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Jeju Workshop
Spring or Summer 2023, Jeju island, Korea

Jeju island has three UNESCO World Heritage sites. It is packed with museums and
theme parks and has horses, mountains, lava tube caves, and waterfalls with a clear
blue ocean lapping its beaches.
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CFT and SLE
I (with N. Makarov) Gaussian free field and conformal field theory, Astérisque

353 (2013), viii+136 pages.

I CFT is a provider for SLE MOs: Bauer-Bernard, Cardy, Kytölä,
Rushkin-Bettelheim-Gruzberg-Wiegmann, etc.

I (with N. Makarov) CFT on the Riemann sphere and its boundary version for SLE
I (with S. Byun and H. Tak) CFT for annulus SLE: partition functions and MOs

I CFT for multiple SLEs (with T. Alberts and N. Makarov)

I Physics literature: Bauer-Bernard-Kytölä, Cardy, Graham, etc.
I Pole dynamics and an integral of motion for multiple SLE(0)
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Outline
I to implement a version of CFT constructed from background charge

modifications of Gaussian free field,

I to define N-leg operators φ1,2(x1)φ2,1(x2) . . . producing multiple SLEs growing
towards∞ and insertion fields producing commuting multiple SLEs,

I to show that this version produces a collection of martingale-observables for
commuting multiple SLEs,

I to explain how this theory is related to Tom Albert’s talk on “Loewner
Dynamics for Real Rational Functions and the Multiple SLE(0) Process.”
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Single SLE v.s. Multiple SLEs

Single Interface v.s. Double Interfaces

Single SLE6 v.s. Double SLE6s
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Multiple Schramm-Loewner Evolutions
with force points

Commuting multiple SLEs describe multiple interfaces:

∂tgt(z) =

N∑
j=1

2µj(t)
gt(z)− ξj(t)

,

where the driving processes ξ(t) are given by

dξj(t) =
√
κjµj(t) dBj(t)+2bj(ξ(t), q(t))µj(t) dt+

∑
k 6=j

2µk(t)
ξj(t)− ξk(t)

dt, bj =
κj

2
∂ξj Z

Z
,

κj = κ, or κ̃ := 16/κ and a partition function Z satisfies the null vector equation:

κj

4
∂2
ξj Z =

∑
k 6=j

∂ξk Z
ξj − ξk

+
∑

l

∂ql Z
ξj − ql

+
∑
k 6=j

6− κk

2κk

1
(ξj − ξk)2 Z + E Tβ(ξj)Z,

where Tβ is the Virasoro field with background charge β placed at the force points q :

E Tβ(ξ) =
∑

k

λqk

(ξ − qk)2 +
∑
j<k

βjβk

(ξ − qj)(ξ − qk)
, λqk =

1
2
β2

k − bβk.
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Dubedát’s Commutation Relations

Theorem (Dubedát) [Re-sampling symmetry] Multiple SLE commutes if and only if

[Lj,Lk] =
2

(ξj − ξk)2 (Lk − Lj),

where the infinitesimal generators Lj are given by

Lj :=
κj

4
∂2
ξj + bj(ξ, q)∂ξj +

∑
k 6=j

∂ξk

ξk − ξj
+
∑

l

∂ql

ql − ξj
, bj =

κj

2
∂ξj Z

Z
.

Remark. Null vector equation =⇒ commutation relations.
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Operator Product Expansion (OPE)

I BPZ equations hold for product of fields in the OPE family of Φ.
I We define the N-leg operators in terms of the OPE exponentials.

We write the OPE of two (holomorphic) fields X(ζ) and Y(z) as

X(ζ)Y(z) =
∑

Cj(z)(ζ − z)j (ζ → z, ζ 6= z).

Write X ∗ Y for C0. Meaning: E LHSX = E RHSX for X = Φ(z1)� · · · � Φ(zn).

Example for the current field J = ∂Φ. In terms of a conformal map w : D→ H,

J(ζ)J(z) = E[J(ζ)J(z)] + J(ζ)� J(z) = − w′(ζ)w′(z)
(w(ζ)− w(z))2 + J(ζ)� J(z)

= − 1
(ζ − z)2 −

1
6

Sw(z) + J(z)� J(z)︸ ︷︷ ︸+ · · · (ζ → z, ζ 6= z).

J ∗ J(z)

Example. Φ∗2 = Φ�2 + 2c, c = log C.
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Background Charge Modifications of GFF
in a simply connected domain

qk

q
w

w(qk)

∞

Given a background charge β =
∑

k βk · qk + β∞ · q placed at the marked boundary
points qk, q with the neutrality condition (NCb: β∞ +

∑
k βk = 2b)

Φβ := Φ + ϕβ, ϕβ := −2b arg w′ +
∑

k

2βk arg(w− w(qk)),

where w is a conformal map from (D, q) onto (H,∞) and

b = a(κ/4− 1), a =
√

2/κ, c = 1− 12b2.

Motivation. The OPE exponentials of Φβ are differentials.

Remark. The neutrality condition NCb comes from the Gauss-Bonnet theorem.
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Virasoro field

The OPE family Fβ of Φβ has the central charge c = 1− 12b2 and the Virasoro field

Tβ = −1
2

Jβ ∗ Jβ + ib∂Jβ, Jβ = J + jβ, J = ∂Φ, jβ = ∂ϕβ.

It is well known in the algebraic literature that if the generators L̃n are constructed as

L̃n = Ln − ib(n + 1)Jn,

where Jn’s and Ln’s are the modes of the current field J and the Virasoro field
T = − 1

2 J ∗ J :

Jn(z) :=
1

2πi

∮
(z)

(ζ − z)nJ(ζ) dζ, Ln(z) :=
1

2πi

∮
(z)

(ζ − z)n+1T(ζ) dζ.

then L̃n represent the Virasoro algebra with central charge c = 1− 12b2 :

[L̃m, L̃n] = (m− n)L̃m+n +
c

12
m(m2 − 1)δm+n,0.

One can identify L̃n with the modes of Tβ :

L̃n(z) =
1

2πi

∮
(z)

(ζ − z)n+1 Tβ(ζ) dζ.
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Chiral bosonic fields

Definition. Φ+(γ) =

∫
γ

∂Φ(ζ) dζ.

Then Φ+(z, z0) := {Φ+(γ) : z0 −→
γ

z} is a multivalued field.

Cf. Mikhail Sodin’s talk on Random Weierstrass Zeta-Functions.

In H,

E[J(z)J(ζ)] = − 1
(ζ − z)2 , E[Φ+(z, z0)J(ζ)] = − 1

ζ − z
+

1
ζ − z0

and

E[Φ+(z, z0)Φ
+(̃z, z̃0)] = log

(z− z̃0)(z0 − z̃)
(z− z̃)(z0 − z̃0)

.
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Chiral bosonic fields

For τ =
∑
τj · zj, τ ∗ =

∑
τ∗j · zj, we define formal fields

Φ[τ , τ ∗] =
∑

τjΦ
+(zj)− τ∗jΦ

−(zj), Φ+[τ ] = Φ[τ , 0],

where Φ± have formal correlations:

E[Φ+(ζ)Φ+(z)] = log
1

ζ − z
, E[Φ+(ζ)Φ−(z)] = log(ζ − z̄) in H

and the relations Φ− = Φ+,Φ = Φ+ + Φ−.

Remark. Φ[τ , τ ∗] is a well-defined Fock space field if and only if∑
τj + τ∗j = 0 (NC0).

Examples. Φ+(z)− Φ+(z0) = Φ+(z, z0), Φ+(z) + Φ−(z) = Φ(z).

12/ 40



OPE exponentials

Given a background charge β =
∑

k βk · qk with the neutrality condition (NCb) and a
divisor τ =

∑
j τj · zj with the neutrality condition (NC0), we define the OPE

exponential Oβ[τ ] of the bosonic field iΦ+
β [τ ] by

Oβ[τ ] :=
C(b)[τ + β]

C(b)[β]
e�iΦ+[τ ],

where Φ+[τ ] :=
∑
τj Φ+(zj) and for σ =

∑
σj · zj ∈ (NCb), C(b)[σ] is a

differential of conformal dimension 1
2σ

2
j − bσj at zj whose evaluation in the identity

chart of H is given by ∏
j 6=k

(zj − zk)
σjσk .

If supp τ ∩ suppβ = ∅, then

EOβ[τ ] =
∏
j 6=k

(zj − zk)
τjτk
∏
j,k

(zj − qk)
τjβk

in the identity chart of H. (No interactions between qk’s.)
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N-leg operators

For the N-leg operators, we choose (β = 2b · q and)

τ =
∑

aj·ξj−(
∑

aj)·q, aj = a :=
√

2/κ or ã := −a−b = −
√
κ/8 ≡ −

√
2/κ̃,

where b = a(κ/4− 1), a =
√

2/κ. With this choice, Oβ[τ ] satisfies the level two
degeneracy equations: (

L̃−2(ξj)−
κj

4
L̃−1(ξj)

2
)
Oβ[τ ] = 0,

where κj = κ if aj = a and κj = κ̃ if aj = ã.

Furthermore, the partition function Zβ[τ ] := EOβ[τ ] satisfies the null vector
equation.
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Main Theorem

Let

Ψ(ξ, q) :=
Oβ[τ ]

EOβ[τ ]
=
Oβ[τ ]

Zβ[τ ]
, τ :=

∑
aj · ξj − (

∑
aj) · ∞.

Theorem (Alberts-K-Makarov)
For any tensor product X of fields in the OPE family Fβ of Φβ ,

Mt = (EΨ(ξ, q)X ‖ g−1
t )
∣∣∣
ξ=ξ(t),q=q(t)

is a local martingale.

The level two degeneracy equations + Ward’s equations = BPZ-Cardy equations.

Theorem (Ward’s equations)
For the tensor product X of fields in the OPE family Fβ, in the identity chart of H,

E Aβ(ξ)X = ELvξX, Aβ = Tβ − E Tβ, vξ(z) =
1

ξ − z
, ξ ∈ R,

where the Virasoro field is given by Tβ = − 1
2 Jβ ∗ Jβ + ib∂Jβ .
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Screening
It is well known that all solutions to the null vector equation can be obtained from the
method of screening, see Dubedát, and Flores-Kleban. (Cf. Kytölä and Peltola used a
quantum group technique to construct the pure partition functions of multiple SLEs.)

For example, in the identity chart of H, up to a multiplicative constant,

C(b)[a ·ξ1 +(2b−a) ·ξ2] =

∫ ξ2

ξ1

C(b)[a ·ξ1−2a · ζ+a ·ξ2 +2b ·∞] dζ, (κ > 4).

(Recall C(b)[σ] is a differential of conformal dimension 1
2σ

2
j − bσj at zj whose

evaluation in the identity chart of H is given by∏
j 6=k

(zj − zk)
σjσk .)

Charges:

ξ1

a
↓

ξ2

2b−a
↓

∞

0
↓

ξ1

a
↓

ξ2

a
↓

∞

2b
↓

ζ

−2a
↓
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Dubedat’s Screening

For example,∫
P(ξ1,ξ2)

C(b)[a · ξ1−2a · ζ + a · ξ2 + a · ξ3 + (2b− a) · ξ4] dζ

is a solution to the null vector equation and satisfies the conformal Ward identities,
i.e. Moebius invariance. Here, Pochhammer contour P(ξ1, ξ2) and
charges/dimensions of the integrand are given by

ξ1 ξ2

ζ

ξ3 ξ4

charge
↓

ξ1

a
↓

ζ

−2a
↓

ξ2

a
↓

ξ3

a
↓

ξ4

2b−a
↓

↑
dim

↑
λ
↑
1
↑
λ
↑
λ
↑
λ

λ = 1
2 a2 − ab = 6−κ

2κ
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Level Two Singular Vectors

For each b, there are exactly 4 exponents σ (except for the case b = 0,±1/2 when
some of σ’s coincide) such that the vertex fieldsO(σ)(z) = O2b·q[σ · z + . . .] produce
level two singular vectors:

σ = a, σ = 2b− a,

and
σ = −a− b, σ = 3b + a.

The vertex fields O(a)(z) and O(−a−b) are degenerate,(
L̃−2(ξj)−

κj

4
L̃−1(ξj)

2
)
O(aj) = 0,

where κj = κ if aj = a and κj = κ̃ if aj = ã, but O(2b−a) and O(a+3b) are not (unless
b = −1/2, 0, 1/2;κ = 2, 4, 8).

E.g., see Proposition 13.2 in Gaussian free field and conformal field theory, Astérisque 353 (2013).
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Screening

For example,∫
P(ξ1,ξ2)

C(b)[a · ξ1−2a · ζ + a · ξ2 + a · ξ3 + a · ξ4 + (2b− 2a) · ∞] dζ

is a solution to the null vector equation. Here, Pochhammer contour P(ξ1, ξ2) and
charges/dimensions of the integrand are given by

ξ1 ξ2

ζ

ξ3 ξ4

charge
↓

ξ1

a
↓

ζ

−2a
↓

ξ2

a
↓

ξ3

a
↓

ξ4

a
↓

↑
dim

↑
λ
↑
1
↑
λ
↑
λ
↑
λ

λ = 1
2 a2 − ab = 6−κ

2κ

Theorem (Alberts-K-Makarov)
CFTs associated with these solutions give rise to martingale-observables.
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Screening

For example,∫
P(ξ1,ξ2)

C(b)[a · ξ1−2a · ζ + a · ξ2 + a · ξ3 + a · ξ4 + (2b− 2a) · ∞] dζ

is a solution to the null vector equation.

The integrand Zpre satisfies the following equation

κ

4
∂2
ξj Z

pre =
∑
k 6=j

∂ξk Zpre

ξj − ξk
+
∑
k 6=j

6− κ
2κ

Zpre

(ξj − ξk)2 +
∂ζZpre

ξj − ζ
+

Zpre

(ξj − ζ)2

=
∑
k 6=j

∂ξk Zpre

ξj − ξk
+
∑
k 6=j

6− κ
2κ

Zpre

(ξj − ξk)2 + ∂ζ
Zpre

ξj − ζ
.

The red term becomes trivial after integrating along a Pochhammer contour.
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Symmetric Screening
Catalan case

For α = {{1, 2}, {3, 4}}, Zα(ξ) =∫
P(ξ1,ξ2)

∫
P(ξ3,ξ4)

C(b)[a · ξ1−2a · ζ1 + a · ξ2 + a · ξ3−2a · ζ2 + a · ξ4 + 2b ·∞] dζ1 dζ2

is a solution to the null vector equation and satisfies the conformal Ward identities,
i.e. Möbius invariance.

ξ1 ξ2

ζ1

ξ3 ξ4

ζ2

However, the Möbius invariance is not trivial.
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Insertion Fields
Catalan case

Under the insertion of∫
P(ξ1,ξ2)

∫
P(ξ3,ξ4)

Oβ[a · ξ1−2a · ζ1 + a · ξ2 + a · ξ3−2a · ζ2 + a · ξ4 + 2b · ∞] dζ1 dζ2

its correlation function
,

the correlations of tensor products of fields in Fβ are martingale-observables for SLE
associated to Zα, α = {{1, 2}, {3, 4}}.

ξ1 ξ2

ζ1

ξ3 ξ4

ζ2

Cf. Eveliina Peltola’s talk on log-CFT for UST and SLE(8):

Zpure
α =

∑
α′

M−1
α,α′Zα′ ,

whereM is the meander matrix.
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Conformal Ward Identities
Catalan case

The partition function∫
P(ξ1,ξ2)

∫
P(ξ3,ξ4)

C(b)[a · ξ1−2a · ζ1 + a · ξ2 + a · ξ3−2a · ζ2 + a · ξ4 + 2b ·∞] dζ1 dζ2

is annihilated by the three differential operators

2N∑
k=1

∂ξk ,

2N∑
k=1

(
ξk∂ξk +

6− κ
2κ

)
,

2N∑
k=1

(
ξ2

k∂ξk +
6− κ
κ

ξk

)
,

or

Lvj =
∑

k

vj(ξk)∂ξk + hv′j (ξk), h =
6− κ

2κ
, vj(z) = zj, j = 0, 1, 2.

The (local) flow ψ
(j)
t of vj (ψ̇(j)

t = vj ◦ ψ(j)
t ) is given by

ψ
(0)
t (z) = z + t, ψ

(1)
t (z) = etz, ψ

(2)
t (z) =

z
1− tz

.
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Conformal Ward Identities
Catalan case

Lemma
Let Zpre := C(b)[

∑2N
j=1 a · ξj +

∑N
k=1 (−2a) · ζk + 2b · ∞]. Then we have

Lv2 Zpre =
∑

k

∂

∂ζk
(fkZpre),

where

fk =

∏2N
j (ζk − ξj)∏

l 6=k(ζk − ζl)2 .

Remark. We choose

fk =
C(b)[

∑
a · ξj + 2b · ζk +

∑
l 6=k(−2a) · ζl + (−2a) · ∞]

C(b)[
∑

a · ξj +
∑

(−2a) · ζk + 2b · ∞]
.

Key identity for the proof of Lemma:∑
k

(∑
j

1
ξj − ζk

+
∑
l 6=k

2
ζk − ζl

)
fk =

∑
j

ξj − 2
∑

k

ζk.

Cf. The null vector equations hold for Dubedat’s screening with σ = 2b− a.
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SLE and its Dual with Screening

Let ã = −(a + b) and κ̃ = 16/κ.

For example,∫
P(ξ1,ξ2)

∫
P(ξ3,ξ4)

C(b)[a · ξ1−2a · ζ1 + a · ξ2 + ã · ξ3−2ã · ζ2 + ã · ξ4 + 2b ·∞] dζ1 dζ2

is a solution to the null vector equation

κj

4
∂2
ξj Z =

∑
k 6=j

∂ξk Z
ξj − ξk

+
∑
k 6=j

6− κk

2κk

1
(ξj − ξk)2 Z,

where κ1 = κ2 = κ, and κ3 = κ4 = κ̃.
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Outline
I to implement a version of CFT constructed from background charge

modifications of Gaussian free field,

I to define N-leg operators φ1,2(x1)φ2,1(x2) . . . producing multiple SLEs growing
towards∞ and insertion fields producing commuting multiple SLEs,

I to show that this version produces a collection of martingale-observables for
commuting multiple SLEs,

I to explain how this theory is related to Tom Albert’s talk on “Loewner
Dynamics for Real Rational Functions and the Multiple SLE(0) Process.”
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Imaginary Geometry
Miller-Sheffield-. . .

We now consider non-chiral vertex fields

V iσ
β (z) = e∗iσΦβ(z) = Oβ[σ · z− σ · z∗]

with σ ∈ R and therefore with real conformal dimensions

λ =
σ2

2
− σb, λ∗ =

σ2

2
+ σb.

The difference λ− λ∗ = −2σb is called the conformal spin of the vertex field. If the
spin is −1, then the direction of the field (in correlations with real Fock space fields)
transforms as the direction of a vector field, and so the orbits of the ordinary
differential equation

ż = V iσ
β (z)

(if this can be defined appropriately) are natural conformally invariant objects.
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Classical Limits of Imaginary Geometry
Alberts-Byun-K-Makarov

We describe the Multiple SLE(0; x;α) as the trajectories of the ordinary differential
equation

ż =
1

R′α(z)
,

where Rα is a real rational function with critical points x and link pattern α.
The trajectories are geodesics of |R′α(z)|2|dz|2.
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Classical Limits of Imaginary Geometry
Alberts-Byun-K-Makarov

We describe the Multiple SLE(0; x;α) as the trajectories of the ordinary differential
equation

ż =
1

R′α(z)
,

where Rα is a real rational function with critical points x and link pattern α.
The trajectories are geodesics of |R′α(z)|2|dz|2.
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Classical Limits of Imaginary Geometry
Alberts-Byun-K-Makarov

We describe the Multiple SLE(0; x;α) as the trajectories of the ordinary differential
equation

ż =
1

R′α(z)
,

where Rα is a real rational function with critical points x and link pattern α.
The trajectories are geodesics of |R′α(z)|2|dz|2.
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Classical Limits of Multiple Schramm-Loewner Evolutions

We now consider the multiple SLE(0) map described by

ġt(z) =

2n∑
j=1

2µj(t)
gt(z)− xj(t)

, ẋj(t) = Uj(x(t))µj(t)+
∑
k 6=j

2µk(t)
xj(t)− xk(t)

, (xj(t) ∈ R),
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Classical Limits of Multiple Schramm-Loewner Evolutions

We now consider the multiple SLE(0) map described by

ġt(z) =

2n∑
j=1

2µj(t)
gt(z)− xj(t)

, ẋj(t) = Uj(x(t))µj(t)+
∑
k 6=j

2µk(t)
xj(t)− xk(t)

, (xj(t) ∈ R),

where Uj satisfy the null vector equations

1
2

U2
j + 2

∑
k 6=j

1
xk − xj

Uk − 6
∑
k 6=j

1
(xk − xj)2 = 0, j = 1, . . . , 2n
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Classical Limits of Multiple Schramm-Loewner Evolutions

We now consider the multiple SLE(0) map described by

ġt(z) =

2n∑
j=1

2µj(t)
gt(z)− xj(t)

, ẋj(t) = Uj(x(t))µj(t)+
∑
k 6=j

2µk(t)
xj(t)− xk(t)

, (xj(t) ∈ R),

where Uj satisfy the null vector equations

1
2

U2
j + 2

∑
k 6=j

1
xk − xj

Uk − 6
∑
k 6=j

1
(xk − xj)2 = 0, j = 1, . . . , 2n

and the conformal Ward identities

2n∑
j=1

Uj = 0,
2n∑

j=1

xjUj = −6n,
2n∑

j=1

x2
j Uj = −6

2n∑
j=1

xj.
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k 6=j

1
xk − xj

Uk − 6
∑
k 6=j

1
(xk − xj)2 = 0, j = 1, . . . , 2n

and the conformal Ward identities

2n∑
j=1

Uj = 0,
2n∑

j=1

xjUj = −6n,
2n∑

j=1

x2
j Uj = −6

2n∑
j=1

xj.

We have found the Catalan number of solutions Uj and described the multiple SLE(0)
curves as the real locus of real rational functions.
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Classical Limits of Multiple Schramm-Loewner Evolutions
The commuting multiple SLEs (with κj = κ) describe multiple interfaces:

∂tgt(z) =
N∑

j=1

2µj(t)
gt(z)− xj(t)

,

where the driving processes x(t) are given by

dxj(t) =
√
κµj(t) dBj(t) + bj(x(t))µj(t) dt +

∑
k 6=j

2µj(t)
xj(t)− xk(t)

dt, bj = κ
∂xj Z

Z
,

where Z satisfies the null vector equations:
κ

4
∂2
ξj Z =

∑
k 6=j

∂ξk Z
ξj − ξk

+
∑
k 6=j

6− κ
2κ

1
(ξj − ξk)2 Z.

The multiple SLE(0) map gt is defined by

ġt(z) =
N∑

j=1

2µj(t)
gt(z)− xj(t)

, ẋj(t) = Uj(x(t))µj(t)+
∑
k 6=j

2µk(t)
xj(t)− xk(t)

, (xj(t) ∈ R),

where Uj satisfy the null vector equations
1
2

U2
j + 2

∑
k 6=j

1
xk − xj

Uk − 6
∑
k 6=j

1
(xk − xj)2 = 0, j = 1, . . . ,N.
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Conformal Ward Identities for Multiple SLE(0)

As κ→ 0, the conformal Ward identities

2n∑
j=1

∂xj Z = 0,
2n∑

j=1

(
xj∂xj +

6− κ
2κ

)
Z = 0,

2n∑
j=1

(
x2

j ∂xj +
6− κ
κ

xj

)
Z = 0

become
2n∑

j=1

Uj = 0,
2n∑

j=1

xjUj = −6n,
2n∑

j=1

x2
j Uj = −6

2n∑
j=1

xj.
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Peltola and Wang’s characterization

Peltola and Wang characterized the deterministic limit η = (η1, . . . , ηn) of multiple
SLE(κ; x;α) as κ→ 0,

I as a geodesic multichord, meaning that each ηj is the hyperbolic geodesic in the
(unique) connected component of H\

⋃
k 6=j ηk that contains the endpoints of ηj,

I as curves generated by a single Loewner type evolution with only one
non-trivial µj for each ηj, where the driving terms for the ηj are determined by
special α-dependent solutions to the classical limit of the null vector equations
as κ→ 0, and finally,

I as the real locus of a rational function of degree n + 1, with real coefficients and
critical points at x1, . . . , x2n.
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Eremenko and Gabrielov’s Theorem

For x = {x1, . . . , x2n} with xj distinct, real, and finite, let CRRn+1(x) be the set of
real rational functions R : Ĉ→ Ĉ of degree n + 1 whose critical points are x.

An element R = P/Q ∈ CRRn+1(x) is in canonical form1 if deg Q = n and its
derivative factors as

R′(z) =

∏2n
j=1(z− xj)∏n

k=1(z− ζk)2 .

Goldberg showed that the number of equivalence classes is at most Cn, and
Eremenko and Gabrielov proved that it is exactly Cn (the n-th Catalan number):

Cn =
1

n + 1

(
2n
n

)
.

1Since post-composition by elements of PSL(2,R) preserves the critical points it induces a natural
equivalence relation on CRRn+1(x).
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Main Result: Stationary Relation

We say a rational function R ∈ CRRn+1(x) with pole set ζ is generic if x ∩ ζ = ∅.

Theorem
For distinct real points x let R ∈ CRRn+1(x) be canonical and generic, and let
ζ = ζ(R) = {ζ1, . . . , ζn} be its set of finite poles. Then ζk satisfy the stationary
relation

2n∑
j=1

1
ζk − xj

=
∑
l 6=k

2
ζk − ζl

, k = 1, . . . , n.

Theorem
For distinct real points x and a link pattern α connecting them define

Uα,j(x) :=
∑
k 6=j

2
xj − xk

−
n∑

k=1

4
xj − ζα,k(x)

, j = 1, . . . , 2n.

Then Uα,j satisfy the system of null vector equations and conformal Ward identities.
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Main Result: Partition Function

Theorem
For distinct boundary points x and a link pattern α connecting them define

Zα(x) :=
∏

1≤j<k≤2n

(xj − xk)
2
∏

1≤l<m≤n

(ζα,l(x)− ζα,m(x))8
2n∏

k=1

n∏
l=1

(xk − ζα,l(x))−4.

Then Zα is strictly positive and Uα,j = ∂xj log Zα for j = 1, . . . , 2n.

x1 x2

ζ1

x3 x4

ζ2
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Main Result: an Integral of Motion

Let x be distinct real points and α be a link pattern connecting them. We consider

ġt(z) =

2n∑
j=1

2µj(t)
gt(z)− xj(t)

, ẋj(t) = Uα,j(x(t))µj(t)+
∑
k 6=j

2µk(t)
xj(t)− xk(t)

, (xj(t) ∈ R),

where Uα,j is given by

Uα,j(x) :=
∑
k 6=j

2
xj − xk

−
n∑

k=1

4
xj − ζα,k(x)

, j = 1, . . . , 2n.

Theorem
Under the Loewner system associated to (x;α) the quantity

Nt(z) := log

(
g′t (z)

∏2n
j=1(gt(z)− xj(t))∏n

k=1(gt(z)− gt(ζα,k(x)))2

)

satisfies Ṅt(z) = 0.
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Main Result: an Integral of Motion
For example,

xt = −
√

1− t, yt =
√

1− t, ζt = 0, (0 ≤ t ≤ 1).

and

gt(z)− t − 1
gt(z)

= z +
1
z

= R(z), Rt(z) := R ◦ g−1
t = z− t − 1

z
.

Theorem
Let x be distinct boundary points, α be a link pattern connecting them, and
R ∈ CRRn+1(x;α) be canonical. Then under the Loewner system associated to
(x;α) the map R ◦ g−1

t is a canonical element in CRRn+1(x(t);α) with poles
ζα,k(x(t)) = gt(ζα,k(x)).
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Main Result: Real Locus

For example,

xt = −
√

1− t, yt =
√

1− t, ζt = 0, (0 ≤ t ≤ 1).

and

gt(z)− t − 1
gt(z)

= z +
1
z

= R(z), γ1(t) = −
√

1− t + i
√

t, γ2(t) =
√

1− t + i
√

t.

Corollary
Let x be distinct boundary points and R ∈ CRRn+1(x) be generic. Let γ[0, t] be the
trace of the curves generated by the Loewner flow corresponding to R. Then γ[0, t] is
a subset of the real locus Γ(R).
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