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Physical motivati

Bacterial growth in increasingly stressed conditions

Source:
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Conformal models for planar random growth

Conformal mapping representation of single particle

Let Dy denote the exterior unit disk in the complex plane C and P
denote a particle.

There exists a unique conformal mapping F : Dy — Dg \ P that
fixes 0o in the sense that

F(z) =ez+ O(1) as |z| = oo,

for some ¢ > 0. We use F as a mathematical description of the
particle. The (log of the) capacity, c, is a measure of the size of
the particle.
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Conformal models for planar random growth

Conformal mapping representation of a cluster

m Suppose P, P>, ... is a sequence of particles, where P, has
capacity ¢, and attachment angle ©,, n=1,2,.... Let F, be
the particle map corresponding to P,.

m Set $o(z) = z.
m Recursively define ¢,(z) = ®,_1 0 F,(z), for n =1,2,....

m This generates a sequence of conformal maps &, : Dy — K¢,
where K,_1 C K}, are growing compact sets, which we call
clusters.
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Conformal models for planar random growth

Cluster formed by iteratively composing mappings
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Conformal models for planar random growth

Cluster formed by iteratively composing mappings

¢, =P, 01y = Fiolyo---0F,

Amanda Turner Lancaster University

Stability of Regularized Hastings-Levitov Aggregation in the Subcritical Regime



Conformal models for planar random growth

Parameter choices for physical models

m By varying the sequences {©,} and {c,}, it is possible to
describe a wide class of growth models.
m For biological growth (Eden model)

b .
P(© € (a.) o [ [ 4(c™)]a
a
and '
cn  c|®),_1(e"07)72
m For DLA, ¢, is as above and
P(©, € (a, b)) = P(d,1,(B;) € (a, b)) x (b — a)

where B; is Brownian motion started from oo and 7 is the
hitting time of the cluster K,_1.
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Conformal models for planar random growth

Aggregate Loewner Evolution, ALE(«, 7, o)

m O, distributed oc | _;(e“H)|7"dO; ¢, = c|P!_;(e”HOn)|7*,

n
DBM(n+1)
N
"Real ALE"
region?
HL(0) . ]oa
HL(@) 0 H 2 (]
\‘ Eden
= l\\
"QLE(0,n -1)'|
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Conformal models for planar random growth

Regularization for ALE

m Even after the arrival of a single slit particle, the map
0 > | (e')| is badly behaved and takes the values 0 and oo.

m For some values of 7,

" i0

/ —
/ |¢n*1(el )| dO = 0,
—Tr
so regularization is necessary to even define the measure.

m A solution is to let ©, have distribution

oc |, _1(e7H7)["db

for o > 0 and take the limit 0 — 0.

m Models are very sensitive to the rate at which ¢ — 0. Can be
argued that o ~ ¢1/2 is natural from a physical point of view.
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Conformal models for planar random growth

Universality of particle shapes

The model depends on the choice of a family of basic particles
(P(e) : ¢ € (0,00)) with P(€) of capacity c. We will require that
ple) ¢ Pl for ¢ < o
and, for some A € [1, 00),
sup{|z—1]:z € PO} < Asup{|z| —1:z € P} forall c.

For small ¢, the second condition forces the particles to
concentrate near the point 1 while never becoming too flat against
the unit circle.
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Conformal models for planar random growth

Phase transition

Open Problem:

Does ALE(a, 7, o) exhibit a phase transition from disks to
non-disks along the line & + 1 = 1 in the limit as ¢ — 0 (for
‘broad’ choices of the regularization parameter o)?

m Longstanding conjectures:

m HL(«) has a phase transition at o = 1.
m DBM(7) has a phase transition at = 0.
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ALE(0,0,0) cluster with 25,000 particles for ¢ = 10~*

Simulation by Alan Sola
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ALE(1,0,0.02) cluster with 25,000 particles for c = 10~*

Simulation by Alan Sola
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ALE(1.5,0,0.02) cluster with 25,000 particles for ¢ = 10~*

Simulation by Alan Sola
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ALE(2,0,0.02) cluster with 25,000 particles for c = 10~*

Simulation by Alan Sola
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Loewner chain analysis

Loewner chain representation

Define the driving measure p; = d,ie,, where

N
§t = Z Oxl(c, 1,cq(t),
k=1
with G, = Zﬁ:l ¢k, for angles {©} and capacities {cx} as above.

Consider the solution to the Loewner equation

0tV(z) = z\IJ;(z)/O

with initial condition Wo(z) = z.

2Wz+ei9
z— el

dlu’t(em)v

Then (for slit particles, but general case similar)
b, =V, n=0,1,2,....
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Loewner chain analysis

Continuity properties of the Loewner equation

m Solutions to the Loewner equation are close if the driving
measures are close in some suitable sense.

m Suppose p" = {uf}ti>0, n=1,2,..., and p = {us}e>0 are
families of measures on the unit circle T.

m Let W] be the solution to the Loewner equation corresponding
to u" and W, be the solution corresponding to p.

m To show that W] — W, uniformly on compact subsets of Dy, it
is enough to show that

/ (e t)du?(e)dt — f(e”, t)du.(e")dt
Tx[0,00) Tx[0,00)

for all continuous functions f in T x [0, 00) with compact
support.
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Loewner chain analysis

Example: Anisotropic Hastings-Levitov

m Suppose O, are i.i.d. with density h(#) on [0, 27).
m Suppose ¢, = cg(©,), for some bounded continuous function

g on [0,27).
m Let V; solve
2 i
BeV(2) = 2V'(2) / Z*Zm (8)h(8)d9,
0o 22—

with initial condition Wy(z) = z.

Theorem (Viklund, Sola, T. '12): Fix T > 0. As ¢ — 0,
®|7/c) = Wt in probability.
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Loewner chain analysis

Clusters with non-uniform attachment angles

Simulations by Alan Sola
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Loewner chain analysis

Heuristic for ALE scaling limit

m ALE does not fit into the framework above as the attachment
densities and capacities are random and depend on the cluster.

m Nevertheless, the same heuristic suggests that a candidate
scaling limit for ®| /.| is the solution W to

Zw/t(z) 27rz+ei0 1 ( A0V —(a+n)
oi(z) = 252 [T IS e,

with initial condition Wo(z) = z, where
27 .
Ze= [ 1Wi(e) s,
0

m It is straightforward to check that W,(z) = (1 4 at)¥/*z.
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Loewner chain analysis

Stability of the dynamics

m The randomness in ALE introduces perturbations around the
disk solution.

m Depending on the stability of the Loewner equation, these
perturbations can be suppressed or amplified by the PDE
dynamics.

m The factor Z; just induces a time-change, so does not affect
the stability.

m Stability therefore depends only on o + 7.

m Simulations suggest a transition between stable and unstable
dynamics at « +n = 1.

Amanda Turner Lancaster University

Stability of Regularized Hastings-Levitov Aggregation in the Subcritical Regime



Loewner chain analysis

Analysis of the stability

Set
2(2) (2T 7+ elf o
a(¢)(z) = q;(r )/ Zfeie ¢’(e'9)’ ‘0.
Then
a(¢ +e)(z) = a(¢) + e (2¢'(2)h(2) — (2¢/(2)g(2)) + o(e)
where

1 27 z 4+ ei@ P
Ha) = 5 [ Sl <o

and, setting p = v¢'/¢/,
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Loewner chain analysis

Linear stability of disk solutions in the subcritical case

Suppose ¢;(z) = etz where 7, = ("Llog(1 + (t).
Then ¢¢ solves 0:¢+ = a(¢p:) with initial condition ¢g(z) = z.
The integrals h and g can be explicitly evaluated as

h(z)=e " and g(z) = e (HI7ty/(2)

so, by equating coefficients of ¢ in 9:(d: + etbr) = a(Pt + e1t), the
first order variations ; around the solution ¢; can be expected to
satisfy the linearized equation

O = (1 — Q)zei(2)e™ ™ = (1 — Q) zp}(2) 7.
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Loewner chain analysis

Linear stability of disk solutions in the subcritical case

m Formally, this has solution
belz) = o (e7972).

m In the case { > 1, ¥+ can be holomorphic in {|z| > 1} only if

g extends to a holomorphic function in the larger domain
{|z| > e~ (€17}

m In particular, if ¥y has singularities on the boundary {|z| = 1},
then the variation blows up immediately.

m When ¢ € [0, 1], the variation ) is holomorphic in {|z| > 1}
for all t and, when ¢ < 1, gets more regular as t increases.
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Disk theorem for ALE(a, 7, 0) when a+1n < 1

Theorem (Norris, Silvestri, T.):

For all T €[0,00), € € (0,1/2) and e” > 1 + c'/27¢, there exists a
constant C such that, with high probability, for all n < T /c and
|z| > 1+ /2,

C cl—e
_ Vay o = (t/2mey &
|®,(z) — (14 acn) /2] < 7 (c + (e = 1)2> .
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Disk theorem for ALE(«,n,0) when av + 1 =1

Theorem (Norris, Silvestri, T.):

For all T €[0,00), € € (0,1/5) and e” > 1 + c'/57¢, there exists a
constant C such that, with high probability, for all n < T /c and
2] > 1+ cV/5e,

1/2 1—e
9 cl/2—e 2| + ¢ ‘
|| z] -1 (7 —1)3

| n(2)—(1+acn)z| <
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Fluctuations for ALE(a, 7, 0) when aa+1n <1

Set

Fiz) = ¢ Y2((1 4 acn) V0, (2) — 2)
and let n(t) = |t/c].
Under the assumptions above (but with slightly stronger

restrictions on o), Fl) (z) = Fe(z) where

n(t)

_ 1
1+ at

Fi(2) (@ -a=-nzFiz) - Fi(2) + V26:(2)).

Here £:(z) is complex space-time white noise on the circle,
analytically continued to the exterior unit disk.
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Fluctuations for ALE(a, 7, 0) when aa+1n <1

Specifically
Fe(z) =D (AT +iB[")
m=0
where
dAm _( (1—04_77)+1)Am f dﬁm
' 1+ at 1+ f
l-a-n)+1)B f
dB[" = (m( 4 dt + ——d
' 1+at T Trat g
Here 87", By are i.i.d. Brownian motions for m=0,1,..., so

1— —2(m(l—a—n)+1)7:
AP B~ N (0, °

m(l—a—-n)+1
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Remarks

m The map z — F¢(z) is determined (by analytic extension) by
the boundary process 0 — F;(e').

m When oo = n = 0, these boundary fluctuations are the same as
for internal diffusion limited aggregation (IDLA).

m As t — oo, Fi(e'®) converges to a Gaussian field.

m When a + 7 =0, Fo(e) is known as the augmented
Gaussian Free Field.

m When a + 1 < 1, Cov (Fuo(e™), Fuo(e¥)) < log|x — y|.

m When o+ 7 =1, Fo(e'?) is complex white noise.
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Idea behind the proof

Using the particle assumptions one can show that

Fn(z) ze ©n 41
"ze=1®n — 1

+ O(c,?/z).

Amanda Turner Lancaster University

Stability of Regularized Hastings-Levitov Aggregation in the Subcritical Regime



Idea behind the proof

Now
—i©
. n4+1
E P’ P’ o+i®p 70126.7 o
A e e
z® . (z) [?7 ; zem 0 41
_ n— @’ o+i0\|—(a+n) i
A G
= a0(®n-1)(2)
so

®,(z) — Ppoi(2)

= 2,(Pn_1)(2) + Mn(2) + O(c'/?)

where M,(z) is a martingale difference term.
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Idea behind the proof

For ¢¢(z) = (1 4 at)/@z = eTtz, write
®,(2) = Pne(z) + Mp(2).

Using the variational solution from earlier with { = a4+ 7 gives

My(2) & My (0700 T0-0e)) 4 My (2)

- - (1=)(Tne—Tie) |
; M, (e k z)

The scaling limit and fluctuation results follow from an analysis of
the martingale and estimates on the errors.
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