLEκ on Annulus

O(n)-loop model (dilute phase)

Z (Tc) =
∑

loop collection e
−1
Tc

total lengthn#loops

g = 4
κ , c = 25− 6(

√
κ

2 + 2√
κ

)2

χ = (1− g)π n = 2 cosχ ∈ (0,2]

Ising model: n = 1

Cardy’s formula for # of non-contratible loops of CLE on Cτ
E[(n′/n)N ] = Z (τ, κ, χ′)/Z (τ, κ, χ), n′ = 2 cosχ′.

q = e−π/τ , q̃ = e−2πτ
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Cardy (2006)

Z (κ, τ, χ′) is the partition function of the O(n) loop model on Cτ .
via (non-rigorous) Coulomb gas applied to lattice on Cτ

Z (τ, κ, χ′) q = e−π/τ and q̃ = e−2πτ

= q
−c
24∏∞

r=1(1−qr )

∑
p∈Z

sin(p+1)χ′

sinχ′ q
gp2

4 −
(1−g)p

2

=
( 2

g )1/2q̃−
c

12∏∞
r=1(1−q̃2r )

∑
m∈Z

sin((χ′+2mπ)/g)
sinχ′ q̃

(χ′+2πm)2

2π2g
− (1−g)2

2g .

g = 4
κ c = 25− 6(

√
κ

2 + 2√
κ

)2,
χ = (1− g)π, n = 2 cosχ ∈ (0,2]

Ang-Remy-S. (2022)

Cardy’s formula for CLE on annulus holds.

Hard to prove by Ito’s calculus. No canonical bdy point to start.
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Proof: Set Matter to be CLE in the decomposition:

Zmatter(τ)︸ ︷︷ ︸
matter CFT

×ZGFF(τ)LFτ (dφ)︸ ︷︷ ︸
Liouville CFT

×Zghost(τ)︸ ︷︷ ︸
ghost CFT

dτ.

Use the same method for the Brownian annulus.

Matter can set to be any model with SLE/CLE as scaling limit.

Zself avoiding loop(τ) =
∏∞

r=1(1− qr )−1 ∑
k∈Z k(−1)k−1q

3k2
2 −k+ 1

8 .

Werner (2005): construction of self-avoiding loop;
τ →∞ asymptotic of Z (τ).

Cardy (2006) conjectural formula; SAW = O(0) model.
Ang-Remy-S. (2022): rigorous proof.
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Summary

Random sphere/disk and their relation to LQG are well
understood mudulo scaling limit conjectures.

A new difficuty arises for annulus: the random modulus.
Ang-Remy-S. (2022) solves the Brownian annulus by
establishing the matter-Liouville-ghost decomposition.

CFT preditions for SLE are relatively well understood.
Much less has been proved for exact formulae predicted by
CFT for CLE. Ang-S. (2021), Ang-Remy-S. (2022)

Outlook
Arbirary surface: measures on the moduli space.
Full CFT content of CLE: conformal boostrap.
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Bigger Picture: Integrabilty in Conformal Probability

Two concrete goals among many others

1. Brownian surface moduli = ghost partition function.
2. Connectivity and loop statistics of CLE = CFT prediction.

What have been very useful so far
1. coupling of SLE/CLE and finite volume LQG surfaces.
2. Integrability of Liouville CFT.

What need to be done?
1. Continue to develop SLE/LQG coupling and
their connection to Liouville CFT. (Ang-S.-Yu, in progress)
2. Better understanding of conformal blocks
(Ghosal-Remy-Sun-S. (2020), in progress.)
3. More guidance from physics/geometry/algebra.
ghost field; transfer matrix/quantum group, topo recursion, ???
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