Datamodels: Predicting Predictions with Training Data

Aleksander Mądry

(with Logan Engstrom, Andrew Ilyas, Guillaume Leclerc, Sam Park)

madry-lab.ml

How Do We Look at the ML Pipeline?

Indeed: Data Matters (a Lot)

→ Data poisoning

"dog"

→ "Opportunistic" learning

 Why
 Zoom in,

 adjust contrast
 Pen marks by the

 doctor!
 Attributed pixels

Model-Driven Understanding of Data

Can we analyze data as it's viewed/used by the models?

Basic Primitive: Scrutinizing Predictions

Which training inputs impact this prediction the most?

"Classic" Approach: Influence Functions [Cook Weisberg 1980]

Specifically: Approximate leave-one-out influences

 $\widehat{Infl} [x_i \to x_j] = \\ \Pr[\text{model trained on } S \text{ is correct on } x_j] - \\ \Pr[\text{model trained on } S \setminus \{x_i\} \text{ is correct on } x_j]$

- → [Koh Liang 2017]: Approx. using Hessian (of penultimate layer) of a specific model, but:
 - → Affected by model-training variability
 - → Penultimate layer does not seem to capture all the info
- → [Feldman Zhang 2020]: More direct estimation

But: Can we get a more direct read?

Goal: Understand how the training data yields model outputs through the lens of training algorithm

In particular:

- \rightarrow Go beyond the focus on a single-input impact
- → Be able to grasp more nuanced aspects of predictions than "just" them being correct/incorrect
- → Get a way to explicitly analyze how well we are doing

Our Proposed Approach: Datamodels

Datamodels: Data-to-Output Modeling

Idea: Completely abstract away <u>everything</u> "in the middle"

("Smoothing out" the randomness/idiosyncrasies of model training)

Datamodels: Data-to-Output Modeling

What we are trying to compute:

Specific input x

<u>Subset</u> S of the training set

How To Find Such A Datamodel?

Simple: Just treat it as a regression problem

How To Find Such A Datamodel?

Simple: Just treat it as a regression problem

How To Find Such A Datamodel?

Simple: Just treat it as a regression problem

Then: Fit a model to this data

Two Emerging Questions

How to generate the data?

→ Just sample random α -fraction subsets of *S*, for $\alpha \in (0,1)$

What class of models to fit?

→ Turns out: A simple choice works already very well

 \rightarrow We fit vectors θ_x for all inputs x of interest

→ To fit this datamodel: Train ~500K (!) different classifiers (How to do that? See: ffcv.io)

So: How can this be useful?

Understanding Data with Datamodels

Datamodels turn out to be a versatile framework for analyzing ML predictions

In particular, they provide:

- \rightarrow A causal characterization of model decisions
- → A perceptually meaningful similarity measure (for images)
- → A (good) embedding of datapoints into Euclidean space
- \rightarrow A graph representation of the training data structure

Datamodels: Causal Perspective

Goal: Estimate f(x, S') without explicitly training on S'

Datamodels: Causal Perspective

Predicted effect: g(x, S) - g(x, S')

Results: Datamodels provide accurate counterfactuals (even for a different α regime)

Datamodels: Similarity Measure

Inputs *x* of interest

airplane

bird

horse

Datamodels: Similarity Measure

Inputs x of interest Training points with the highest positive θ_x -weight

train-test duplication

train-test leakage

Datamodels: Similarity Measure

Inputs x of interest Training points with the highest negative θ_x -weight

Datamodels: Embedding

Note: Weights θ_x can provide a (sparse) embedding of each x

Result: A "smoothened" representation space

Now: What if we perform PCA on this embedding?

Datamodels: Embedding

Result: PCA recovers "features"

Interestingly: This PCA has far more non-trivial directions than a classifier representation space

Datamodels: Graph Perspective

Idea: Stack datamodel weights θ_x for each training point x to get an adjacency matrix

→ Enables us to use graph-theoretic algorithms to understand datasets

Datamodels:

A new framework for model-centric data understanding

- → Learn data-to-output mapping using regression
- → Simple *linear* instantiation works really well
- → Gives rise to a variety of primitives:
 - → Predicting counterfactuals/analyzing model brittleness
 - → Provides rich embedding/graph structure
 - \rightarrow What else?

See paper/blogpost for (much) more!

