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The replicability crisis

Source: Dorothy Bishop



What’s the reason for the crisis?

There are many reasons for the replication crisis: low power, p-hacking,
convenience samples, correlated observations, distribution shift, . . .

Does statistical practice capture all relevant sources of variation??



Distributional uncertainty

Distribution shift, contaminations, confounding,. . . might lead to a
sampling distribution that is different from the target distribution P0.

If the distributional perturbations have some (known) structure, we can
address it via re-weighting, random effect modelling, sensitivity analysis or
other statistical techniques. Here, we want to deal with unknown
perturbations.



Distributional uncertainty

Running example: we are interested in a linear regression parameter

θ(P) = arg min
θ

EP[(Y − Xθ)2].

We observe i.i.d. data (D1, . . . ,Dn) from a perturbed distribution Pξ and
compute an estimator θ̂(D1, . . . ,Dn).

The error decomposes as

θ̂ − θ(P0) = θ̂ − θ(Pξ)︸ ︷︷ ︸
error due to
sampling

+ θ(Pξ)− θ(P0)︸ ︷︷ ︸
error due to
perturbation

.



Motivation

Some time ago, at a conference I presented a ”distributional stability
measure”.

Audience member: ”if you want this to be used widely, you have to
integrate distributional stability and sampling uncertainty”

I agree! This would a) require little re-training for practitioners b) simplify
decision-making c) integrate relatively easily with existing tools such as
Bonferroni, FDR control . . .



Integrating sampling uncertainty and distributional
uncertainty

Ideally, we would like to construct confidence intervals that cover the
parameter of the target distribution θ(P0) (and not the contaminated
parameter θ(Pξ)).

Compared to sensitivity analysis in causal inference, we will NOT rely on
user input how far Pξ is from P0.

We will estimate the strength of the perturbations by evaluating model
stability.



Related literature

Many researchers recommend evaluating model stability to judge
trustworthiness of statistical conclusions (Leamer 1993; Rosenbaum 2010; Yu 2013; Yu and

Kumbier 2020; . . . )

In causal inference, differently specified regressions are often used to
estimate the size of omitted variable bias (Murphy and Topel 1990; Altonji, Elder, and

Taber 2005a; Altonji et al. 2011; Oster, 2019)

Stability principles have been used to infer causal relations based on
heterogeneous data (Peters et al., 2016; Heinze-Deml et al., 2018; Bühlmann 2020)

If the analyst chooses the final estimator out of a set of estimators in
a data-driven fashion, inference has to account for the model
selection step (Berk et al., 2013; Fithian et al., 2014;...)



What is the most generic distributional perturbation?

One can generate Pξ by randomly up-weighting or down-weighting
probabilities of events compared to the target distribution P0.



Example: the distributional perturbation model

For simplicity, we will focus on discrete distributions with P0(X = x) = 1
m

for all x ∈ X . Without loss of generality X = {1, . . . ,m}.

Draw i.i.d. weights ξk ≥ 0 with finite second moment. Set

Pξ(X = x) =
ξx∑m
k=1 ξk

Draw D1, . . . ,Dn
i.i.d.∼ Pξ. Then, for all functions ψ

Var

(
1√
n

n∑
i=1

(ψ(Di )− EP0 [ψ(D)])

)
=

(
1 +

n

m

Var(ξ)

E[ξ]2

)
Var(ψ(D))+o(1),

where D ∼ P0.



Our setting

Assumption (Simplified version)

Let (D1, . . . ,Dn) be a data set such that for any bounded ψ with bounded
total variation

1√
n

n∑
i=1

(ψ(Di )− EP0 [ψ(D)]) ≈ N (0, δ2Var(ψ(D))),

where D ∼ P0 and δ > 0 is unknown.

If the data is drawn i.i.d. from P0 this holds with δ = 1. Thus, this can be
seen as relaxing the i.i.d. assumption.



Assumption (Rigorous version)

Let (Dn
1 , . . . ,D

n
n ), n ≥ 1 be a triangular array of random variables. For any

bounded ψ with bounded total variation let

1√
n

n∑
i=1

(ψ(Dn
i )− EP0 [ψ(D)]) = N (0, δ2Var(ψ(D))) + op(1),

where D ∼ P0 and δ > 0 is unknown.

Since the data scientist only observes on data set (Dn
1 , . . . ,D

n
n ) for some

fixed n, in the following for simplicity we just write (D1, . . . ,Dn).



When does this assumption hold?



What sampling procedures satisfy Assumption 1? In our paper, we give
several examples:

Distributional perturbation model

Drawing with replacement from an unknown subpopulation

Sampling clusters of units with unobserved membership



”Alright, but I could’ve easily written down another perturbation model
and would have gotten a different asymptotic behaviour!”

Result 1: Under a symmetry assumption, all distributional perturbations
models are equivalent (in terms of second moments) to the one introduced
above.

”Are there relationships to other statistical concepts?”

Result 2: The perturbation model induces correlated data, random
confounding, and random sampling bias.

Details can be found in the manuscript.



Theorem (Characterization of isotropic distributional perturbations)

Let (D, ξ) ∼ P0 and assume that there exists a function h(•) such that
h(D) is uniformly distributed on [0, 1]. Assume that for any D-measurable
events A and B with P0(A) = P0(B),

Var(Pξ(A)) = Var(Pξ(B)).

Furthermore, assume that for every sequence of D-measurable events Aj

with P(Aj)→ 0,
Var(Pξ(Aj))→ 0.

Then there exists δdist ≥ 0 such that for all φ ∈ L2(P), and Di
i.i.d.∼ Pξ

Var(
1√
n

n∑
i=1

φ(Di )− E[φ(D)]) = δ2Var(φ(D)),

for δ = 1 + nδ2dist.



Questions?



Inference



How NOT to do inference

If we use our standard variance formulas (or the bootstrap), we only
estimate sampling uncertainty (not distributional uncertainty) and thus
drastically underestimate uncertainty!



Assumptions

The statistician might have access to several estimators θ̂k that
supposedly estimate a very similar quantity.

Assumption

The estimators θ̂k , k = 1, . . . ,K satisfy

θ̂k − θ(P0) =
1

n

n∑
i=1

φk(Di ) + op(
1√
n

)

for some bounded φk with mean zero and bounded total variation.

In words: we assume that the estimators are asymptotically linear and that
the estimators converge to the same quantity.

(If the latter assumption is violated, we will generally get overcoverage,
more about that later...)



Example

On observational data, researchers often estimate a causal effect by
running a regression of the outcome Y on the treatment T and
confounders X . There may be many reasonable choices for the adjustment
set.

θ̂1 = coef(lm(Y ∼ T + X1))[2]

θ̂2 = coef(lm(Y ∼ T + X1 + X2))[2]

θ̂3 = coef(lm(Y ∼ T + X1 + X2 + X3))[2]

θ̂4 = . . .

Other examples: Might want to estimate a causal effect via the
instrumental variables approach, augmented inverse probability weighting,
. . .



How to do inference

Given multiple estimators θ̂1, . . . , θ̂K , we recommend estimating δ2 via

δ̂2 =

∑K
k=1 n(θ̂k − 1

K

∑
j θ̂

j)2∑K
k=1

1
n

∑n
i=1(φ̂k(Di )− 1

K

∑
j φ̂

j(Di ))2

=
between-estimator-variation

expected variation assuming i.i.d. sampling

The denominator is important! It’s not the absolute between-estimator
variation that counts, but the relative stability.



Let θ̂ be an estimator chosen by the data scientist.

Theorem (Calibrated inference)

Suppose Assumptions 1 and 2 hold. If φ̂k converge to φk , the estimators
are uncorrelated and K →∞, under some regularity conditions

P

θ(P0) ∈
[
θ̂ ± z1−α/2 · δ̂

√
V̂ar(φ)

n

] −→ 1− α.

Important: this confidence interval covers θ(P0) even in cases where the
data might be drawn i.i.d. from Pξ 6= P0.

The scaling factor δ̂ takes care of the additional variation due to
distributional perturbations.



Questions?



Numerical examples

Is the coverage of the proposed procedure approximately correct?

Stability of rankings based on the proposed procedure



Evaluation of coverage

Define the distribution P0 via the following structural causal model.

ε, ε1, ε2,X3,X4,X5
i.i.d∼ N(0, 1),

X2 ← X3 + ε2,

X1 ← 0.5X2 + X4 + ε1,

Y ← X1 + 0.5X2 + X3 + X5 + ε

The data is drawn i.i.d. from Pξ, where Pξ arises from perturbing P0 as in
the random perturbation model. The strength of the perturbation is
δ2 = 1 + n

m , where m ∈ {200, 500, 1000} and n ∈ {200, 500, 1000}.

Goal: estimate the causal effect of X1 on Y .

Can use different adjustment sets: {X1,X2}, {X1,X2,X3}, . . . leading to
different estimators θ̂1, . . . , θ̂K .



If we only use correct adjustment sets (red bars) then estimation of δ is
almost unbiased. If we also use some incorrect adjustment sets (blue
bars), then we overestimate δ.



Coverage of θ(P0) based on i.i.d. data from the perturbed distribution Pξ.



Stability of rankings

Ultimately, the goal of the proposed procedure is to increase stability and
trustworthiness of decision-making.

We will see that the proposed procedure can increase stability even in
situations without distribution shift.



Stability of rankings

We consider the data set (Cortez and Silva, 2008) about the relationship
of final grades with 20 student-specific covariates. n = 649

The covariates include student grades, demographic, social and
school-related features.

We consider 12 random covariate sets that include 7 binary covariates of
interest.



Stability of rankings

Method 1: The statistician randomly chooses one of the covariate
sets, performs a linear regression, and ranks the effect sizes of 7
covariates.

Method 2: The statistician employs the proposed method. They
perform linear regressions with multiple covariate sets and for each
covariate, average the estimators and compute its effect size in
consideration of distributional perturbations.



Evaluating stability of rankings

We randomly split the data set into two, perform method 1 and method 2
on each split, and compare the rankings resulting from each split.

Stability measure: |S1,k ∩ S2,k |/K , where
S1,k = {Top k covariates by the effect size on split 1} and
S2,k = {Top k covariates by the effect size on split 2}

We repeat this procedure N = 1000 times and record the average set
similarity measure.



` 1 2 3 4 5 6 7
Method 1 (K = 10) 0.102 0.203 0.407 0.648 0.817 0.898 1.000
Method 2 (K = 10) 0.210 0.296 0.449 0.658 0.828 0.912 1.000

` 1 2 3 4 5 6 7
Method 1 (K = 20) 0.090 0.203 0.417 0.659 0.817 0.893 1.000
Method 2 (K = 20) 0.235 0.313 0.445 0.679 0.845 0.912 1.000

Table: The stability of the ranking: The table above shows results with K = 10
adjustment sets and the table below shows results with K = 20 adjustment sets.
Mean over N = 500 iterations of the computed set similarity measure between
S1,` and S2,` for each ` = 1, . . . , 7 is provided for each method.

On this data set, the proposed method improves stability by more than
100%.



Pros & Cons

Provides theoretical guarantees for a type of stability analysis that
some researchers strongly advocate

Yields p-values and confidence intervals (only little re-training is
needed)

Does not rely on practitioner specifying the strength of a confounder
(as in sensitivity analysis)

Common methods for multiplicity correction (Bonferroni, FDR,. . . )
directly extend to distributional uncertainty

Can be extended to more complex perturbation & dependency
structures

Issues:

Can be conservative

Can be unstable (if all estimators have the same influence function)



Summary

Does current statistical practice capture all relevant sources of variation?

We propose to construct confidence intervals that account for both
sampling uncertainty and distributional uncertainty.

Calibrated inference is not just a function of signal-to-noise ratio and thus
leads to different rankings than p-values that capture sampling uncertainty.
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