Approximation of Liouville Brownian Motion

Zhen-Qing Chen University of Washington

AGRS Workshop MSRI, April 1, 2022

Zhen-Qing Chen Approximation of Liouville Brownian Motion

Joint work with Yang Yu (in progress)

• Introduced by Garban-Rohdes-Vargas '16, also by Berestycki '15.

• a time change of two-dimensional Brownian motion via Liouville measure or Gaussian multiplicative chaos.

• canonical diffusion process under Liouville quantum gravity: scaling limit of random walk on mated-CRT planar maps. Berestycki-Gwynne '20, Gwynn-Miller-Sheffield '21 *h*: massive Gaussian free field on \mathbb{R}^2 with

$$Cov(h(x), h(y)) = G_{m^2}(x, y) = \int_0^\infty e^{-m^2 t} \frac{1}{2\pi t} e^{-(x-y)^2/2t} dt.$$

Liouville measure: for $\gamma \in (0, 2)$,

$$\mu_h(dz) = "e^{\gamma h(z)} dz" = \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(z)} dz.$$

 $h_{\varepsilon}(z)$ centered Gaussuan with $\operatorname{Var}(h_{\varepsilon}(z)) \asymp \log(1/\varepsilon)$.

 μ_h concentrates on those z where " $h(z) = +\infty$ ", in fact on γ -thick points. Thus $\mu_h(dz) \perp dz$.

h: massive Gaussian free field on \mathbb{R}^2 with

$$Cov(h(x), h(y)) = G_{m^2}(x, y) = \int_0^\infty e^{-m^2 t} \frac{1}{2\pi t} e^{-(x-y)^2/2t} dt.$$

Liouville measure: for $\gamma \in (0, 2)$,

$$\mu_h(dz) = "e^{\gamma h(z)} dz" = \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(z)} dz.$$

 $h_{\varepsilon}(z)$ centered Gaussuan with $\operatorname{Var}(h_{\varepsilon}(z)) \asymp \log(1/\varepsilon)$. μ_h concentrates on those z where " $h(z) = +\infty$ ", in fact on γ -thick points. Thus $\mu_h(dz) \perp dz$. X: Brownian motion independent of GFF h.

 μ_h is a Radon measure not charging on zero capacity sets.

$$arepsilon^{\gamma^2/2}e^{\gamma h_{arepsilon}(z)}dz\longleftrightarrow A_t^{arepsilon}=\int_0^tarepsilon^{\gamma/2}e^{\gamma h_{arepsilon}(X_s)}ds.$$

Garban-Rohdes-Vargas '16:

- (i) $\lim_{\varepsilon \to 0} A_t^{\varepsilon} = A_t$ is a strictly increasing continuous additive functional of X having Revuz measure μ_h .
- (ii) Liouville Brownian motion $Y_t := X_{\tau_t}$ is μ_h -symmetric, where $\tau_t = \inf\{r > 0 : A_r > t\}$.
- (iii) $\{X_{\tau_t^\varepsilon}; t \ge 0\} \Longrightarrow \{X_t; t \ge 0\}.$

$\mu(dz) = cdx \longleftrightarrow A_t = ct \longleftrightarrow \tau_t = t/c.$ $X_{\tau_t} = X_{t/c}: \text{ speeds up if } c < 1, \text{ slows down if } c > 1.$

 X_{τ_t} speeds up at places where μ has small masses and slows down where μ has large masses.

 $\mu(dz) = cdx \longleftrightarrow A_t = ct \longleftrightarrow \tau_t = t/c.$ $X_{\tau_t} = X_{t/c}: \text{ speeds up if } c < 1, \text{ slows down if } c > 1.$ $X_{\tau_t} \text{ speeds up at places where } \mu \text{ has small masses and slows down where } \mu \text{ has large masses.}$

Conformal change of metrics

$$(M^n,g)$$
: $g(x) = \sum_{i,j} g_{ij}(x) dx^i \otimes dx^j$. $\Delta_g = rac{1}{\sqrt{\det g}} \sum_{i,j} \partial_i (\sqrt{g} g^{ij} \partial_j).$

Volume elemenet $m_g(dx) = \sqrt{\det g} dx$.

For $g_w = e^w g$, $\sqrt{\det g_w} g_w^{ij} = e^{(n/2-1)w} \sqrt{\det g} g^{ij}$. When n = 2, $\Delta_{g_w} = e^{-w} \Delta_g$ and

$$(-\Delta_g u, v)_{m_g} = \int_M \nabla u(x) \cdot (\sqrt{\det g(x)} g^{ij}(x)) \nabla v(x) dx$$

= $(-\Delta_{g_{\varphi}} u, v)_{m_{g_w}}.$

Conformal change of metrics

$$egin{aligned} (M^n,g)\colon g(x) &= \sum_{i,j} g_{ij}(x) dx^i \otimes dx^j.\ &\Delta_g &= rac{1}{\sqrt{\det g}} \sum_{i,j} \partial_i (\sqrt{g} g^{ij} \partial_j). \end{aligned}$$

Volume elemenet $m_g(dx) = \sqrt{\det g} dx$.

For $g_w = e^w g$, $\sqrt{\det g_w} g_w^{ij} = e^{(n/2-1)w} \sqrt{\det g} g^{ij}$. When n = 2, $\Delta_{\sigma} = e^{-w} \Delta_{\sigma}$ and

$$(-\Delta_g u, v)_{m_g} = \int_M \nabla u(x) \cdot (\sqrt{\det g(x)} g^{ij}(x)) \nabla v(x) dx$$

= $(-\Delta_{g_{\varphi}} u, v)_{m_{g_w}}.$

Conformal change of metrics

$$egin{aligned} (M^n,g)&\colon g(x)=\sum_{i,j}g_{ij}(x)dx^i\otimes dx^j.\ &\Delta_g=rac{1}{\sqrt{\det g}}\sum_{i,j}\partial_i(\sqrt{g}g^{ij}\partial_j). \end{aligned}$$

Volume elemenet $m_g(dx) = \sqrt{\det g} dx$.

For $g_w = e^w g$, $\sqrt{\det g_w} g_w^{ij} = e^{(n/2-1)w} \sqrt{\det g} g^{ij}$. When n = 2, $\Delta_{g_w} = e^{-w} \Delta_g$ and

$$(-\Delta_g u, v)_{m_g} = \int_M \nabla u(x) \cdot (\sqrt{\det g(x)} g^{ij}(x)) \nabla v(x) dx$$

= $(-\Delta_{g_{\varphi}} u, v)_{m_{g_w}}.$

In n = 2, the Dirichlet form is invariant under conformal change of metrics $g \to e^w g$, while $m_{g_w} = e^w m_g$.

Silverstein '73, '74, Fitzsimmons '90: Brownian motion on (M, g_w) is a time change of Brownian motion on (M, g).

Liouville quantum gravity: " $e^{\gamma h(z)} dx \otimes dy$ ". \longleftrightarrow Liouville Brownian motion In n = 2, the Dirichlet form is invariant under conformal change of metrics $g \to e^w g$, while $m_{g_w} = e^w m_g$.

Silverstein '73, '74, Fitzsimmons '90: Brownian motion on (M, g_w) is a time change of Brownian motion on (M, g).

Liouville quantum gravity: " $e^{\gamma h(z)} dx \otimes dy$ ". \longleftrightarrow Liouville Brownian motion

Question: Can one construct/approximate Liouville Brownian motion directly from μ_h ?

More generally, suppose X is a Brownian motion on \mathbb{R}^d and μ is a Radon measure with full support that does not charge on zero capacity sets.

• μ uniquely determines a positive continuous additive functional A_t^{μ} of X as $f(x)dx \longleftrightarrow \int_0^t f(X_s)ds$.

• Time changed Brownian motion $Y_t = X_{\tau_t}$, where $\tau_t = \inf\{r > 0 : A_r^{\mu} > t\}.$

Question: Can one construct/simulate Y_t directly from μ ?

Question: Can one construct/approximate Liouville Brownian motion directly from μ_h ?

More generally, suppose X is a Brownian motion on \mathbb{R}^d and μ is a Radon measure with full support that does not charge on zero capacity sets.

• μ uniquely determines a positive continuous additive functional A_t^{μ} of X as $f(x)dx \longleftrightarrow \int_0^t f(X_s)ds$.

• Time changed Brownian motion $Y_t = X_{\tau_t}$, where $\tau_t = \inf\{r > 0 : A_r^{\mu} > t\}$.

Question: Can one construct/simulate Y_t directly from μ ?

Question: Can one construct/approximate Liouville Brownian motion directly from μ_h ?

More generally, suppose X is a Brownian motion on \mathbb{R}^d and μ is a Radon measure with full support that does not charge on zero capacity sets.

• μ uniquely determines a positive continuous additive functional A_t^{μ} of X as $f(x)dx \longleftrightarrow \int_0^t f(X_s)ds$.

• Time changed Brownian motion $Y_t = X_{\tau_t}$, where $\tau_t = \inf\{r > 0 : A_r^{\mu} > t\}$.

Question: Can one construct/simulate Y_t directly from μ ?

Transition semigroup: $P_t f(x) = \mathbb{E}_x[f(Y_t)] = \mathbb{E}_x[f(X_{\tau_t})].$

$$\int_{\mathbb{R}^d} g(x) P_t f(x) \mu(dx) = \int_{\mathbb{R}^d} f(x) P_t g(x) \mu(dx).$$

Dirichlet form $(\mathcal{E}, \mathcal{F})$ of Y on $L^2(\mathbb{R}^d; \mu)$:

$$\mathcal{F} := \inf \Big\{ u \in L^{2}(\mu) : \sup_{t>0} \frac{1}{t} (u - P_{t}u, u)_{L^{2}(\mu)} < \infty \Big\},$$

$$\mathcal{E}(u, v) := \lim_{t \to 0} \frac{1}{t} (u - P_{t}u, u)_{L^{2}(\mu)}, \quad u, v \in \mathcal{F}.$$

When
$$\mu = dx$$
 (i.e. $Y = X$ is BM), $\mathcal{F} = W^{1,2}(\mathbb{R}^d)$ and
 $\mathcal{E}(u, v) = \frac{1}{2} \int_{\mathbb{R}^d} \nabla u(x) \cdot \nabla v(x) dx.$

For general μ , as a special case of Silverstein '73, '74, Fitzsimmons '90,

$$\mathcal{F} = \left\{ u \in W^{1,2}_{loc}(\mathbb{R}^d) \cap L^2(\mu) : \nabla u \in L^2(\mathbb{R}^d; dx) \right\},$$

$$\mathcal{E}(u, v) = \frac{1}{2} \int_{\mathbb{R}^d} \nabla u(x) \cdot \nabla v(x) dx, \quad u, v \in \mathcal{F}.$$

When
$$\mu = dx$$
 (i.e. $Y = X$ is BM), $\mathcal{F} = W^{1,2}(\mathbb{R}^d)$ and
 $\mathcal{E}(u, v) = \frac{1}{2} \int_{\mathbb{R}^d} \nabla u(x) \cdot \nabla v(x) dx.$

For general μ , as a special case of Silverstein '73, '74, Fitzsimmons '90,

$$\mathcal{F} = \left\{ u \in W^{1,2}_{loc}(\mathbb{R}^d) \cap L^2(\mu) : \nabla u \in L^2(\mathbb{R}^d; dx) \right\},$$

$$\mathcal{E}(u, v) = \frac{1}{2} \int_{\mathbb{R}^d} \nabla u(x) \cdot \nabla v(x) dx, \quad u, v \in \mathcal{F}.$$

Brownian motion can be approximated as follows. Let r > 0.

(i) When at x, stay for an exponentially distributed time with parameter r⁻² (mean holding time is r²).
(ii) Jump to point x₁ chosen randomly from B(x, r).
(iii) Repeat this procedure to get a process X_t^(r).

Donsker '51: $\{X_t^{(r)}; t \ge 0\} \Longrightarrow \{B_t; t \ge 0\}$ as $r \to 0$.

Brownian motion can be approximated as follows. Let r > 0.

(i) When at x, stay for an exponentially distributed time with parameter r⁻² (mean holding time is r²).
(ii) Jump to point x₁ chosen randomly from B(x, r).
(iii) Repeat this procedure to get a process X_t^(r).

Donsker '51: $\{X_t^{(r)}; t \ge 0\} \Longrightarrow \{B_t; t \ge 0\}$ as $r \to 0$.

Two possible natural schemes. Scheme 1:

- (i) When at x, stay for an exponentially distributed time with parameter $\lambda(x) = \frac{|B(x,r)|}{r^2 \mu(B(x,r))}$ (mean holding time is $1/\lambda(x)$).
- (ii) Jump to point x_1 chosen randomly from B(x, r). (iii) Repeat this procedure to get a process $X_t^{(r)}$.

 $X^{(r)}$ is symmetric with respect to $\mu_r(dx) = \frac{\mu(B(x,r))}{|B(x,r)|} dx$,

$$\mathcal{E}^{(r)}(u,u) = rac{1}{2r^2|B(0,r)|} \iint_{\mathbb{R}^d imes \mathbb{R}^d} (u(x) - u(y))^2 \mathbb{1}_{|x-y| < r} dx dy$$

- (i) When at x, stay for an exponentially distributed time with parameter r^{-2} (mean holding time is r^2).
- (ii) Jump to point x_1 chosen randomly from $B(x, r_x)$, where $\mu(B(x, r_x)) = |B(x, r)|$.
- (iii) Repeat this procedure to get a process $X_t^{(r)}$.

 $X^{(r)}$ is typically not symmetric. Need a symmetrizing procedure.

We work under scheme 1.

Theorem (C.-Yu 22+)

Suppose $\mu \ll dx$ has full support on \mathbb{R}^d . For any $\phi \ge 0$ in $C_c(\mathbb{R}^d)$, $\{X_t^{(2^{-n})}; t \ge 0\}$ with initial distribution $\phi(x)\mu_{2^{-n}}dx$ converges weakly in $\mathbb{D}([0,\infty); \mathbb{R}^d)$ in Skorohod topology to the time-changed Brownian motion by μ with initial distribution $\phi(x)\mu(dx)$.

Theorem (C.-Yu 22+)

For general Radon measure μ with full support on \mathbb{R}^d that does not charge on zero capacity sets and r > 0, let $\mu_r(dx) = \frac{\mu(B(x,r))}{|B(x,r)|} dx$ and $X^{(r)}$ time-changed Brownian motion by $\mu^{(r)}$. For any $\phi \geq 0$ in $C_c(\mathbb{R}^d)$, $\{X^{(r)}; t \geq 0\}$ with initial distribution $\phi(x)\mu_r(dx)$ converges weakly in $\mathbb{D}([0,\infty);\mathbb{R}^d)$ in Skorohod topology to the time-changed Brownian motion by μ with initial distribution $\phi(x)\mu(dx)$ as $r \rightarrow 0$.

We can also take $\mu_r = p_r * \mu$, where p_r is the heat kernel of BM.

Suppose that μ satisfies locally that

$$\mu(B(x,r)) \leq c r^{d-2+\varepsilon}$$
 for all $r \leq 1$.

Then the weak convergence holds for every starting point $x \in \mathbb{R}^d$.

 γ -Liouville measure μ_h satisfies the above condition with d = 2 and any $\varepsilon < 2(1 - \gamma/2)^2$.

Suppose that μ satisfies locally that

$$\mu(B(x,r)) \leq c r^{d-2+\varepsilon}$$
 for all $r \leq 1$.

Then the weak convergence holds for every starting point $x \in \mathbb{R}^d$.

 γ -Liouville measure μ_h satisfies the above condition with d = 2 and any $\varepsilon < 2(1 - \gamma/2)^2$.

• Tightness:

In pseudo-path topology (weak convergence topology), then strengthen it to Skorohod topology afterwards.

- Convergence of finite dimensional distributions.
- Mosco convergence of Dirichlet forms

• Tightness:

In pseudo-path topology (weak convergence topology), then strengthen it to Skorohod topology afterwards.

• Convergence of finite dimensional distributions.

Mosco convergence of Dirichlet forms

• Tightness:

In pseudo-path topology (weak convergence topology), then strengthen it to Skorohod topology afterwards.

• Convergence of finite dimensional distributions.

Mosco convergence of Dirichlet forms

- A rcll path $\gamma_n : [0, \infty) \to \mathbb{R}^d \cup \{\partial\}$ is said to convergent to γ in pseudo-path topology on $\mathbb{D}([0, \infty), \mathbb{R}^d_\partial)$ if $\int_0^\infty e^{-t}(|\gamma_n(t) - \gamma(t)| \wedge 1)dt \to 0.$
- $\Omega := \mathbb{D}([0,\infty), \mathbb{R}^d_{\partial}),$ probability measures \mathbb{P}_n , \mathbb{P} on Ω . Coordinate processes: $X_t^n(\omega) = \omega(t), X_t(\omega) = \omega(t).$

Meyer-Zheng '84:

- (i) If P_n ⇒ P in pseudo-path topology, there is a Lebesgue null set Λ ⊂ [0,∞) so that the finite dimensional distributions of Xⁿ converges to that of X outside Λ.
- (ii) {ℙ_n} is tight on D([0, T], R^d_∂) if and only if for any relatively compact disjoint open sets E and F, sup_n E^{ℙ_n}[N^{E,F}_T] < ∞, where N^{E,F}_T(ω) is the number of crossings from E to F by a path ω over [0, T].

C.-Fitzsimmons-Song 01': For an *m*-symmetric strong Markov process X and disjoint relatively compact open sets E and F,

$$\mathbb{E}_{m}\left[N_{T}^{E,F}\right]$$

$$\leq 2T \inf \left\{ \mathcal{E}(u,u): u \in \mathcal{F}: u = 0 \text{ on } E, u = 1 \text{ on } F \right\}$$

Tightness

For
$$f \in C_c^2(\mathbb{R}^d)$$
,

$$\lim_{r \to 0} \mathcal{E}^{(r)}(f, f)$$

$$= \lim_{r \to 0} \frac{1}{2r^2 |B(0, r)|} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))^2 \mathbb{1}_{|x-y| < r} dx dy$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} |\nabla f(x)|^2 dx < \infty.$$

Thus for any $\phi \ge 0$ in $C_c(\mathbb{R}^d)$, the laws $\{\mathbb{P}_{\phi\mu_r}^{(r)}; r > 0\}$ are tight on $\mathbb{D}([0,\infty), \mathbb{R}^d)$ w.r.t. the pseudo-path topology.

Mosco '94: $(\mathcal{E}^n, \mathcal{F}^n)$ and $(\mathcal{E}, \mathcal{F})$ DFs on $L^2(\mathcal{X}; m)$. Then P_t^n strongly converges to P_t in $L^2(\mathcal{X}; m)$ for every t > 0 if and only if $(\mathcal{E}^n, \mathcal{F}^n)$ is Mosco-convergent to $(\mathcal{E}, \mathcal{F})$.

Set $\mathcal{E}(u, u) = \infty$ for $u \notin \mathcal{F}$.

Definition

 $\begin{array}{l} (\mathcal{E}^{n}, \mathcal{F}^{n}) \text{ is Mosco-convergent to } (\mathcal{E}, \mathcal{F}) \text{ if} \\ (i) \ u_{n} \rightarrow u \text{ weakly in } L^{2} \Longrightarrow \mathcal{E}(u, u) \leq \liminf_{n} \mathcal{E}^{n}(u, u). \\ (ii) \text{ For any } u \in \mathcal{F}, \ \exists u_{n} \rightarrow u \text{ strongly in } L^{2} \text{ with} \\ \mathcal{E}(u, u) \geq \limsup_{n} \mathcal{E}^{n}(u_{n}, u_{n}). \end{array}$

Mosco '94: $(\mathcal{E}^n, \mathcal{F}^n)$ and $(\mathcal{E}, \mathcal{F})$ DFs on $L^2(\mathcal{X}; m)$. Then P_t^n strongly converges to P_t in $L^2(\mathcal{X}; m)$ for every t > 0 if and only if $(\mathcal{E}^n, \mathcal{F}^n)$ is Mosco-convergent to $(\mathcal{E}, \mathcal{F})$.

Set $\mathcal{E}(u, u) = \infty$ for $u \notin \mathcal{F}$.

Definition

$$\begin{array}{l} (\mathcal{E}^n, \mathcal{F}^n) \text{ is Mosco-convergent to } (\mathcal{E}, \mathcal{F}) \text{ if} \\ (\text{i) } u_n \to u \text{ weakly in } L^2 \Longrightarrow \mathcal{E}(u, u) \leq \liminf_n \mathcal{E}^n(u, u). \\ (\text{ii) For any } u \in \mathcal{F}, \exists u_n \to u \text{ strongly in } L^2 \text{ with} \\ \mathcal{E}(u, u) \geq \limsup_n \mathcal{E}^n(u_n, u_n). \end{array}$$

Kuwae-Shioya '03 extended Mosco's result to cases with varying spaces and reference measures. Let $r_n = 2^{-n}$. Specialized to our setting, their result says that Mosco's result continues to holds if

(i) $u_n \in L^2(\mu_{r_n})$ is said to converge weakly to $u \in L^2(\mu)$ if $\int_{\mathbb{R}^d} u_n(x)\phi(x)\mu_{r_n}(dx) \to \int_{\mathbb{R}^d} u(x)\phi(x)\mu(dx)$ for every $\phi \in C_c(\mathbb{R}^d)$.

(ii) $u_n \in L^2(\mu_{r_n})$ is said to converge strongly to $u \in L^2(\mu)$ if there are $v_n \in C_c(\mathbb{R}^d)$ so that $v_n \to u$ in $L^2(\mu)$ and $\|v_n - u_n\|_{L^2(\mu_{r_n})} \to 0.$ Condition (ii) of Mosco convergence is easy to establish. For (i), we have

- (a) $u_n \in L^2(\mu_{r_n})$ converge weakly to $u \in L^2(\mu)$ if and only if $v_n(x) := \frac{1}{|B(x,r_n)|} \int_{B(x,r_n)} u_n(y) dy$ converges weakly to u in $L^2(\mu)$.
- (b) $\mathcal{E}^{(r_n)}(v_n, v_n) \leq \mathcal{E}^{(r_n)}(u_n, u_n).$
- (c) Suffices to consider $\lim_{n} \mathcal{E}^{(r_n)}(v_n, v_n) < \infty$. (d) $\mathcal{E}^{(r)}(f, f) \leq \mathcal{E}^{(r/2)}(f, f)$.

Sketch of the proof for (i)

By Banach-Saks' theorem, taking a subsequence if needed, $w_n = (v_1 + \ldots + v_n)/n$ is $\mathcal{E}^{(r_k)}$ -Cauchy for every $k \ge 1$ and $w_n \to u$ in $\mathcal{L}^2(\mu)$. When $\mu \ll dx$, $w_n \to u$ in $\mathcal{E}^{(r_k)}$ for every $k \ge 1$. So $\mathcal{E}^{(r_k)}(u, u) \le \lim_n \mathcal{E}^{(r_k)}(w_n, w_n) \le \liminf_n \mathcal{E}^{(r_k)}(v_n, v_n)$ $\le \liminf_n \mathcal{E}^{(r_n)}(v_n, v_n) \le \liminf_n \mathcal{E}^{(r_n)}(u_n, u_n).$

Taking $k \to \infty$, we get $u \in W^{1,2}_{loc}(\mathbb{R}^d)$ with

$$\frac{1}{2}\int_{\mathbb{R}^d}|\nabla u(x)|^2dx\leq \liminf_n \mathcal{E}^{(r_n)}(u_n,u_n).$$

So $X^{(2^{-n})}$ converges weakly in pseudo-path topology to the time-changed Brownian motion Y.

They in fact converge in Skorohod topology through a localization argument and a result of Aldous as Y is a continuous local martingale.

Theorem 2 can also be established via Mosco convergence.

Key: μ does not charge on zero capacity sets. Forms \mathcal{E} are the same but with different speed measures.

So $X^{(2^{-n})}$ converges weakly in pseudo-path topology to the time-changed Brownian motion Y.

They in fact converge in Skorohod topology through a localization argument and a result of Aldous as Y is a continuous local martingale.

Theorem 2 can also be established via Mosco convergence.

Key: μ does not charge on zero capacity sets. Forms \mathcal{E} are the same but with different speed measures.

So $X^{(2^{-n})}$ converges weakly in pseudo-path topology to the time-changed Brownian motion Y.

They in fact converge in Skorohod topology through a localization argument and a result of Aldous as Y is a continuous local martingale.

Theorem 2 can also be established via Mosco convergence.

Key: μ does not charge on zero capacity sets. Forms \mathcal{E} are the same but with different speed measures.

When μ locally satisfies

$$\mu(B(x,r)) \leq c r^{d-2+\varepsilon}$$
 for all $r \leq 1$,

 μ does not charge on zero capacity sets. We can obtain locally uniform exit time estimates for $X^{(r)}$ from balls. This together with Hölder regularity of harmonic functions of $X^{(r)}$ enable us to strengthen weak convergence to pointwise starting point.

Thank you!