

DINFK

Prospects and perils of interpolating models

March 9th 2022, MSRI Workshop

Fanny Yang, Assistant Professor at CS department, ETH Zurich

Statistical Machine Learning group

Regularization is good in low dimensions

- Traditionally: want to avoid fitting noise perfectly for better (optimal) generalization.
- For example, here is the typical example used in my Intro to ML lecture

Provocation: Interpolation seems fine for deep learning

Classification using neural networks and first-order methods on CIFAR-10 with 15% label noise

Source: [Nakkiran, Kaplun, Bansal, Yang, Barak, Sutskever '20]

But interpolation hurts worst-group accuracy

Training: First-order method on reweighted loss according to group size

For large models, regularization boosts worst-group accuracy!

Source: [Sagawa, Koh, Hashimoto, Liang 20']

This talk: formalizable intuition when interpolation may be a good idea (and when it might not)

Neural networks are hard

Interpolators we discuss today

• Function space: High-dimensional linear models $f(x) = w^{\mathsf{T}}x$ with $x, w \in \mathbb{R}^d$ and $d \gg n$ samples

these interpolators arise at convergence of first order methods on the square and logistic loss*

large models \triangleq large $\frac{d}{n}$

*implicit bias of GD e.g. [Telgarsky '13, Soudry et al. '18, Telgarsky, Ji '19], classification vs. regression e.g. [Muthukumar et al. '21] 6

Overview of today on a high-level

- Prospects: How well can we do interpolation in the noisy case
 - previous work: high-dimensionality acts as "implicit regularizer" reducing variance at the cost of bias
 - our results: "moderate" inductive bias \rightarrow fast rates for estimation error even for noisy interpolation
- Perils: Interpolation might be problematic for robustness
 - previous work: surprising empirical observations in adversarial robustness setting
 - our results: proof for some of these peculiar phenomena even in the linear and noiseless setting

Previous: Some established intuition for min-l₂-norm interpolation

Implicit regularization: Variance decreases as d/n **1**

Simple intuition: Assume fixed *n* and $w^* = 0$ such that min-norm solution $\hat{w} = \operatorname{argmin}_{w} ||w||_{2} s.t. |Xw = \epsilon$

 \rightarrow The min-norm solution \widehat{w}_d for d, yields interpolating solution (\widehat{w}_d , 0) for $d + 1 \rightarrow ||\widehat{w}_{d+1}||_2 \leq ||\widehat{w}_d||_2$

Bias increases as $d/n \uparrow \Rightarrow$ "bad" trade-off

- On the other hand, bias has to increase with d/n as you have less information about your data.
- Back-of-the-envelope: in the noiseless case, \widehat{w} is projection of w^{\star} onto the n-dim span of rows(X)
- \rightarrow If all directions are equally likely (isotropic $\Sigma = I$), on average it captures $\frac{n}{d}$ of $w^* \rightarrow \left| |\widehat{w} w^*| \right|_2 \approx 1 \frac{n}{d}$

→ as
$$\frac{d}{n}$$
 grows: Variance ↓, Bias ↑

$$\rightarrow$$
 MSE $\approx 1 - \frac{n}{d} + \frac{n}{d-n}$ gives you a "deadlock"

i.e. does not decrease with $m{n}$

argument is e.g. in [Hastie et al. '18]; *for spiked covariances, prediction error can be consistent, see e.g. [Bartlett et al. 19'] 10

Consistency or rates of prediction error?

- Obviously in high dimensions should assume structure to have any hope even for noiseless!
- \rightarrow For the rest of the first half assume sparsity $||w^*||_0 = s \ll d$. Well-known literature:

Basis pursuit (noiseless): $\operatorname{argmin}_{w} ||w||_{1} s.t. y = Xw$

 \rightarrow right inductive bias encouraging sparsity

Lasso (noisy): $\operatorname{argmin}_{w} ||y - Xw||_{2}^{2} + \lambda ||w||_{1}$ \rightarrow right bias using explicit regularization $O\left(\frac{s \log d}{n}\right)$

Open questions: • are **consistent or fast rates** possible for basis pursuit on noisy data for sparse w^* ?

is the strongest inductive bias,. i.e. ℓ_1 -norm, the best choice for noisy interpolation?

So far: only non-vanishing prediction error bounds for isotropic, i.i.d. noise setting for min- ℓ_1 -norm*

*[Wojtaszczyk '10, Chinot et al. '21, Koehler et al. '21]

Our results: Consistency and fast rates for min- ℓ_p -norm/max- ℓ_p -margin interpolation for $p \in [1,2)$

Consistency for noisy basis pursuit

Theorem [WDY' 21] – Tight bounds for min- ℓ_1 -norm interpolators For a sparse ground truth $||w^*||_0 \leq \frac{n}{\log(\frac{d}{n})}$ isotropic Gaussians, if $n \log n \leq d \leq e^n$ $||\widehat{w} - w^*||^2 = \frac{\sigma^2}{\log(d/n)} + O\left(\frac{\sigma^2}{\log^{3/2}(d/n)}\right)$, that is, as $n \to \infty$, the error vanishes (asymptotic consistency).

- This is a lower + upper bound for Gaussian X
 (experimentally bound also tight beyond Gaussian X)
- For classification, the directional estimation error

$$\left\| \frac{\widehat{w}}{\left\| \widehat{w} \right\|_{2}} - \frac{w^{\star}}{\left\| w^{\star} \right\|_{2}} \right\|_{2}^{2} = O\left(\frac{\kappa(\sigma)}{\log d/n}\right) \text{ when } w^{\star} \text{ is } 1 \text{ -sparse}^{\star}$$

• Make no mistake: this is a slow rate! Lasso: $O\left(\frac{s \log a}{n}\right)$

*in [DRSY '22]

Fast rates with modest inductive bias for regression

Theorem [DRSY' 22] – Tight bounds for min- ℓ_p -norm interpolators

For a 1-sparse ground truth $d \approx n^{\beta}$ and isotropic Gaussians, for d large enough, $1 and <math>1 < \beta \leq \frac{p/2}{p-1}$

we obtain with probability at least $1 - d^{-c}$ prediction error rates $\tilde{O}(n^{-\alpha})$ with α as in graph below

- for $\beta \approx 2$, we get rates close to $\frac{1}{n}$!
- for fixed β , some p > 1 close to 1 gets best rate
- Caveat: Large enough actually requires $\frac{1}{\log \log d} \lesssim p 1 \rightarrow \text{very large } d$

Fast rates with modest inductive bias for classification

Theorem [DRSY' 22] – Upper bounds for max- ℓ_p -margin interpolators

For a 1-sparse ground truth $d \approx n^{\beta}$ and $\Sigma = I$, for d large enough and $1 < \beta \leq \frac{p/2}{p-1'}$ we obtain rates $\tilde{O}(n^{-\alpha})$ w/ probability at least $1 - d^{-c}$ for classification with α as in graph

Intuition: a "new" bias-variance tradeoff

What's wrong with min- ℓ_1 -interpolation? Variance and sensitivity to noise is too large \rightarrow increasing d/n does not regularize enough even though it has relatively small bias.

New trade-off between bias and variance as a function of the strength of inductive bias!

Beyond linear models: Does this intuition transfer?

- Take-away intuition: in the presence of moderate noise, interpolation can do well if we use a moderate amount of inductive bias (if ground truth has "simple" structure)
- Back to images and neural networks: does this intuition transfer in any way?
 Question: what is a corresponding "strong" inductive bias? Filter size? depth? width?

Preliminary experiment with CNTK on binarized MNIST using depth:

For noisy (orange/grey) data, best interpolating estimator has "medium" inductive bias (depth)

...maybe? ... still need much more evidence!

Overview of today on a high-level

- Prospects: How well can we do interpolation in the noisy case
 - previous work: high-dimensionality acts as "implicit regularizer" reducing variance at the cost of bias
 - our results: "moderate" inductive bias \rightarrow fast rates for estimation error even for noisy interpolation
 - Perils: Interpolation might be problematic for robustness

٠

- previous work: surprising empirical observations in adversarial robustness setting
- our results: proof for some of these peculiar phenomena even in the linear and noiseless setting

Adversarial robustness primer

same label/value for the ground truth

usually consider consistent perturbations, that is for all $x' \in T(x, \epsilon)$, we have $f^*(x') = f^*(x)$ ٠

same bird despite blur

- Goal is to achieve lower robust (test) error $\mathbb{E}_{x,y} \max_{x' \in T(x,\epsilon)} \ell(y, f(x'))$ than standard training ٠
- Adversarial training (AT) minimizes empirical robust risk $\frac{1}{n}\sum_{i=1}^{n} \max_{x' \in T(x,\epsilon)} L(y, f(x'))$, usually is better ٠
- Interpolating AT: Usually using first-order method on empirical robust risk until convergence ٠

Next: some empirical phenomena that arise with interpolation and adversarial robustness

Interpolating AT yields worse robust risk – than regularized

Regularized adversarial training

"Robust overfitting" persists

Interpolating AT yields worse robust risk – than standard

... in the small sample regime for perceptible attacks. Some image examples from [CHY '22]:

Many possible reasons for weirdness when training neural networks

Previous work: noise different impact? non-convex optimization? robust estimator complicated?

We find: Lots of weirdness even when noiseless & convex & simple (linear) robust ground truth

...theoretical results for linear models

Adversarial robustness for linear models

٠

• We consider noiseless observations in classification $y = \text{sgn}(\langle w^*, x \rangle)$ or regression $y = \langle w^*, x \rangle$

• Different consistent perturbations: $sgn(w^*, x') = sgn(w^*, x)$ or $(w^*, x') = (w^*, x)$ with $x' = x + \delta$

• Interpolating adversarial training (AT): (S)GD on $\frac{1}{n}\sum_{i=1}^{n} \max_{\delta \in S(\epsilon)} L(y, w^{\mathsf{T}}(x + \delta))$ depending on x distribution requires $\delta \perp w^*$ or just $||\delta||_p \le \epsilon$

(Ridge)-regularized adversarial training: minimum of $\frac{1}{n}\sum_{i=1}^{n} \max_{\delta \in S(\epsilon)} L(y, w^{\mathsf{T}}(x + \delta)) + \lambda ||w||_{2}^{2}$

Adversarial evaluation benefits from regularization

Robust error: $\mathbb{E}_{x,y} \max_{\delta \in S(\epsilon)} \ell(y, w^{\mathsf{T}}(x + \delta))$, standard error: $\mathbb{E}_{x,y} \ell(y, w^{\mathsf{T}}x)$, standard training

Theorem [DTAHY' 22] (informal) – Adversarial accuracy benefits from regularization

Consistent perturbations ($\delta \perp w^*$) for regression ($\delta \perp w^*$), $x \sim N(0, I)$: Asymptotically as $\frac{d}{n} \rightarrow \gamma$, the

min- ℓ_2 -norm interpolator has higher robust error than the regularized estimator but the same standard error

Mean square errors

- Standard, interpolating
 Standard, regularized (opt.)
- Robust, interpolating
- -- Robust, regularized (opt.)

Adversarial training (AT) benefits from regularization

Theorem [DTAHY' 22] (informal) - Proof for robust overfitting

Consistent ℓ_{∞} -perturbations ($\delta \perp w^{\star}$) for classification w/ sparse ground truth, $x \sim N(0, I)$:

Asymptotically as $\frac{d}{n} \rightarrow \gamma$, interpolating AT yields higher robust error than regularized AT.

Adversarial training worse than standard training

Robust error gap: Robust error (adversarial training) - Robust error (standard training)

Theorem [CHY' 22] (informal) – Non-asymptotic lower bounds for robust error gap

Consistent but directed attacks ($\delta \parallel w^*$), Gaussian mixture: almost surely, interpolating adversarial training yields higher robust error than the interpolating standard training. More specifically we prove:

Almost surely, robust error gap monotonically increases with attack budget

Take-aways

٠

- interpolation can generalize almost as well as regularized estimators with right amount of inductive bias proof for min- ℓ_p -norm interpolation for $p \in [1,2]$ where p = 1 is strong, p = 2
- for robust evaluation, regularized estimators could generalize better than interpolating estimators even in the noiseless and consistent case
 - for standard training (proof for regression)
 - for adversarial training (proof for classification)
 - for perceptible, directed attacks, even weirder things can happen for interpolating estimators:
 - adversarial training may be worse than standard training for small samples

Group and references

SML group: sml.inf.ethz.ch

- Wang*, Donhauser*, Yang "Tight bounds for minimum I1-norm interpolation of noisy data", AISTATS '22
- Donhauser, Ruggeri, Stojanovic, Yang "Fast rates for noisy interpolation require rethinking the effects of inductive bias", arxiv preprint '22
- Donhauser*, Tifrea*, Aerni, Heckel, Yang "Interpolation can hurt robust generalization even when there is no noise", NeurIPS '21
- Clarysse, Hörmann, Yang "Why adversarial training can hurt robust accuracy", arxiv preprint '22