
Plumbing Liouville theory

Antti Kupiainen

joint work with C. Guillarmou, R. Rhodes, V. Vargas

MSRI March 31 2022



Complex analysis in the quantum domain

“We developed a general approach to CFTs, something like complex
analysis in the quantum domain. It worked very well in the various
problems of statistical mechanics but the Liouville theory remained
unsolved."

Alexander Polyakov, From Strings to Quarks (2008)

This talk:

I What is "complex analysis in the quantum domain "?

I How to "solve" the Liouville theory



(Euclidean) Quantum Field Theory

I Random fields Ψ(x), x ∈ M, M manifold, e.g. Rd

I Expectation 〈 · 〉

I Correlation functions 〈
∏N

i=1 Ψ(xi )〉
I Axiomatizations describing regularity in xi and behaviour under

symmetries of M



Conformal Field Theory (CFT)

Euclidean QFT models statistical physics

At critical temperature such systems have conformal symmetry
and the QFT is conformal field theory

This extra symmetry is believed to give rise to strong constraints on
correlation functions expressed via conformal bootstrap

In 2 dimensions bootstrap was used by Belavin, Polyakov and
Zamoldchicov (1984) to classify CFT’s and find explicit predictions for
the correlation functions in several cases

In more than 2 dimensions bootstrap has led to spectacular numerical
predictions (e.g. 3d Ising model) by Rychkov and others.



Conformal invariance

Scaling fields V∆(x), x ∈ Rd , ∆ ∈ R

Correlation functions invariant under rotations and translations of Rd

and under scaling

〈
∏

i

V∆i (λxi )〉 =
∏

i

λ−2∆i 〈
∏

i

V∆i (xi )〉 (∗)

∆i scaling dimension or conformal weight.

Conformal invariance: (∗) extends to conformal maps x → Λ(x),

E.g. in d = 2: R2 ' C

Λ(z) =
az + b
cz + c

det

(
a b
c d

)
= 1

and λ−2∆i → |Λ′(z)|−2∆i .

Natural setup is the Riemann sphere: z ∈ Ĉ = C ∪ {∞}.



Structure Constants

Use conformal map to fix three points to {0,1,∞}.

3-point functions are determined up to constants

〈
3∏

k=1

V∆k (zk )〉 = |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13C(∆1,∆2,∆3)

with ∆12 = ∆3 −∆1 −∆2 etc.

C(∆1,∆2,∆3) = 〈V∆1 (0)V∆2 (1)V∆3 (∞)〉

are called the structure constants of the CFT.



Bootstrap hypothesis

Operator Product Expansion Axiom:

V∆1 (x1)V∆2 (x2) =
∑
∆∈S

C∆
∆1∆2

(x1, x2, ∂x2 )V∆(x2)

assumed to hold when inserted to expectation:

〈V∆1 (x1)V∆2 (x2)V∆3 (x3) . . . 〉 =
∑
∆∈S

C∆
∆1∆2

(x1, x2, ∂x2 )〈V∆(x2)V∆3 (x3) . . . 〉

I C∆
∆1∆2

are determined by and linear in the structure constants

I S is called the spectrum of the CFT

Iterating OPE:

I All correlations are determined by C(∆1,∆2,∆3)

Upshot: to “solve a CFT“ need to find its spectrum and structure
constants.



Axioms for Weyl and Diff(Σ)

CFT extends naturally to surfaces Σ with Riemannian metric g

Diffeomorphism covariance axiom: For ψ ∈ Diff (Σ)

〈
∏

i

V∆i (xi )〉Σ,g = 〈
∏

i

V∆i (ψ(xi ))〉Σ,ψ∗g

Weyl covariance axiom: For σ ∈ C∞(Σ)

〈
∏

i

V∆i (xi )〉Σ,eσg = e
c

96π

∫
Σ

(|dσ|2+2Rgσ)dvg
∏

i

e−∆iσ(xi )〈
∏

i

V∆i (xi )〉Σ,g

c central charge of the CFT, Rg scalar curvature, vg volume

Hence correlations defined on moduli space of Riemann surfaces

g ∼ eσψ∗g ψ ∈ Diff (Σ), σ ∈ C∞(Σ)



G. Segal’s formulation of bootstrap

I Σ closed oriented Riemann surface with n ≥ 0 marked points
z1, . . . , zn and boundary

∂Σ = ∪iCi

together with analytic parametrisations ζi : T→ Ci .

I Set σi = ±1 depending on whether orientation of ζi (T) agrees
with that of Σ or not. Call them "in" and "out" boundaries.
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Gluing surfaces

Glue "out" circles to "in" circles (Σ,Σ′)→ Σ ◦ Σ′

*
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Segal’s CFT functor

CFT consists of a Hilbert space H and an assignement

Σ→ AΣ

where

I AΣ : H⊗m → H⊗n is a Hilbert-Schmidt operator

I Σ has m in-circles and n out-circles

Gluing Axiom
AΣ◦Σ′ = AΣAΣ′



Semigroup of annuli

Let v(z)∂z be an analytic vector field in a neighborhood of D

v(z) =
∞∑

n=0

vnzn+1

with Re v0 < 0 small enough. Its flow

d
dt

ft (z) = v(ft (z))

is univalent ft : D→ ft (D) ⊂ D and at = D \ ft (D) are annuli with
parametrised boundaries

eiθ ∈ T→
{

ft (eiθ) on C1
eiθ on C2

and satisfying
at ◦ as = at+s





Virasoro algebra
At := Aat is a contraction semigroup on H:

AtAs = At+s

The generator Hv of At = e−tHv is given by

Hv =
∞∑

n=0

(vnLn + v̄nL̃n)

with Ln, L̃n densely defined operators in H.

Setting L−n = L∗n, the adjoint in H, one postulates for n,n ∈ Z:

[Ln,Lm] = (n −m)Ln+m +
c

12
(n3 − n)δn,−m

[L̃n, L̃m] = (n −m)L̃n+m +
c

12
(n3 − n)δn,−m

[Ln, L̃m] = 0

where c is the central charge.



Building blocks

Build Σ by gluing simple topological building blocks B:

I Pairs of pants P ∼ Ĉ \ 3 disks

I Annuli with one marked point Ĉ \ {2 disks, 1 point}
I Disks with two marked points Ĉ \ {1 disk, 2 points}
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Plumbing

The moduli spaceMg,m of Riemann surfaces of genus g and m
marked points is a complex orbifold of dimension 3g − 3 + m.

Mg,m can be parametrised by (Hinich-Vaintrob 2011)

I Finite set of building blocks Bi , i = 1, . . .N(g,m) where each Bi
is a sphere with k punctures and 3− k boundary circles,
k = 0,1,2 equipped with a fixed conformal structure.

I Plumbing parameters q ∈ D3g−3+m.

I Standard annulus aq of modulus |q|, q ∈ D:

eiθ ∈ T→
{

qeiθ on C1
eiθ on C2

i.e. for q = e−t+iθ cylinder of length t .

I Glue building blocks {Bi} together with annuli aqj



Plumbing
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Bootstrap

Upshot:

Correlation function on Σ is given by compositions of the operators
ABi and Aaqj

I ABi determined by structure constants

I Aaq : H → H is the semigroup: Aaq = qL0 q̄L̃0

I Composition of ABi using eigenfunctions of Aq

I Eigenfunctions of Aq determined by representation theory



Path integrals

Motivation for axioms: let the QFT be given formally as a path
integral, e.g. for a scalar field φ

〈
n∏

i=1

V∆i (zi )〉 =

∫
φ:Σ→R

n∏
i=1

V∆i (φ(zi ))e−SΣ(φ)Dφ

with local action functional SΣ(φ)

Let Σ = Σ1 ◦ Σ2, ∂Σi = C so that SΣ = SΣ1 + SΣ2 .

[a



Path integrals

Let for ϕ : C → R

AΣj (ϕ) =

∫
φ|Σj =ϕ

∏
i:zi∈Σj

V∆i (zi )e
−SΣj (φ)Dφ j = 1,2

Then formally get

〈
n∏

i=1

V∆i (zi )〉 =

∫
ϕ:C→R

AΣ1 (ϕ)AΣ2 (ϕ)Dϕ

This talk:

I Probabilistic construction of AΣ for Liouville CFT

I Prove gluing AΣ◦Σ′ = AΣAΣ′

I Use this to prove bootstrap and compute correlations.



Liouville Theory

Action functional

SΣ(φ) =

∫
Σ

(|dφ|2 + QRgφ+ µeγφ)dvg

I γ ∈ (0,2]

I Q = 2
γ + γ

2 , µ > 0 .

I Rg Ricci curvature of the Riemannian metric g

Occurs among other places in

I Noncritical string theory (Polyakov 1981)

I 2d gravity Knizhnik, Polyakov, Zamolodchikov (1988)

I 4d SuSy Yang-Mills (Alday, Gaiotto, Tachikawa 2010)



Probablistic Liouville Theory
We define

〈F 〉Σ,g := Zg

∫
R
E
(
F (φg)e−

∫
Σ

QRgφgdvg+µMγ(Σ)
)
dc

I φg = c + Xg

I Xg is Gaussian free field: EXg(x)Xg(y) = −∆−1
g (x , y)

I Gaussian multiplicative chaos measure

Mγ = lim
ε→0

ε
γ2
2 eγφg,εdvg

I Zg = (det′(∆g)/vg(Σ))−1/2 with zeta function regularisation.

Primary fields are vertex operators

Vα(z) = eαφg(z)

defined through limits of regularised objects.

We want to compute their correlators

〈
∏

i

Vα(zi )〉Σ,g



Existence and Structure constants

Theorem (David, K, Rhodes, Vargas, CMP 2016) The correlation
functions exist and are nontrivial if and only if the Seiberg bounds
hold:

(1) αi < Q ∀i , and (2)
n∑

i=1

αi + χ(Σ)Q > 0

Vα are primary fields with scaling dimension ∆α = α
2 (Q − α

2 )

For the structure constants we take Σ = Ĉ = C ∪ {∞}. Then

Theorem (K, Rhodes, Vargas, Annals of Mathematics 191, 81) Let αi
satisfy the Seiberg bounds. Then

〈Vα1 (0)Vα2 (1)Vα3 (∞)〉Ĉ = CDOZZ (α1, α2, α3)

where CDOZZ (α1, α2, α3) is an explicit formula conjectured by Dorn,
Otto, Zamolodchicov, Zamolodchicov in 1995.



Amplitudes
Let ∂Σ = ∪n

i=1Ci . For φ : Σ→ R set

φ|Ci = ϕi , ϕ := (ϕ1, . . . , ϕn)

How to make sense of

AΣ(ϕ) =

∫
φ|∂Σ=ϕ

∏
i

Vαi (zi )e−SΣ(φ)Dφ ?

( c. , 97#(g , g
'

,
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Free Field Amplitudes
Free field action

S0(φ) :=

∫
Σ

|dφ|2dvg , φ|∂Σ = ϕ

Let φ0 be the minimiser

∆gφ0 = 0. φ0|∂Σ = ϕ

By Green formula

S0(φ) = S0(φ0) + S0(Z ), Z = φ− φ0

and S0(φ0) reduces to a boundary term

S0(φ0) =

∫
∂Σ

φ0∂
⊥φ0 = (ϕ,DΣϕ)

where DΣ is the Dirichlet-Neumann operator acting on the boundary
fields

φ|∂Σ = ϕ = (ϕ1, ϕ2, . . . ϕn)



Free Field amplitudes

Let ϕj (θ) =
∑

k∈Z ϕ
j
k eikθ. Then

S0(φ0) =
1
4

n∑
j=1

∑
k∈Z

|k ||ϕ̂j
k |

2 + (ϕ, D̃Σϕ)

I D̃Σ is smoothing: (ϕ, D̃Σϕ) defined on ϕi ∈ H−s(T) ∀s > 0.

I Z is the Dirichlet GFF on Σ

Definition. The free field amplitude is defined by

A0
Σ(ϕ) = det(−∆dir

g )−
1
2 e−(ϕ,D̃Σϕ)

where the determinant is zeta function regularised.



Liouville Amplitudes
Definition. The Liouville amplitude with vertex operators at zi

AΣ(ϕ) = A0
Σ(ϕ)E

(∏
Vαi (zi )e−

∫
Σ

QRgφdvg−µMγ(Σ)
)

where φ = φ0 + Z , and E is over the Dirichlet GFF Z .

Let µ be the measure on ϕ =
∑

k∈Z ϕk eikθ ∈ Hs(T), s < 0

dµ(ϕ) = dϕ0

∏
k>0

1
π|k|e

−|k| |ϕ̂k |2d2ϕk

View AΣ(ϕ) as an integral kernel and take as Liouville Hilbert space

H = L2(Hs(T),dµ).

Then

Proposition (GKRV’21). AΣ are Hilbert-Schmidt operators and

AΣ◦Σ′ = AΣAΣ′



Examples
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Spectrum of Liouville theory
Theorem (GKRV 2020) The semigroup of annuli (cylinders) {Aq}q∈D
has a continuous spectrum and a complete set of generalised
eigenfunctions ΨP,ν,ν̃ :

AqΨP,ν,ν̃ = q∆Q+iP +|ν|q̄∆Q+iP +|ν̃|ΨP,ν,ν̃

ΨP,ν,ν̃ = L−ν1 . . . L−νk L̃−ν̃1 . . . L̃−ν̃k ΨP,0,0

I P ∈ R and ν, ν̃ are Young diagrams, |ν| :=
∑
νi .

I ΨP,0,0 is a highest weight state of weight ∆Q+iP :

L0ΨP,0,0 = ∆Q+iPΨP,0,0 = L̃0ΨP,0,0, LnΨP,0,0 = 0 = L̃nΨP,0,0, n > 0

I ΨP,0,0 is amplitude of the disk D with VQ+iP(0) insertion

I CFT spectrum of LCFT is {∆Q+iP}P∈R

I {Ln}, {L̃n} can be constructed by using the general annuli
semigroup (Baverez, GKRV 2022)



Plancharel
Completeness

〈ΨP,ν|ν̃ |ΨP′,ν′,ν̃′〉 = δ(P − P ′)Fν,ν′(P)Fν̃,ν̃′(P)

Apply to amplitude compositions:∫
A(ϕ)A′(ϕ, )dµ(ϕ) =

∑
ν,ν̃

∫
R

F−1
ν,ν′(P)F−1

ν̃,ν̃′(P)〈A|ΨP,ν|ν̃〉〈ΨP′,ν′,ν̃′ |A′〉dP

9- 2
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Holomorphic factorisation

Need to evaluate amplitudes of building blocks at eigenstates:

Proposition. Let B be a pair of pants. Then

AB(⊗3
j=1ΨQ+iPj ,νi ,ν̃i ) = Dν(Q + iP)Dν̃(Q + iP)CDOZZ (Q + iP)

where Q + iP = (Q + iP1,Q + iP2,Q + iP3). Similar factorisation for
other building blocks.

Proof is based on probabilistic Ward identities.



Integrability of Liouville theory

GKRV (2021). Let Σ have genus g. Then

〈
m∏

i=1

Vαi (zi )〉Σ =

∫
R3g+m−3

+

|F(q,P)|2ρ(P)dP

where

I q are plumbing parameters

I Conformal block F(q,P) is purely representation theoretic and
holomorphic in the moduli q

I ρ(P) is a product of structure constants C(α, α′, α′′) with
α, α′, α′′ ∈ {αi ,Q ± iPj}



Conformal block Feynman rules



Open questions

Correlation functions are modular invariant i.e. the same no matter
how we cut the surface.

How about the conformal blocks? Suppose Σ is parametrised by
({Bi},q) and ({B′i },q′). Are the blocks linearly related? True for
(g,n) = (0,4) and (g,n) = (1,1).

Connection to quantisation of Teichmuller space?



Thank you!


	diffusion
	Complex analysis in the quantum domain
	Quantum Field Theory
	Conformal Field Theory
	Conformal invariance
	Structure Constants
	Bootstrap
	Axioms for Weyl and Diff
	G. Segal's formulation of bootstrap
	Gluing surfaces
	Segal's CFT functor
	Semigroup of annuli
	Semigroup of annuli
	Virasoro algebra
	Building blocks
	Plumbing
	Plumbing
	Bootstrap
	Path integrals
	Path integrals
	Liouville Theory
	Probablistic Liouville Theory
	 Existence
	Amplitudes
	Free Field Amplitudes
	Free field Amplitudes
	Liouville Amplitudes
	Examples
	Spectrum of Liouville theory
	Plancharel
	Holomorphic factorisation
	 Integrability of Liouville theory
	Conformal blocks
	Open questions


