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Real data: (Y ,X 1, . . . ,X 411), 11 time points, 5 exp., 3 rep.

N. Pfister, S. Bauer, JP: Learning stable structures in kinetic systems: benefits of a causal approach, PNAS 2019
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Instrumental Variables:

A

X1 X2

Y

H

??

Y = β1X1 + β2X2 + ε

A1 A and Y are d-separated when removing X1,X2 → Y (exclusion
restriction). Then,

E [A(Y − α1X1 − α2X2)] = 0 ⇐ (α1, α2) = (β1, β2)

A2 In addition, E [AX>] is full rank. Then,

E [A(Y − α1X1 − α2X2)] = 0 ⇔ (α1, α2) = (β1, β2)

Anderson and Rubin 1949, Theil 1953, ...
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Examples:

A1 A2

X1 X2Y

H

A1 A2

X1 X2Y

H

A1

X1 X2Y

H

Example 3 (under-identified): solution space of

E [A1(Y − α1X1 − α2X2)] = 0

has dimension one.

Idea: Among all invariant models, choose the most predictive one.
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How does this help for distribution generalization?

Ben-Tal et al. 2013, Bertsimas et al. 2018, Hu and Hong 2013, Lam 2019, Sinha et al. 2017, . . .

Consider (unknown) model M

A := εA ∈ Rq

H := εH

X := BX + γY + CH + GA + εX ∈ Rd

Y := β>X + FH + εY

with cov(A,A) full rank. Then, for Finv := {α ∈ Rd |E [A(Y −α>X )] = 0}

argmin
α∈Finv

EM [(Y − α>X )2] = argmin
α

sup
i∈Rq

EM(i)[(Y − α>X )2],

where M(i) corresponds to the intervention do(A := i).
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What do we do for finite sample size?

αγ := argmin
α

E(Y − Xα)2︸ ︷︷ ︸
prediction

s.t. ‖EA>(Y − Xα)‖2
2︸ ︷︷ ︸

invariance

≤ γ

α̂γ
n := argmin

α
(Y − Xα)>(Y − Xα) s.t. (Y − Xα)>A(A>A)−1A>(Y − Xα) ≤ γ
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PULSE: Choose γ, such that cor.test(A,Y − Xα̂γ
n).pvalue == 0.05
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Jakobsen and JP: Distributional Robustness of K-class Estimators and the PULSE, The Econometrics Journal 2021

Rothenhäusler, Bühlmann, Meinshausen, JP, JRSSB, 2021

e.g., Anderson and Rubin 1949 and Theil 1958 and Fuller 1977
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‘Roadmap’:

1. Find identifying equations.

2. Analyse identifiability conditions.

3. Among all invariant models, choose the most predictive one.
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Example: HSIC-X.

A := εA

H := εH

X := g(A,H, εX )

Y := β>φ(X ) + h(H, εY )

A

X Y

H

1. Identifying equation
A ⊥⊥ Y − β>φ(X )

2. Identifiability condition

A ⊥⊥ h(H, εY ) + τ>φ(X ) ⇒ τ = 0.

3. Among all invariant models, choose the most predictive one
(HSIC-X-pen: optimize empirical HSIC Gretton et al 2008)
S. Saengkyongam, L. Henckel, N. Pfister, J. Peters: Exploiting Indep. Instruments: Identification and Distr. Gener., arXiv 2022
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Finv := {f� ∈ F | A ⊥⊥ Y − f�(X ) under PM0} .

Theorem (Invariance with respect to interventions on A)

Let ` : R→ R be convex and I be a set of interventions on A satisfying
for all i ∈ I that PM(i) is dominated bya PM .

i) Then, for all f ∈ Finv it holds that

EM

[
`(Y − f (X ))

]
= sup

i∈I
EM(i)

[
`(Y − f (X ))

]
.

ii) Let S be the covariates, affected by A. If there exists i∗ ∈ I such that
X S ⊥⊥ U | X Sc

under PM(i∗) and supp(PX
M(i∗)) = supp(PX

M), then

inf
f ∈Finv

EM

[
`(Y − f (X ))

]
= inf

f ∈F
sup
i∈I

EM(i)

[
`(Y − f (X ))

]
.

aIf A enters the system nonlinearly, this cannot be dropped (even if f is
linear), see Prop. 4.9, Christiansen et al., IEEE TPAMI 2021.

S. Saengkyongam, L. Henckel, N. Pfister, J. Peters: Exploiting Indep. Instruments: Identification and Distr. Gener., arXiv 2022
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Example: VAR processes.

It−3

Xt−3

Ht−3

Yt−3

It−2

Xt−2

Ht−2

Yt−2

It−1

Xt−1

Ht−1

Yt−1

It

Xt

Ht

Yt

1. Here: E [It−2(Yt − β>Xt−1)] 6= 0 (see red path).

Instead: e.g.,

E

[(
It−2

It−3

)
(Yt − β>Xt−1 − γYt−1)

]
= 0

(nuisance IV). 2. Identifiability: rank condition is equivalent to conditions
on the Jordan normal form of the coef matrix. 3. (similar as before)

N. Thams, R. Nielsen, S. Weichwald, J. Peters:

Identifying Causal Effects using Instrumental Time Series: Nuisance IV and Correcting for the Past, arXiv 2022
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Real data: (Y ,X 1, . . . ,X 411), 11 time points, 5 exp., 3 rep.; Zt := 2− Yt

top ranked model Ẏt = θ1ZtX
56
t X 122

t + θ2ZtX
128
t X 168

t − θ3YtX
33
t X 138

t

Out-of-sample plot

N. Pfister, S. Bauer, JP: Learning stable structures in kinetic systems: benefits of a causal approach, PNAS 2019
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Invariant Policy Learning: Saengkyongam, Thams, JP, Pfister, arXiv:2106.00808, 2021

π

π π

X 1

X 2

X 3 U

e A R

Terrestrial ecosystem data: Migliavacca et al, Nature 2021

Jonas Peters (Univ. of Copenhagen) Distribution Gener. in Under-id. Causal Models 8 March 2022



Summary

Invariance can be used to identify causal models ... but only if
identifiability conditions hold. If not:

Proposal: Among all invariant models, choose the best predictive one.
This often minimises worst-case prediction errors.

a) linear models (PULSE)
b) exploiting independence (HSIC-X)
c) discrete-time dynamical systems (TS-IV)
d) chemical reaction networks (Causal KinetiX)
e) not shown: contextual bandits (Invariant Policy Learning)
f) not shown: Earth system science (causal GOF)

Book: JP, D. Janzing, B. Schölkopf: Elements of Causal Inference: Foundations and Learning Algorithms, MIT Press 2017

N. Pfister, S. Bauer, JP: Learning stable structures in kinetic systems: benefits of a causal approach, PNAS 2019

M. Jakobsen, JP: Distributional Robustness of K-class Estimators and the PULSE, The Econometrics Journal 2021

S. Saengkyongam, L. Henckel, N. Pfister, JP: Exploiting Indep. Instruments: Identification and Distr. Gener., arXiv 2022

N. Thams, R. Nielsen, S. Weichwald, JP: Identif. Causal Effects using Instr. TS: Nuisance IV and Corr. for the Past, arXiv 2022

R. Christiansen, N. Pfister, M. Jakobsen, N. Gnecco, JP: A causal framework for distribution generalization, IEEE TPAMI 2021

S. Saengkyongam, N. Thams, JP, N. Pfister: Invariant Policy Learning: A Causal Perspective, arXiv:2106.00808, 2021

Migliavacca et al.: The three major axes of terrestrial ecosystem function, Nature 2021
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