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How Do We Look at the ML Pipeline?



Indeed: Data Matters (a Lot)

"dog"

→ Data poisoning

 

● The first step is measuring performance, such as AUC/ACC/F1/RMSE, and evaluating a 
model's failure modes. This is a fairly standard step in ML development workflows. 

● The second step is meant to unlock insights about what the model has learned, model 
builders are looking at their data through the lens of the model. One can debug failure 
cases in the hope of finding patterns, as well as spot check success cases to ensure the 
model isn't cheating and relying on signals that won't generalize. 

● The third step is ultimately about taking action, either on the data or the model, informed by 
the unlocked insights. 

Detecting Data Issues 
It's not always possible to detect issues with data with standard model evaluation even when 
following ML best practices of splitting train/validation/test sets and/or k-fold cross-validation. 
This is best illustrated by an example. An image pathology model is trained to detect various 
diseases from chest X-Ray scans, the model's quality looks great on the test/holdout set (in fact, 
perhaps it looks too good to be true): 

As can be seen above, the attributions were clustering around a seemingly odd region in the X-Ray. 
Upon closer examination, this area is where radiologist left pen marks. The model learned to rely 
on these pen marks, which is clearly not desirable from the perspective of being able to generalize 
to new/unseen instances. Should this model have been deployed, it would be running on images 
without these pen marks, and its performance would've been markedly worse than the holdout set 
results. 

This is a specific image modality instance of the more general target leakage scenario which 
happens across any data modality. Another example of this happening on tabular data is from the 
Safe Driver​ Kaggle dataset. A model builder may inadvertently include the "id" feature, identifying 
drivers, which is highly correlated with the target. A random train/test split would have the same 
driver id in both sets and would therefore result in overly optimistic model evaluation results. On 
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→ "Opportunistic" learning 



Model-Driven Understanding of Data

Can we analyze data as it's viewed/used by the models?



Basic Primitive: Scrutinizing Predictions

Test input xTraining set S Learning algorithm

+

"Dog" 85%

Which training inputs impact this prediction the most?



"Classic" Approach: Influence Functions

 ̂Infl [xi → xj] =
Pr[model trained on S is correct on xj] −
Pr[model trained on S∖{xi} is correct on xj]

[Cook Weisberg 1980]

Specifically: Approximate leave-one-out influences 

→ [Koh Liang 2017]:  Approx. using Hessian (of penultimate layer)  
     of a specific model, but:
→ Affected by model-training variability  

→ Penultimate layer does not seem to capture all the info 

→ [Feldman Zhang 2020]: More direct estimation 



But: Can we get a more direct read?

In particular:

→ Go beyond the focus on a single-input impact

→ Be able to grasp more nuanced aspects of predictions  
     than "just" them being correct/incorrect

Goal: Understand how the training data yields model 
outputs through the lens of training algorithm

→ Get a way to explicitly analyze how well we are doing



Our Proposed Approach: 
Datamodels



Datamodels: Data-to-Output Modeling

Training data Algorithm Model Stage 1: Train a model

Model
Output for

(x, y)
Inference Stage 2: Output predictions

Idea: Completely abstract away  
everything "in the middle"

("Smoothing out" the randomness/idiosyncrasies of model training) 

Datamodel



Datamodels: Data-to-Output Modeling

What we are trying to compute:

f(x, S)

Specific input x
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Subset  of the training setS

 "Smoothened" output of interest  
(think: margin of correct class) Datamodel

≈ g(x, S)
Want it to be simple/easy to analyze



How To Find Such A Datamodel?

Simple: Just treat it as a regression problem
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How To Find Such A Datamodel?
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Then: Fit a model to this data

Simple: Just treat it as a regression problem



Two Emerging Questions

How to generate the data?

→ Just sample random -fraction subsets of , for α S α ∈ (0,1)

→ Turns out: A simple choice works already very well

What class of models to fit?



Model Choice: Linear(-ish)

g(x, S) = θ⊤
x m(S)

Binary (one-hot) 
representation of S

Vector of weights assigned 
to training points

→ We fit vectors  for all inputs  of interestθx x

→ To fit this datamodel: Train ~500K (!) different classifiers

(How to do that? See: ffcv.io)



So: How can this be useful?



Understanding Data with Datamodels

Datamodels turn out to be a versatile framework  
for analyzing ML predictions

In particular, they provide:

→ A causal characterization of model decisions
→ A perceptually meaningful similarity measure (for images) 

→ A (good) embedding of datapoints into Euclidean space

→ A graph representation of the training data structure



Datamodels: Causal Perspective

original train set

Train f(x, S)

counterfactual train set

Train f(x, S′ )Image x

Goal: Estimate  without explicitly training on  f(x, S′ ) S′ 



f(x, S) − f(x, S′ )

g(x, S) − g(x, S′ )

Observed effect:

Predicted effect:

Datamodels: Causal Perspective

Results: Datamodels provide accurate counterfactuals  
(even for a different  regime)α



Datamodels: Similarity Measure
Inputs  of interestx



Datamodels: Similarity Measure
Training points with the highest positive weightθx−

feature similarity

train-test duplication

train-test leakage

Inputs  of interestx



Datamodels: Similarity Measure
Inputs  of interestx Training points with the highest negative weightθx−



Datamodels: Embedding

Note: Weights  can provide a (sparse) embedding of each θx x

Result: A "smoothened" representation space

→ θx

Now: What if we perform PCA on this embedding?



Datamodels: Embedding

Result: PCA recovers "features"

Interestingly:  This PCA has far 
more non-trivial directions than 
a classifier representation space



Datamodels: Graph Perspective

Idea: Stack datamodel weights  for each training 
point  to get an adjacency matrix

θx
x

→ Enables us to use graph-theoretic algorithms to  
     understand datasets



Takeaways



Datamodels:  
A new framework for model-centric data understanding

gradientscience.org

See paper/blogpost for (much) more! 

@aleks_madry

→ Simple linear instantiation works really well 

→ Learn data-to-output mapping using regression 

→ Gives rise to a variety of primitives:

→ Predicting counterfactuals/analyzing model brittleness  

→ Provides rich embedding/graph structure 

→ What else? 


