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Bayesian nonparametric modeling is an effective tool for inferring
heterogenous causal effects.

Bayes estimates from these models can have excellent frequentist
properties — no need to drink the Kool-Aid.

Some insights about model and prior specification apply to flexible
estimation of effect heterogeneity more generally



Putting BNP to work for inference about effect heterogeneity

Three considerations:

- Model parameterization: When you can, isolate your estimand
as a parameter

- Prior specification: Priors are important for encoding beliefs
but also for applying regularization. Regularization that ignores
selection can be disasterous.

- Posterior summarization: “Solving” the Bayesian analogue of
the post-selection inference problem, focusing on stable
estimands, and giving actionable insights from complex models.



Some generic identifying assumptions

Strong ignorability:
Yi(0),Yi(1) L Z; | X; = x;,
Positivity:
foralli. Then
P(V(2) | x) =P(Y|Z=2X)

’

and the conditional average treatment effect (CATE) is

(i) - = E(Yi(1) = Yi(0) | x))
= E(Y,‘ | Y% L = 1) — E(Y,‘ ‘ XN O)



Model Parameterization



Parameterizing Nonparametric Models of Causal Effects

Forget confounding and covariates and consider estimating average
treatment effect for a binary treatment in a randomized trial.

A simple model:
”
(Yi | Zi = 0) = N(po, 0°)
”
(Yi]Z=1) ~ N(w,0%)
where the estimand of interest is 7 = 1y — po.

If 10, 1 ~ N(&;, ;) independently then 7 ~ N(¢p1 — ¢o, do + 1)

Often we have stronger prior information about 7 than pu or g - in
particular, we expect it to be small.



Parameterizing Nonparametric Models of Causal Effects

A more natural parameterization:

where the estimand of interest is still 7.

Now we can express prior beliefs on 7 directly and independent of
nuisance parameters.



Parameterizing Nonparametric Models of Causal Effects

How does this relate to models for heterogeneous treatment effects?
Consider (mostly) separate models for treatment arms:

yi=fz(x)+¢ €~ N(O,0?%)
(i | Zi = 0,%) % N(fo(x), 0?)
(i1 Z = 1,%) © N(fi(x), %)

Independent priors on fo, fi — prior on 7(x) = f1(x) — fo(x) has larger
variance than prior on fy or f;

No direct prior control — simple fo, f; can compose to complex 7 (e.g.
Kinzel et al (2019)).

In addition, every variable in x is a potential effect modifier.



Parameterizing Nonparametric Models of Causal Effects

What about the “just another covariate” parameterization?

i = f(%i,zi) + ¢ €~ N(0,0?)
id
(Yi | Zi = z;, %) ~ N(f(x;, 2;), 0?)

Then the heterogeneous treatment effects are given by
T(X) Ef(X,1) —f(X,O)

and we still (generally) have no direct prior control!



Parameterizing Nonparametric Models of Causal Effects

For binary treatments, set f(x;,z;) = u(X;) + 7(w;)z;, where w is
(possibly) a subset of x:
Vi = (X)) + T(W))zi + €, € ~ N(0,07)

Y5 | Zi = zi) % N(u(x;) + 7(W;)zi, o)

The heterogeneous treatment effects are given by 7(w) so we have
direct prior control!

In Hahn et. al. (2020), we use independent BART priors on p and
(“Bayesian causal forests”).



Prior Selection



Tweaking priors on 7

Several adjustments to the BART prior on 7 in BCF:

- Higher probability on smaller 7 trees (than BART defaults)

- Higher probability on “stumps” (all stumps = homogeneous
effects)

- N*t(0,v) Hyperprior on the scale of leaf parameters in 7

Other nonparametric priors for 7 have similar “knobs” (scale,
smoothness, sparsity, etc.)

For observational data, we need to adjust the prior on u(x) as well,
to avoid regularization induced confounding (Hahn et al (2016, 2020))



Regularization can induce confounding (bias)

Let’s return to a linear model with homogeneous effects:

Vi =f(x,z) + &
= 77 +ﬂtX,' < &

and suppose x; is high dimensional.

Assume B ~ N(0,\~"1) (ridge prior) and p(7) oc 1

What effect does the prior (regularization) have on estimating 7
using the posterior mean?



Regularization can induce confounding (bias)

The bias of # = E(7 | Y,z,X) is
bias(7) = MY+ X{(1 — P)X] '8 (1)

where §; = the OLS estimate of x; = §;z; + ¢j. Alternatively:

bias(7) = A[z'(z — #x)] '4% (2)

where 7, = [M + XX]7'X'z and Z = X7,

In general, if zand x are correlated the bias is nonzero and depends
on the nuisance parameter!
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Solution: Don’t penalize variation in f(x,z) along E(Z | x)

Expand the model to include Z; (a function of zand X) that estimates
E(Z | x):

yi = f(%i,zi) + &
:TZ;—FCfJf[—FﬂtX,'—F&'

Keep B ~ N(0,A~"1) (ridge prior) with p(7, #) o< 1, so that variation in
the direction of Z; is unregularized
bias(7) = AL+ X{(1 — P)X] '8 3)

where 3,» = the OLS estimate of xj = a;Z + §;z; + € (=~ 0).



Solution: Don’t penalize variation in f(x,z) along E(Z | x)
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Regularization induced confounding is a general phenomenon

There is nothing special about the ridge prior or the linear model -
RIC is easy to produce with nonlinear models and nonlinear data
generating processes. (Hahn et al (2020))

In essence: Since Z is a proxy for E(Z | x), if the prior on f(x, 2)
strongly penalizes variation in the "direction” of E(Z | x) (and not 2)
the prior encourages misattributing that variation in fto Z.

This is not a Bayes problem; it's a generic regularization problem.
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How to avoid penalizing variation in f(x, z) along £(Z | x)

Including Z; as an extra coordinate/feature/covariate is often enough
to mitigate regularization induced confounding.

Depending on the model, there may be easier/more efficient ways to
accomplish this (e.g. residualization).

In Hahn et al (2020) we evaluate BART priors on f(x,z) with and
without Z and BCF:

Vi = w(X;,2)) + 7(W))zi + €, € ~ N(0,0°)

The latter two are often much better and rarely worse, especially
when selection into treatment is based on expected outcomes under
control ("targeted selection”).



Posterior Summarization




Posterior summaries, or: | fit this model, now what?

Examine the “best” (in a user-defined sense) simple approximation
to a “true” g(x) (Woody et al (2020))

Given samples of a function g(x),

1. Consider a class of simple/interpretable approximations I' to g
2. Make inference on

v = argmind(g.5,X) + p(7)
Fer
for an appropriate distance function d and (optional) complexity
penalty p(v)

Get draws of v by solving the optimization for each draw of g. Get
point estimates by solving

7 = arg min Egld(9,7,%) + p(%) | ¥,X]
ye
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Posterior summaries, or: | fit this model, now what?

Posterior summaries:

1. Are more interpretable (subgroup analysis,
linear/additive/sparse approximations) and can be targeted to
scientific questions

2. Obviate the “need” to fit multiple models for different questions
(Bayesians need to think about post-selection issues too) —
multiple summaries use the data once to go prior — posterior

3. Are often more stable (coarse subgroup effects vs.
individualized estimates)

4. Come with (Bayes) valid estimates of uncertainty



> y X(iw

15 20 25

10

5

High Achieving _
CATE = 0.016 Norms

0

n = 5023 Sy \(:53

-0.05 0.00 0.05 0.10 0.15

Lower Achieving
Low Norm
CATE = 0.032
n = 3253

Lower Achieving
High Norm
CATE = 0.073
n = 3265




> y X(iw

15 20 25
1

10

5

0

High Achieving
CATE = 0.016 Norms = i ‘ ‘ ‘

n = 5023 <053 - 053 -0.05 0.00 0.05 0.10 0.15
» A
Lower Achieving Lower Achieving & Pridifi>0) =083
Low Norm High Norm > - e
CATE = 0.032 CATE = 0.073 2 © 7
n = 3253 n = 3265 8 < 4
o

T T T T
0.05 0.10 0.15 0.20

|
o
=)
a

Diff in Subgroup ATE



>y X(iw
High Achieving
CATE = 0.016 el —

= 502 ~
n = 5023 SV \(153 0.05 0.00 0.05 0.10 0.15

. Lower Achieving
Ach t ]
chievemen Ty —"

15 20 25

10

5

0

Pr(diff > 0) = 0.81

<038 >0.38 CATE =0.073 * 7
n = 3265 <« J

e o o & ‘ ‘ ‘ ‘
" LowAchieving 1 . Mid Achieving «
I owNorm b ey Nem . 3 -0.05 0.05 010 0.15 0.20
I CATE=0010 § ° CATE=0045 ° .
1 n=1208 ! : n = 2045 : Diff in Subgroup ATE
LB B BN BN BN BN BN ] ® o 0o 0 0 0 0 0 0 0




Additive summaries

We can get pproximate partial effect curves via additive summaries:
P

(W) ~ 0+ Y %(w)

Jj=1

with appropriate forms for 5; plus smoothing penalties.

We can also get posterior on discrepancy metrics, like pseudo-R*:
Cor*(y(wi), 7(w;))
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Other applications of posterior summarization

- Interaction detection (Woody et al (2020)): If an additive
summary is poor how do we search for missing interactions?

- Sensitivity to control function specification (Woody et al
(2020b)): How do | expect removing confounders (or
nonlinear/interaction terms) to change my effect estimate?

- “Explanations”: Linear summaries in neighborhoods of x; = LIME
with uncertainty
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Thank you!

jared.murray@mccombs.utexas.edu

https://jaredsmurray.github.io
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