Stability of Regularized Hastings-Levitov Aggregation in the Subcritical Regime

Amanda Turner Lancaster University

Joint work with James Norris (University of Cambridge) and Vittoria Silvestri (La Sapienza University of Rome)

Bacterial growth in increasingly stressed conditions

Source:

https://users.math.yale.edu/public_html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html

Bacterial growth in increasingly stressed conditions

Source:

 $https://users.math.yale.edu/public_html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacteria.html/People/frame/Fractals/Panorama/Biology/Bacteria/Bacter$

Conformal mapping representation of single particle

Let D_0 denote the exterior unit disk in the complex plane \mathbb{C} and P denote a particle.

There exists a unique conformal mapping $F: D_0 \to D_0 \setminus P$ that fixes ∞ in the sense that

$$F(z) = e^c z + O(1)$$
 as $|z| \to \infty$,

for some c > 0. We use F as a mathematical description of the particle. The (log of the) capacity, c, is a measure of the size of the particle.

Conformal mapping representation of a cluster

- Suppose $P_1, P_2, ...$ is a sequence of particles, where P_n has capacity c_n and attachment angle Θ_n , n = 1, 2, ... Let F_n be the particle map corresponding to P_n .
 - Set $\Phi_0(z) = z$.
 - Recursively define $\Phi_n(z) = \Phi_{n-1} \circ F_n(z)$, for n = 1, 2, ...
- This generates a sequence of conformal maps $\Phi_n : D_0 \to K_n^c$, where $K_{n-1} \subset K_n$ are growing compact sets, which we call clusters.

Cluster formed by iteratively composing mappings

Cluster formed by iteratively composing mappings

$$\Phi_n = \Phi_{n-1} \circ F_n = F_1 \circ F_2 \circ \cdots \circ F_n$$

Parameter choices for physical models

- By varying the sequences $\{\Theta_n\}$ and $\{c_n\}$, it is possible to describe a wide class of growth models.
- For biological growth (Eden model)

$$\mathbb{P}(\Theta_n \in (a,b)) \propto \int_a^b |\Phi'_{n-1}(e^{i\theta})| d\theta$$

and

$$c_n \approx c |\Phi'_{n-1}(e^{i\Theta_n})|^{-2}$$

For DLA, c_n is as above and

$$\mathbb{P}(\Theta_n \in (a,b)) = \mathbb{P}(\Phi_{n-1}^{-1}(B_{\tau}) \in (a,b)) \propto (b-a)$$

where B_t is Brownian motion started from ∞ and τ is the hitting time of the cluster K_{n-1} .

Aggregate Loewner Evolution, $ALE(\alpha, \eta, \sigma)$

 $\bullet \ \, \Theta_n \ \, \text{distributed} \propto |\Phi'_{n-1}(e^{\sigma+i\theta})|^{-\eta}d\theta; \quad \, c_n = c|\Phi'_{n-1}(e^{\sigma+i\Theta_n})|^{-\alpha}.$

Regularization for ALE

- Even after the arrival of a single slit particle, the map $\theta \mapsto |\Phi'_n(e^{i\theta})|$ is badly behaved and takes the values 0 and ∞ .
- For some values of η ,

$$\int_{-\pi}^{\pi} |\Phi'_{n-1}(e^{i\theta})|^{-\eta} d\theta = \infty,$$

so regularization is necessary to even define the measure.

■ A solution is to let Θ_n have distribution

$$\propto |\Phi_{n-1}'(e^{\sigma+i\theta})|^{-\eta}d\theta$$

for $\sigma > 0$ and take the limit $\sigma \to 0$.

■ Models are very sensitive to the rate at which $\sigma \to 0$. Can be argued that $\sigma \sim c^{1/2}$ is natural from a physical point of view.

Universality of particle shapes

The model depends on the choice of a family of basic particles $(P^{(c)}: c \in (0, \infty))$ with $P^{(c)}$ of capacity c. We will require that

$$P^{(c_1)} \subset P^{(c_2)}$$
 for $c_1 < c_2$

and, for some $\Lambda \in [1, \infty)$,

$$\sup\{|z-1|: z \in P^{(c)}\} \le \Lambda \sup\{|z|-1: z \in P^{(c)}\} \quad \text{for all } c.$$

For small c, the second condition forces the particles to concentrate near the point 1 while never becoming too flat against the unit circle.

Phase transition

Open Problem:

Does ALE(α, η, σ) exhibit a phase transition from disks to non-disks along the line $\alpha + \eta = 1$ in the limit as $c \to 0$ (for 'broad' choices of the regularization parameter σ)?

- Longstanding conjectures:
 - $HL(\alpha)$ has a phase transition at $\alpha = 1$.
 - DBM(η) has a phase transition at $\eta = 0$.

ALE(0,0,0) cluster with 25,000 particles for $c = 10^{-4}$

ALE(1,0,0.02) cluster with 25,000 particles for $c = 10^{-4}$

ALE(1.5,0,0.02) cluster with 25,000 particles for $c = 10^{-4}$

ALE(2,0,0.02) cluster with 25,000 particles for $c = 10^{-4}$

Loewner chain representation

Define the driving measure $\mu_t = \delta_{\mathrm{e}^{i\xi_t}}$, where

$$\xi_t = \sum_{k=1}^N \Theta_k 1_{(C_{k-1}, C_k]}(t),$$

with $C_k = \sum_{j=1}^k c_k$, for angles $\{\Theta_k\}$ and capacities $\{c_k\}$ as above.

Consider the solution to the Loewner equation

$$\partial_t \Psi_t(z) = z \Psi_t'(z) \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} d\mu_t(e^{i\theta}),$$

with initial condition $\Psi_0(z) = z$.

Then (for slit particles, but general case similar)

$$\Phi_n = \Psi_{C_n}, \quad n = 0, 1, 2, \dots$$

Continuity properties of the Loewner equation

- Solutions to the Loewner equation are close if the driving measures are close in some suitable sense.
 - Suppose $\mu^n = \{\mu_t^n\}_{t\geq 0}, n = 1, 2, \dots$, and $\mu = \{\mu_t\}_{t\geq 0}$ are families of measures on the unit circle \mathbb{T} .
 - Let Ψ_t^n be the solution to the Loewner equation corresponding to μ^n and Ψ_t be the solution corresponding to μ .
 - To show that $\Psi_t^n \to \Psi_t$ uniformly on compact subsets of D_0 , it is enough to show that

$$\int_{\mathbb{T}\times[0,\infty)} f(e^{i\theta},t) d\mu_t^n(e^{i\theta}) dt \to \int_{\mathbb{T}\times[0,\infty)} f(e^{i\theta},t) d\mu_t(e^{i\theta}) dt$$

for all continuous functions f in $\mathbb{T} \times [0, \infty)$ with compact support.

Example: Anisotropic Hastings-Levitov

- Suppose Θ_n are i.i.d. with density $h(\theta)$ on $[0, 2\pi)$.
- Suppose $c_n = cg(\Theta_n)$, for some bounded continuous function g on $[0, 2\pi)$.
- Let Ψ_t solve

$$\partial_t \Psi_t(z) = z \Psi_t'(z) \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} g(\theta) h(\theta) d\theta,$$

with initial condition $\Psi_0(z) = z$.

Theorem (Viklund, Sola, T. '12): Fix T > 0. As $c \to 0$, $\Phi_{|T/c|} \to \Psi_T$ in probability.

Clusters with non-uniform attachment angles

Heuristic for ALE scaling limit

- ALE does not fit into the framework above as the attachment densities and capacities are random and depend on the cluster.
- Nevertheless, the same heuristic suggests that a candidate scaling limit for $\Phi_{|T/c|}$ is the solution Ψ_t to

$$\partial_t \Psi_t(z) = \frac{z \Psi_t'(z)}{Z_t} \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} |\Psi_t'(e^{i\theta})|^{-(\alpha + \eta)} d\theta,$$

with initial condition $\Psi_0(z) = z$, where

$$Z_t = \int_0^{2\pi} |\Psi_t'(e^{i\theta})|^{-\eta} d\theta.$$

• It is straightforward to check that $\Psi_t(z) = (1+\alpha t)^{1/\alpha}z$.

Stability of the dynamics

- The randomness in ALE introduces perturbations around the disk solution.
- Depending on the stability of the Loewner equation, these perturbations can be suppressed or amplified by the PDE dynamics.
- The factor Z_t just induces a time-change, so does not affect the stability.
- Stability therefore depends only on $\alpha + \eta$.
- Simulations suggest a transition between stable and unstable dynamics at $\alpha + \eta = 1$.

Analysis of the stability

Set

$$a(\phi)(z) = \frac{z\phi'(z)}{2\pi} \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} \left| \phi'(e^{i\theta}) \right|^{-\zeta} d\theta.$$

Then

$$a(\phi + \varepsilon \psi)(z) = a(\phi) + \varepsilon \left(z\psi'(z)h(z) - \zeta z\phi'(z)g(z)\right) + o(\varepsilon)$$

where

$$h(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} |\phi'(e^{i\theta})|^{-\zeta} d\theta$$

and, setting $\rho = \psi'/\phi'$,

$$g(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} |\phi'(e^{i\theta})|^{-\zeta} \Re \rho(e^{i\theta}) d\theta.$$

Linear stability of disk solutions in the subcritical case

Suppose $\phi_t(z) = e^{\tau_t}z$ where $\tau_t = \zeta^{-1}\log(1+\zeta t)$.

Then ϕ_t solves $\partial_t \phi_t = a(\phi_t)$ with initial condition $\phi_0(z) = z$.

The integrals h and g can be explicitly evaluated as

$$h(z) = e^{-\zeta \tau_t}$$
 and $g(z) = e^{-(1+\zeta)\tau_t} \psi'(z)$

so, by equating coefficients of ε in $\partial_t(\phi_t + \varepsilon \psi_t) = a(\phi_t + \varepsilon \psi_t)$, the first order variations ψ_t around the solution ϕ_t can be expected to satisfy the linearized equation

$$\partial_t \psi_t = (1 - \zeta) z \psi_t'(z) e^{-\zeta \tau_t} = (1 - \zeta) z \psi_t'(z) \dot{\tau}_t.$$

Linear stability of disk solutions in the subcritical case

■ Formally, this has solution

$$\psi_t(z) = \psi_0\left(e^{(1-\zeta)\tau_t}z\right).$$

- In the case $\zeta > 1$, ψ_t can be holomorphic in $\{|z| > 1\}$ only if ψ_0 extends to a holomorphic function in the larger domain $\{|z| > e^{-(\zeta-1)\tau_t}\}$.
- In particular, if ψ_0 has singularities on the boundary $\{|z|=1\}$, then the variation blows up immediately.
- When $\zeta \in [0,1]$, the variation ψ_t is holomorphic in $\{|z| > 1\}$ for all t and, when $\zeta < 1$, gets more regular as t increases.

Disk theorem for ALE(α, η, σ) when $\alpha + \eta < 1$

Theorem (Norris, Silvestri, T.):

For all $T\in [0,\infty)$, $\epsilon\in (0,1/2)$ and $e^{\sigma}\geq 1+c^{1/2-\epsilon}$, there exists a constant C such that, with high probability, for all $n\leq T/c$ and $|z|\geq 1+c^{1/2-\epsilon}$,

$$|\Phi_n(z) - (1 + \alpha cn)^{1/\alpha} z| \leq \frac{C}{|z|} \left(c^{1/2 - \epsilon} + \frac{c^{1 - \epsilon}}{(e^{\sigma} - 1)^2} \right).$$

Disk theorem for ALE(α, η, σ) when $\alpha + \eta = 1$

Theorem (Norris, Silvestri, T.):

For all $T \in [0,\infty)$, $\epsilon \in (0,1/5)$ and $e^{\sigma} \geq 1 + c^{1/5-\epsilon}$, there exists a constant C such that, with high probability, for all $n \leq T/c$ and $|z| \geq 1 + c^{1/5-\epsilon}$,

$$|\Phi_n(z)-(1+\alpha cn)^{1/\alpha}z|\leq \frac{C}{|z|}\left(c^{1/2-\epsilon}\left(\frac{|z|}{|z|-1}\right)^{1/2}+\frac{c^{1-\epsilon}}{(e^{\sigma}-1)^3}\right).$$

Fluctuations for ALE(α, η, σ) when $\alpha + \eta \leq 1$

Set

$$\mathcal{F}_{n}^{(c)}(z) = c^{-1/2}((1 + \alpha cn)^{-1/\alpha}\Phi_{n}(z) - z)$$

and let $n(t) = \lfloor t/c \rfloor$.

Under the assumptions above (but with slightly stronger restrictions on σ), $\mathcal{F}_{n(t)}^{(c)}(z) \to \mathcal{F}_{t}(z)$ where

$$\dot{\mathcal{F}}_t(z) = \frac{1}{1+\alpha t} \left((1-\alpha-\eta)z \mathcal{F}'_t(z) - \mathcal{F}_t(z) + \sqrt{2}\xi_t(z) \right).$$

Here $\xi_t(z)$ is complex space-time white noise on the circle, analytically continued to the exterior unit disk.

Fluctuations for ALE(α, η, σ) when $\alpha + \eta \leq 1$

Specifically

$$\mathcal{F}_t(z) = \sum_{m=0}^{\infty} (A_t^m + iB_t^m) z^{-m}$$

where

$$dA_t^m = -\frac{(m(1-\alpha-\eta)+1)A_t^m}{1+\alpha t}dt + \frac{\sqrt{2}}{1+\alpha t}d\beta_t^m$$

$$dB_t^m = -\frac{(m(1-\alpha-\eta)+1)B_t^m}{1+\alpha t}dt + \frac{\sqrt{2}}{1+\alpha t}d\beta_t^{\prime m}.$$

Here $\beta_t^m, \beta_t'^m$ are i.i.d. Brownian motions for $m=0,1,\ldots$, so

$$A_t^m, B_t^m \sim \mathcal{N}\left(0, rac{1 - e^{-2(m(1 - lpha - \eta) + 1) au_t}}{m(1 - lpha - \eta) + 1}
ight).$$

Remarks

- The map $z \mapsto \mathcal{F}_t(z)$ is determined (by analytic extension) by the boundary process $\theta \mapsto \mathcal{F}_t(e^{i\theta})$.
- When $\alpha = \eta = 0$, these boundary fluctuations are the same as for internal diffusion limited aggregation (IDLA).
- As $t \to \infty$, $\mathcal{F}_t(e^{i\theta})$ converges to a Gaussian field.
 - When $\alpha + \eta = 0$, $\mathcal{F}_{\infty}(e^{i\theta})$ is known as the augmented Gaussian Free Field.
 - When $\alpha + \eta < 1$, $\operatorname{Cov} \left(\mathcal{F}_{\infty}(e^{ix}), \mathcal{F}_{\infty}(e^{iy}) \right) \asymp \log |x y|$.
 - When $\alpha + \eta = 1$, $\mathcal{F}_{\infty}(e^{i\theta})$ is complex white noise.

Idea behind the proof

Using the particle assumptions one can show that

$$\log \frac{F_n(z)}{z} = c_n \frac{z e^{-i\Theta_n} + 1}{z e^{-i\Theta_n} - 1} + O(c_n^{3/2}).$$

Therefore

$$\begin{split} \Phi_n(z) &= \Phi_{n-1}(F_n(z)) \\ &= \Phi_{n-1}(z) + z \Phi'_{n-1}(z) (\log F_n(z) - \log z) + \cdots \\ &= \Phi_{n-1}(z) + cz \Phi'_{n-1}(z) |\Phi'_{n-1}(e^{\sigma + i\Theta_n})|^{-\alpha} \frac{ze^{-i\Theta_n} + 1}{ze^{-i\Theta_n} - 1} + O(c^{3/2}). \end{split}$$

Idea behind the proof

Now

$$\mathbb{E}\left(z\Phi'_{n-1}(z)|\Phi'_{n-1}(e^{\sigma+i\Theta_{n}})|^{-\alpha}\frac{ze^{-i\Theta_{n}}+1}{ze^{-i\Theta_{n}}-1}\Big|\mathcal{F}_{n-1}\right)$$

$$=\frac{z\Phi'_{n-1}(z)}{Z_{n}}\int_{0}^{2\pi}|\Phi'_{n-1}(e^{\sigma+i\theta})|^{-(\alpha+\eta)}\frac{ze^{-i\theta}+1}{ze^{-i\theta}-1}d\theta$$

$$:=a_{\sigma}(\Phi_{n-1})(z)$$

SO

$$\frac{\Phi_n(z) - \Phi_{n-1}(z)}{c} = a_{\sigma}(\Phi_{n-1})(z) + M_n(z) + O(c^{1/2})$$

where $M_n(z)$ is a martingale difference term.

Idea behind the proof

For
$$\phi_t(z) = (1 + \alpha t)^{1/\alpha} z = e^{\tau_t} z$$
, write

$$\Phi_n(z) = \phi_{nc}(z) + \mathcal{M}_n(z).$$

Using the variational solution from earlier with $\zeta = \alpha + \eta$ gives

$$\mathcal{M}_n(z) \approx \mathcal{M}_{n-1} \left(e^{(1-\zeta)(\tau_{nc}-\tau_{(n-1)c})} \right) + \mathcal{M}_n(z)$$

$$= \sum_{k=1}^n \mathcal{M}_k \left(e^{(1-\zeta)(\tau_{nc}-\tau_{kc})} z \right).$$

The scaling limit and fluctuation results follow from an analysis of the martingale and estimates on the errors.

References

- [1] M.B.Hastings and L.S.Levitov, *Laplacian growth as one-dimensional turbulence*, Physica D 116 (1998).
- [2] F.Johansson Viklund, A.Sola, A.Turner, *Scaling limits of anisotropic Hastings–Levitov clusters*, AIHP, 48 (2012).
- [3] J.Norris, V.Silvestri, A.Turner, Scaling limits for planar aggregation with subcritical fluctuations, arXiv:1902.01376.
- [4] J.Norris, V.Silvestri, A.Turner, *Stability of regularized Hastings-Levitov aggregation in the subcritical regime*, arXiv:2105.09185.
- [5] V.Silvestri, *Fluctuation results for Hastings-Levitov planar growth.* PTRF, 167 (2017).

